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Classification of deep and shallow 
groundwater wells based 
on machine learning in the Hebei 
Plain North China
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Accurately determining the extraction volumes from various aquifers is crucial for effectively 
managing groundwater overexploitation. A key initial step in quantifying extracted groundwater 
volumes involves the classification of groundwater wells as either deep or shallow. This study 
evaluated 881,872 groundwater wells in the Hebei Plain, applying machine learning techniques to 
classify wells with unknown depths. Through the hydrogeological borehole data, the groundwater 
wells with known depth are divided into deep wells and shallow wells. Four machine learning 
algorithms—Random Forest, Support Vector Machine, Logistic Regression, and Naive Bayes—were 
employed to classify groundwater wells with unknown depths. The accuracy of these models was 
validated using known-depth well classifications. The results reveal that the Random Forest algorithm 
exhibited the highest performance among the models, achieving an overall accuracy of 91.23%. 
According to the Random Forest model, 43.51% of groundwater wells with unknown depths were 
classified as deep, while 56.49% were classified as shallow. The study also found that wells in areas 
where salinity exceeds 2 g/L are primarily deep groundwater wells. These findings provide valuable 
technical insight for groundwater well decommissioning and facilitate the assessment of extracted 
volumes of deep and shallow groundwater.

Keywords Groundwater wells, Deep and shallow groundwater wells classification, Machine learning, Hebei 
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The Hebei Plain is among the most severely affected regions in the world for overexploitation of groundwater. 
This has led to the formation of multiple shallow groundwater decline funnels at the piedmont alluvial plain 
and a series of composite deep groundwater funnels across the central alluvial and coastal plain. Such overuse 
has given rise to a range of geological and ecological issues, including land subsidence and seawater  intrusion1–3.

In 2014, comprehensive measures were implemented to manage groundwater overexploitation in Hebei 
Province. These measures included the establishment of a dual control system targeting both the water level and 
the volume of groundwater extraction in these overexploited regions. Discerning the precise extraction volumes 
of both shallow and deep groundwater within the Hebei Plain is imperative. Accurate categorization of ground-
water wells into deep or shallow is crucial before setting up detailed measurements of groundwater extraction 
volumes, especially for water used in agricultural irrigation. This categorization is a key step in evaluating the 
volumes extracted from different aquifers.

Previous studies of groundwater wells have predominantly concentrated on issues such as groundwater 
 contamination4–6, stability assessments for groundwater supply systems during the dry  season7,8, effects of low-
ered aquifer water levels on groundwater well  performance9,10, establishing a quantitative relationship between 
irrigation energy consumption and water extraction  volume11, and approaches to simplify predictions for the 
location and depth of new groundwater wells using hydrogeological and construction  data12. Research is notably 
deficient regarding the vertical zoning of groundwater wells: that is, distinguishing between deep and shallow 
groundwater wells. Therefore, there is an urgent need to propose a scientific and rational method to classify the 
deep and shallow groundwater wells.
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Over the years, millions of groundwater wells have been constructed across the Hebei Plain, with completion 
dates spanning a broad range. The lack of professional competence among those involved in groundwater well 
construction has frequently resulted in poorly documented depth information. Wells with known depths can 
be categorized through the analysis of hydrogeological boreholes. Nonetheless, there is a deficiency in effective 
methods for classifying groundwater wells that do not have documented depths into their correct categories.

Machine learning classification techniques have been widely adopted in a variety of  fields13–16. The Ran-
dom Forest (RF) algorithm, known for its exceptional predictive capabilities, has achieved success in numerous 
 industries17. Support Vector Machines (SVM), celebrated for their impressive generalization ability and efficiency 
in deriving optimal solutions for classification tasks, have drawn significant  attention18. Logistic Regression (LR) 
serves as a foundational statistical model for binary outcome regression and classification  tasks19. Furthermore, 
the Naive Bayes (NB) algorithm, a staple in statistical learning, is often recommended for benchmarking against 
other  techniques20. This study employs these four machine learning strategies—RF, SVM, LR, and NB—to clas-
sify groundwater wells with unknown depths as either deep or shallow, additionally evaluating the accuracy of 
each method.

Currently, there is a lack of methods to classify groundwater wells with unknown depths as either deep or 
shallow wells. Therefore, this paper aims to categorize groundwater wells based on the following objectives: 1. 
To classify groundwater wells with known depths as deep or shallow by utilizing data from available hydrogeo-
logical boreholes.

