
Research Article
Inferences for Stress-Strength ReliabilityModel in the Presence of
Partially Accelerated Life Test to Its Strength Variable

Rashad M. El-Sagheer ,1 Ahlam H. Tolba ,2 Taghreed M. Jawa ,3

and Neveen Sayed-Ahmed 3

1Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Cairo, Egypt
2Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3Department of Mathematics and Statistics, College of Science, P.O. Box 11099, Taif University, Taif 21944, Saudi Arabia

Correspondence should be addressed to Neveen Sayed-Ahmed; nevensayd@yahoo.com

Received 21 January 2022; Accepted 14 February 2022; Published 18 March 2022

Academic Editor: Mario Versaci

Copyright © 2022 Rashad M. EL-Sagheer et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We focus on estimating the stress-strength reliability model when the strength variable is subjected to the step-stress partially
accelerated life test. Based on the assumption that both stress and strength random variables follow Weibull distribution with a
common first shape parameter, the inferences for this reliability system are constructed.)emaximum likelihood, two parametric
bootstraps, and Bayes estimates are obtained. Moreover, approximate confidence intervals, asymptotic variance-covariance
matrix, and highest posterior density credible intervals are derived. A simulation study and application to real-life data are
conducted to compare the proposed estimation methods developed here and also check the accuracy of the results.

1. Introduction

Stress-strength models have attracted many statisticians for
many years due to their applicability in different and diverse
areas such as engineering, economics, and quality control,
and, in the last years, there have been numerous applications
to medical and engineering problems.

In the last ten years, many authors have been interested
in studying the application of the simple stress-strength
reliability model, which is more