2. To deploy machine learning techniques to develop classifiers capable of distinguishing deep from shallow 
groundwater wells, using existing classification outcomes, groundwater well characteristics, and hydrogeological 
conditions such as salinity of shallow groundwater, abundance of deep and shallow groundwater, and whether 
the location is within an overexploited zone.

3. To evaluate and compare four machine learning algorithms to both identify the most accurate model for 
classifying groundwater wells and to categorize wells with unknown depths as deep or shallow.

Materials and methods
Study area
The Hebei Plain experiences a temperate East Asian monsoon  climate21 with average annual precipitation rang-
ing from 500 to 600  mm22 and a temperature spectrum spanning from 1.8 to 14.2 °C. Owing to significant water 
resource limitations, Hebei has per capita water resources that are only 11% of the national average in China. 
Water demand in Hebei Province primarily stems from agricultural and industrial activities, which together 
account for about 70% of its total water consumption and are heavily dependent on groundwater. The exten-
sive extraction of groundwater within this region has led to the creation of two distinct overexploited areas: a 
shallow groundwater overexploited zone spanning 36,669.5  km2 and a deep groundwater overexploited region 
encompassing 42,157.8  km2. These two areas intersect, forming an overlapping zone that measures 9134  km2.

The piedmont alluvial plain features the boundary of the saline water zone along its western edge (Fig. 1). 
Within this area, the depth to the bottom of the saline layer typically ranges from 40 to 80 m; however, in certain 
locations, this depth can decrease to below 40 m or increase to around 100 m. Progressing from west to east 
toward the central parts of the central alluvial and coastal plain, the depth to the bottom of the saline water layer 
gradually increases, registering between 80 and 120 m. The aquifer grouping under discussion can be subdivided 
into four distinct hydrogeological layers, designated as Aquifers I–IV23 (Fig. 2), stratified from the uppermost to 
the lowermost  levels24. In regions where the groundwater is entirely fresh, the shallow aquifer system encompasses 
both Aquifers I and II. However, within saline water zone, Aquifer I alone constitutes the shallow aquifer system. 
For freshwater zone, the deep aquifer system contains Aquifers III and IV, while in areas with saline waters, 
this system extends to include Aquifer II in addition to Aquifers III and IV. Generally, the transition zone from 
freshwater to saline water corresponds with the demarcation between the piedmont alluvial and central alluvial 
plains; the western side is characterized by fresh groundwater, transitioning to saline groundwater  eastward25.

The abundance of shallow groundwater in the piedmont alluvial plain ranges from 3000 to 5000  m3/d, whereas 
it ranges from 100 to 500  m3/d in the central alluvial and coastal plain. The deep groundwater abundance is high 
overall, but the deep subsurface aquifer system is missing or discontinuous near the mountain front.

Methods
The dataset used in this study includes records for 881,872 operational groundwater wells on the Hebei Plain as 
of 2023. Of these, 285,755 groundwater wells have statistical data that includes depth, while 596,117 groundwater 
wells do not have this depth information available. Additionally, the study integrates data from 1127 hydrogeo-
logical boreholes across the Hebei Plain, which offer detailed information on the upper and lower boundaries 
of each aquifer group.

Regarding the hydrogeological conditions of the Hebei Plain, groundwater wells are classified into deep and 
shallow categories as follows: Deep wells are those that extract water from deep aquifer systems. Shallow wells 
are those that extract water from shallow aquifer systems.The specific classification methods of deep and shallow 
groundwater wells in the Hebei Plain are as follows:

Classification of groundwater wells with known depths
Hydrogeological borehole data are subjected to Kriging interpolation to process the information which is subse-
quently used for the categorization of groundwater wells with known depths. The classification criteria include 
the groundwater wells’ depth as well as their geographic coordinates, specified by latitude and longitude. The 
methodology for these calculations consists of the following steps:
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(1) The Kriging interpolation method is applied to the hydrogeological borehole data to determine the bottom 
depths of the aquifer. Kriging is a widely used spatial interpolation technique in Geographic Information 
Systems (GIS)26 that predicts or estimates values at unknown locations based on the spatial correlation 
between known data points:

where Z(X0) is the predicted value at unknown position x, n denotes the number of known points, Z(Xi)is 
the observed value of the ith known point, and λi is the interpolation weight, which is calculated by spatial 
correlation and used for weighted summation of the observed values of known points.

(2) Project the groundwater wells into the aquifer depth map according to latitude and longitude, and set the 
IF function:

(1)Z(X0) =

n
∑

i=1

�i · Z(Xi)

Figure 1.  Distribution of groundwater wells and hydrogeological boreholes in Hebei Plain and the range of 
shallow groundwater saline areas. The figure was created by the author using ArcMap 10.7.
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  Among them, hI, hII, hIII, and hIV are the bottom depths of the four aquifers, while hw is the depth of the 
groundwater wells.

(3) Determine whether the groundwater wells are considered deep or shallow based on the classification of 
the aquifer to which they belong and the corresponding coordinates.

Classification of groundwater wells with unknown depth
Machine learning techniques are utilized to develop classification models by leveraging existing classification 
outcomes, groundwater well attributes, and the specific hydrogeological conditions of their respective locales. 
These conditions encompass factors such as the salinity of shallow groundwater, the abundance of both deep 
and shallow groundwater, and the determination of whether the site is situated within an overexploited zone. 
The goal of the models is to differentiate between deep and shallow groundwater wells. Upon determining the 
most effective model, it is then applied to classify groundwater wells with unknown depths. The machine learn-
ing models utilized include:

(1) Support Vector Machine (SVM):  SVM27,28 is a binary linear classification technique in machine learning that 
separates classes by the largest margin (called the optimal hyperplane) between instances on the bound-
ary lines (known as support vectors). SVM can define nonlinear decision boundaries in high-dimensional 
variable space by solving a quadratic optimization  problem29,30. The core idea of the SVM algorithm is 
to divide the dataset into different categories by finding the maximum-margin hyperplane. During the 
process of finding this hyperplane, the SVM selects support vectors, which are the data points nearest to 
the hyperplane. Through the analysis of support vectors, the distribution of data can be inferred, which 
enables the classification of new data. The SVM has the advantages of strong generalization ability, good 
model robustness, and applicability to both linear and nonlinear problems, making it widely applicable 
with broad prospects.

(2) Random Forest (RF): RF was developed by  Breiman31 and is an ensemble algorithm based on multiple 
decision  trees32. The classification of an unknown type is determined by voting or averaging the outputs of 
all the decision  trees33. Specifically, Random Forest (RF) samples the training data randomly using tech-
niques such as bootstrapping and then trains several different decision trees, for instance, M decision trees. 
Ultimately, the predictions of the M decision trees are combined through methods like majority voting and 
averaging to produce the final  output34. The fundamental concept behind the algorithm is to enhance the 
model’s generalization ability through the introduction of randomness. The RF algorithm is robust with 
respect to feature selection and can achieve high accuracy without the need for extensive feature selection, 
making it an efficient supervised machine learning  algorithm17.

(3) Naive Bayes (NB): The NB classification method is based on Bayes’ theorem and adopts a probabilistic 
reasoning approach. NB estimates the conditional probability of a class by ‘naively’ assuming that the 
inputs to a given class are independent of each other. This assumption creates a discriminant function that 
is represented by the product of the joint probabilities, signifying the probability that a particular class is 
true given the input. NB simplifies the problem of distinguishing classes by calculating the class-conditional 

(2)











hw < hI,Groundwater wells belong to aquifer I
hI < hw < hII,Groundwater wells belong to aquifer II
hII < hw < hIII,Groundwater wells belong to aquifer III

hIV < hw,Groundwater wells belong to aquifer IV

Figure 2.  A–A1 Hydrogeological section.
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marginal densities, which represent the likelihood that a given sample belongs to one of the potential target 
 classes20.

(4) Logistic Regression (LR): LR is a multivariate statistical analysis  method35 used for binary classification. 
It studies the relationship between a dichotomous outcome variable (dependent variable) and one or 
more predictor variables (independent variables). LR is considered a generalized linear model adapted for 
dichotomous outcomes. Since the dependent variable takes binary values (usually set to 0 or 1), the logistic 
function, also known as the Sigmoid function, is introduced into linear regression to transform the output. 
This effectively converts LR into a normalized linear regression model through the Sigmoid function.

Characterization and feature encoding of groundwater wells for machine learning
The hydrogeological conditions at the location of groundwater wells, such as the abundance of deep groundwater, 
abundance of shallow groundwater, and salinity of shallow groundwater, are considered as properties of the wells 
and are encoded using sequential encoding (Table 1). These properties serve as features for machine learning.

Whether the groundwater well is located in an overexploited zone and the groundwater well characteristics 
do not have a continuous relationship. Therefore, they are encoded separately using binary encoding (Table 2) 
as features for machine learning.

Finally, deep groundwater wells are encoded as 1 and shallow groundwater wells as 0, serving as the labels 
for the machine learning model.

Table 1.  Sequential encoding of groundwater well characteristics.

Category Description Code

abundance of deep groundwater  (m3/d)

0 0

 < 100 1

100–500 2

500–1000 3

1000–3000 4

3000–5000 5

 > 5000 6

abundance of shallow groundwater  (m3/d)

0 0

 < 100 1

100–500 2

500–1000 3

1000–3000 4

3000–5000 5

 > 5000 6

salinity of shallow groundwater (g/L)

0–1 0

1–2 1

2–3 2

3–5 3

 < 5 4

Table 2.  Binary encoding of groundwater well characteristics.

Category Description Code

Whether located in an overexploited zone

Wells located in a shallow groundwater overexploited zone 0

Wells located in a deep groundwater overexploited zone 1

Wells located in a mixed groundwater overexploited zone 10

Wells not in an overexploited zone 11

Groundwater well characteristics

Agricultural wells 0

Industrial enterprise wells 1

Urban centralized water supply wells 10

Urban domestic wells 11

Service industry wells 100

Rural water supply factory wells 101

Rural domestic wells 110

Ground source heat pumps wells 111
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Model performance evaluation
In machine learning, the measurement and evaluation of models is crucial. Utilizing quantitative numerical 
evaluation metrics and methods enables the swift selection of an optimal model for training and learning from 
the data, thereby enhancing the effectiveness of the modeling and parameter tuning process. The primary evalu-
ation methods employed in this study include three-fold cross-validation, confusion matrix, kappa coefficient, 
overall accuracy, precision, recall and F1-score.

(1) Three-fold cross-validation.

Cross-validation is a statistical analysis method used to assess a model’s performance. The basic idea is to divide 
the original data into parts, where one part serves as the training set and another as the validation set. First, the 
model is trained with the training set, and then the validation set is used to test the trained model, in order to 
evaluate the model’s performance. In k-fold cross-validation (KCV), the original data is divided into k groups. 
One subset is extracted as the validation set without repetition, and the remaining k−1 groups are combined as 
the training set. Each time, the k−1 combined subsets serve as the training set, and this process is repeated for 
all k groups. The three-fold cross-validation method was utilized for the model in this study.

(2) Confusion matrix.

In this study, we carry out binary classification of groundwater wells, which is a problem where instances are 
classified into two categories: target and non-target. After making predictions with the trained model, the results 
fall into one of four cases:

True Positive (TP): The true label is the target class, and the prediction is also the target class. True Negative 
(TN): The true label is the non-target class, and the prediction is also the non-target class. False Positive (FP): The 
true label is the non-target class, but the prediction is incorrectly made as the target class. False Negative (FN): 
The true label is the target class, but the prediction is incorrectly made as the non-target class. In this paper, deep 
wells are designated as the target class, while shallow wells are considered the non-target class.

The confusion matrix is a tool used to illustrate the misclassifications between the predicted outcomes and the 
actual labels. It tabulates the number of correct and incorrect predictions, which demonstrates the errors made 
by the model during classification—in terms of both type and quantity of instances. The rows of the confusion 
matrix correspond to the actual labels, while the columns correspond to the predicted ones, providing a clear 
visualization of classification accuracy as detailed in Table 3.

(3) Kappa Coefficient.

According to the confusion matrix, we can calculate the Kappa coefficient, which is an important measure for 
evaluating model performance on unbalanced datasets. The Kappa coefficient penalizes the bias toward the 
majority class. The greater the imbalance that affects the model classification, the lower the Kappa coefficient will 
typically be. It is an important measure in the evaluation of multiclass classification when dealing with imbalance 
issues. The formula for the Kappa coefficient is as follows:

where P0 is the proportion of instances correctly predicted (sum of the diagonal elements of the confusion 
matrix) to the total number of instances (sum of all elements in the matrix). Pe represents the expected propor-
tion of correct predictions by chance, which is calculated as the sum of the products of the actual and predicted 
frequencies for each class, divided by the square of the total number of instances.

(4) Overall accuracy.

(3)Kappa coefficient =
P0 − Pe

1− P0

Table 3.  Confusion matrix charted by the predicted and actual classification.

Predicted

Positive Negative

Actual
 Positive TP FN

 Negative FP TN
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Overall accuracy refers to the proportion of correctly predicted instances across all categories.

(5) Precision.

Precision indicates the proportion of correctly predicted positive observations in the predicted positives for a 
category, i.e., the probability that a predicted positive is actually positive.

(6) Recall.

Recall is the proportion of actual positive cases that were correctly identified by the model, and a higher recall 
signifies that the model is correctly predicting more actual positive cases.

(7) F1-score.

The F1-score is a statistical measure used to assess a classification model’s accuracy, balancing precision and 
recall, and is particularly useful for imbalanced datasets. It is the harmonic mean of precision and recall, with 
a value ranging from 0 to 1, where 1 signifies perfect precision and recall, and 0 represents the worst possible 
performance.

Results and discussion
Classification of deep and shallow groundwater wells with known depths
This study employs Kriging interpolation of data from 1127 hydrogeological boreholes distributed across the 
plain to map the base depths of four distinct aquifers, illustrated in Fig. 3. The key parameters and configuration 
of Kriging interpolation are presented in the Table 4. The first layer represents the surface, while the 2nd, 3rd, 
4th, and 5th layers represent the basement depths of the I, II, III, and IV aquifers, respectively. The depths of 
four aquifers in the piedmont alluvial plain are similar. However, at the confluence of the piedmont alluvial and 
central alluvial plains, there is a notable discontinuity in the depths of the confining layers for Aquifers II, III, 
and IV. Specifically, Aquifer I features a basal depth ranging from 5 to 53 m, Aquifer II from 43 to 217 m, Aquifer 
III from 63 to 439 m, and Aquifer IV has its base depth ranging from 72 to 619 m.

Subsequently, the study categorizes groundwater wells as either deep or shallow based on their geographical 
location, depth, and the depths of the aquifer’s basal layers. The resulting classifications are displayed in Table 5. 
It shows that agricultural groundwater wells have the lowest incidence of being classified as deep, at 44.28%, 
whereas urban centralized water supply wells have the highest, reaching 82.17%. Except for agricultural wells, 
the majority of other groundwater wells tend to tap into deep groundwater sources.

Figure 4 displays the spatial distribution of deep and shallow groundwater wells. The majority of shallow 
groundwater wells are located within the piedmont alluvial plain, an area rich in fresh shallow groundwater. 
Conversely, the shallow groundwater found in the central alluvial and coastal plain is characteristically saline, 
with their water abundance often falling below 500  m3/day. The abundance of deep groundwater sources typi-
cally surpasses 1000  m3/day. Consequently, deep groundwater wells are predominantly located in the central 
alluvial and coastal plain.

To analyze the distribution patterns of deep and shallow groundwater wells, this study examines the depths of 
groundwater wells. Figure 5 depicts the distribution of well depths across the Hebei Plain. Although the exclusion 
of groundwater wells with unknown depths may introduce potential errors, obvious trends can still be observed.

In the piedmont alluvial plain, the depths of groundwater wells typically range from 40 to 100 m. However, in 
some areas, these depths may exceed 100 m. As one moves from west to east into the central part of the central 
alluvial and coastal plain, the depth of groundwater wells gradually increases, reaching 100–150 m. The central 
alluvial and coastal plain begin in the central part of Cangzhou City, where the depth of groundwater wells is 
approximately 200–300 m, and this depth increases gradually as one moves eastward. In the southeastern coastal 
plain, the depth of some groundwater wells can surpass 400 m, sometimes reaching even greater depths.

In the freshwater zone, the completion depth of groundwater wells is independent of the salinity levels of 
the shallow groundwater, focusing solely on the proper aquifer selection. Therefore, groundwater wells in these 
areas often draw water from Aquifers I or II. In contrast, in the saline water zone, to circumvent water quality 
challenges, groundwater wells are often drilled below the saline water stratum. Given that the base of the saltwater 
stratum usually coincides with the bottom of Aquifer II, groundwater wells in the central alluvial and coastal 
plain must be drilled to considerable depths. Consequently, groundwater wells in these areas are commonly 
deep groundwater wells.

(4)Overall accuracy =
TP+ TN

TP+ FP+ FN+ TN

(5)Precision =
TP

TP+ FP

(6)Recall =
TP

TP+ FN

(7)F1− score = 2×
(Precision× Recall)

(Precision+ Recall)
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Figure 3.  Interpolated aquifer base surfaces using the Kriging geostatistical method.

Table 4.  The key parameters and configuration of Kriging interpolation.

Parameter name Parameter value

Interpolation method Ordinary kriging

Variogram model Spherical model

Output cell size 1694.51372 m

Search radius setting 12 points

Table 5.  Distribution of deep and shallow groundwater wells with known depths across different categories.

Category Deep wells Shallow wells Total wells Proportion of deep wells in total wells (%)

Urban centralized water supply wells 139 60 199 82.17

Urban domestic wells 17 10 27 69.54

Service industry wells 11 8 19 78.87

Industrial enterprise wells 633 114 747 67.75

Rural water supply factory wells 836 436 1272 76.91

Rural domestic wells 2471 970 3441 67.99

Agricultural wells 134,583 145,406 279,989 44.28

Ground source heat pumps wells 49 12 61 79.12

Total wells 138,739 147,016 285,755 48.55
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Machine learning classification results
Data from groundwater wells classified in section “Classification of deep and shallow groundwater wells with 
known depths” are divided into training and test sets at a 7:3 ratio. A threefold cross-validation method is applied 
within the training phase, with three subsets from the training set used as validation sets for alternately assessing 
the model’s performance.

Table 6 shows that of the four machine learning models, the RF model achieves the best performance with an 
overall accuracy of 91.23%. It exhibits strong classification capabilities, distinguishing effectively between deep 
groundwater wells (92.01%) and shallow groundwater wells (90.41%). In contrast, LR, NB, and SVM models 
exhibit slightly lower overall accuracy rates, Kappa coefficients, recall, and F1-scores. The confusion matrix 
(Fig. 6) also shows that the RF predictions are more accurate, with errors more “evenly” distributed between the 
two types of groundwater wells. In contrast, SVM, LOG, and NB tend to classify groundwater wells as shallow 
wells.

Figure 4.  Distribution of deep and shallow groundwater wells with known depths. The figure was created by 
the author using ArcMap 10.7.
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Figure 5.  Distribution of well depths in groundwater wells. The figure was created by the author using ArcMap 
10.7.

Table 6.  Overall accuracy, kappa coefficient, precision, recall, and F1-score values achieved by different 
classifiers.

Machine learning model Overall accuracy (%) kappa coefficient (%) Precision (%) Recall (%) F1-scores (%)

RF 91.23 82.44 91.43 90.41 90.92

LG 89.88 79.66 95.68 82.89 88.83

SVM 88.35 76.61 92.73 82.48 87.30

NB 89.27 78.46 94.37 82.86 88.24
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While these three models achieve reasonable accuracy, they tend to frequently categorize groundwater wells 
as shallow. Because the study prioritizes overall prediction accuracy rather than accuracy in specific categories, 
the Random Forest model, which achieves the highest overall accuracy, is selected as the optimal model. Con-
sequently, the RF model is preferred for deep and shallow groundwater well classification and prediction, and is 
thus used to classify groundwater wells with unknown depths in Hebei Plain.

Classification of deep and shallow groundwater wells with unknown depths
The random forest model developed in section “Machine learning classification results” is employed for the clas-
sification and prediction of groundwater wells with unknown depths. The spatial distribution of these ground-
water wells is depicted in Fig. 7, and it closely mirrors the pattern presented in Fig. 4. Shallow groundwater wells 
are predominantly located in the piedmont alluvial plain, whereas deep groundwater wells are mainly situated 
across the central alluvial and coastal plains.

As shown in Table 7, deep groundwater wells are predominantly found within the urban centralized water 
supply wells, rural water supply factory wells, and service industry wells, representing over 80% of the total 
groundwater wells in each category. In the urban domestic wells and ground source heat pump wells, the usage of 
deep groundwater wells is also high, exceeding 70%. More than 60% of groundwater wells in both the industrial 
enterprise wells and rural domestic wells are deep. In contrast, agriculture primarily utilizes shallow groundwater 
wells, with deep groundwater wells constituting less than 50% of the agricultural total. On the whole, the aggre-
gate number of shallow groundwater wells outnumbers that of deep groundwater wells. Classification results 
for groundwater wells with unknown depths, obtained using machine learning techniques, show a similarity 
to the classifications for groundwater wells with known depths presented in section “Classification of deep and 
shallow groundwater wells with known depths”, which corroborates the reliability of the machine learning clas-
sification method.

Classification of deep and shallow groundwater wells
The spatial distribution of groundwater level depression funnels correlates strongly with the spatial distribu-
tion of groundwater wells. Shallow groundwater funnels are predominantly clustered in the freshwater zone of 
the piedmont alluvial plain, while deep groundwater funnels are mainly found in the saline water areas of the 

Figure 6.  Confusion matrix obtained by the SVM, NB, RF and NB.
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Figure 7.  Distribution of deep and shallow groundwater wells with unknown depths. The figure was created by 
the author using ArcMap 10.7.

Table 7.  Distribution of deep and shallow groundwater wells with unknown depths across different categories.

Category Deep wells Shallow wells Total wells Proportion of deep wells in total wells (%)

Urban centralized water supply wells 1078 204 1282 84.09

Urban domestic wells 241 103 344 70.06

Service industry wells 213 52 265 80.38

Industrial enterprise wells 3956 2070 6026 65.65

Rural water supply factory wells 1855 372 2227 83.30

Rural domestic r wells 7859 3894 11,753 66.87

Agricultural wells 242,964 329,751 572,715 42.42

Ground source heat pumps wells 1190 315 1505 79.07

Total wells 259,356 336,761 596,117 43.51
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central alluvial and coastal plain. In a similar vein, shallow groundwater wells are largely concentrated in the 
freshwater zone of the piedmont alluvial plain, whereas deep groundwater wells are primarily situated in the 
saline water zones of the central alluvial and coastal plain. The density of groundwater wells is markedly greater 
in the piedmont alluvial plain than in the central alluvial and coastal plain. This groundwater well distribution 
exhibits a distinctive pattern: ‘west shallow and east deep, west dense and east sparse.’

In the freshwater zone of the piedmont alluvial plain, there are 511,027 groundwater wells, with deep ground-
water wells comprising 13.94% and shallow groundwater wells making up 86.06%. By contrast, in the saline 
water zone of the central alluvial and coastal plain, there are 370,845 groundwater wells. Deep groundwater wells 
represent 88.13%, while shallow wells account for only 11.87%. This variation in groundwater well distribution 
between saline and freshwater zones underscores that the salinity of shallow groundwater is a significant factor 
contributing to the ‘west shallow and east deep’ groundwater well pattern observed in the Hebei Plain.

The distribution of groundwater wells in the Hebei Plain correlates with groundwater abundance: in the 
piedmont alluvial plain, characterized by an abundance of shallow groundwater, there is a predominance of 
shallow groundwater wells; in contrast, in the central alluvial and coastal plain, where shallow groundwater 
is less abundant, there is a higher proportion of deep groundwater wells. This pattern indicates that the abun-
dance of shallow groundwater significantly influences the choice of well depths. Thus, the abundance of shallow 
groundwater also plays a pivotal role in the region’s characteristic ‘west shallow and east deep’ groundwater well 
distribution pattern.

In an effort to curtail the volume of groundwater extraction, Hebei Province initiated an agricultural irriga-
tion water source replacement project from 2014 to 2022. This initiative was implemented extensively across the 
cities of Cangzhou, Hengshui, and in the eastern regions of Handan and Xingtai cities. As observed in Fig. 8, 
there is a lower density of groundwater wells in select areas of Cangzhou, Hengshui, the central part of Xingtai, 
and Handan. The agricultural irrigation water source replacement project in Hebei Province is a significant 
contributing factor to the ‘west dense and east sparse’ pattern of groundwater well distribution.

In 2003, the exploitation of saline water with a salinity of 1–2 g/L constituted 21.59% of the total extraction, 
while water with a salinity of 2–3 g/L made up 8.06%, 3–5 g/L comprised 1.30%, and water with more than 5 g/L 
accounted for 0.38%. These figures suggest that salinity significantly impacts groundwater extraction.

This paper analyzes the influence of varied salinity levels on the proportion of deep and shallow groundwater 
wells within three salinity zones: < 1 g/L, 1–2 g/L, and > 2 g/L, for different uses, including urban centralized 
water supply wells, urban domestic wells, service industry wells, and industrial enterprise wells, among others 
(Table 8). In the freshwater zone (< 1 g/L), deep groundwater wells are less common. However, they represent 
about 70% for uses such as urban centralized water supply wells, rural water supply factory wells, and ground 
source heat pump wells.

When shallow groundwater salinity exceeds 1 g/L, the proportion of deep groundwater wells increases rapidly 
across all types; overall, deep groundwater wells account for over 91%. Notably, deep agricultural wells increase 
from 30.94% in the 0–1 g/L zone to 91.35% in the 1–2 g/L zone, a significant jump of 60.41%. For urban cen-
tralized water supply wells and service industry wells, the proportion of deep groundwater wells reaches 100%. 
Agricultural wells and industrial enterprise wells also show high proportions at 91.35% and 92.03%, respectively. 
When salinity levels exceed 2 g/L, nearly all groundwater wells are deep, with their share exceeding 98%.

The analysis in Table 8 highlights an important finding: a salinity threshold of 1 g/L is crucial for water quality 
requirements. When the salinity of shallow groundwater is below 1 g/L, it serves as the primary water source 
due to its low salinity. However, once the salinity of shallow groundwater exceeds 1 g/L, extraction from shallow 
wells is largely discontinued, and the primary water source shifts to low-salinity deep groundwater.

Agricultural irrigation is the primary driver of excessive groundwater usage in the Hebei Plain, and numerous 
studies have indicated that saline water, when properly managed, can serve as an alternative to freshwater for 
irrigation  purposes36–38. In this study, 38.94% of the deep groundwater wells are located in areas where salinity 
levels range between 1 and 3 g/L. This suggests that there is considerable potential for the utilization of shal-
low saline water resources in the Hebei Plain. By fully capitalizing on shallow saline water, the strain on deep 
groundwater resources can be alleviated while still meeting the demands for agricultural water, thereby aiding 
in the sustainable management of groundwater supplies and maintaining a balance in the regional water cycle. 
This approach is crucial for addressing the issue of deep groundwater overexploitation in the Hebei Plain.

Conclusions
In this study, using existing hydrogeological borehole data, groundwater wells with known depths are classified 
into deep and shallow categories. Four machine learning methods—RF, SVM, LR, and NB—were employed to 
classify groundwater wells with unknown well depths. The classification was based on five variables: groundwater 
well attributes, salinity of shallow groundwater, the abundance of both deep and shallow groundwater and the 
determination of whether the site is situated within an overexploited zone. The model’s discriminative ability was 
evaluated using metrics such as three-fold cross-validation, confusion matrix, kappa coefficient, overall accuracy, 
precision, recall and F1-score. The results of the study are as follows:

(1) Of the 285,755 groundwater wells with known depths, the proportions of deep and shallow groundwater 
wells are 48.55% and 51.45%, respectively.

(2) The RF model outperformed the other machine learning methods in classification performance, achieving 
an overall accuracy of 91.23%, a Kappa coefficient of 82.44%, a recall rate of 91.43%, a precision rate of 
90.41%, and an F1-score of 90.92%.

(3) RF was employed to classify wells with unknown depths. Among the 596,117 groundwater wells, the esti-
mated proportions of deep and shallow wells are 43.51% and 56.49%, respectively.
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Figure 8.  Distribution of deep and shallow groundwater wells. The figure was created by the author using 
ArcMap 10.7.

Table 8.  Proportion of deep wells within different salinity areas by categories of groundwater wells.

Category
Proportion of deep wells in 
total wells (%)

Salinity 0–1 g/L 1–2 g/L  > 2 g/L

Urban centralized water supply wells 77.55 100.00 100.00

Urban domestic wells 64.35 90.57 100.00

Service industry wells 76.38 100.00 100.00

Industrial enterprise wells 63.82 92.03 99.86

Rural water supply factory wells 74.09 98.04 99.74

Rural domestic wells 59.69 94.00 99.97

Agricultural wells 30.94 91.35 97.71

Ground source heat pumps wells 77.94 99.66 98.86

Total wells 32.11 91.43 97.77
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(4) In the freshwater zone of the piedmont alluvial plain, 511,027 groundwater wells were identified. Of these, 
13.94% are classified as deep and 86.06% as shallow. In the saline water zone of the central alluvial and 
coastal plain, among 370,845 groundwater wells, 88.13% and 11.87% are categorized as deep and shallow, 
respectively.

Using machine learning models, this study successfully classified wells of unknown depths, providing an 
effective method to distinguish between deep and shallow wells. Other regions can establish groundwater well 
classification models based on similar hydrogeological parameters and machine learning techniques. In this 
paper, the Kriging interpolation method was used for data processing, introducing some uncertainty factors.

Data availability
The data that support the findings of this study are available from Department of Water Resources of Hebei 
Province but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request 
and with permission of Department of Water Resources of Hebei Province.
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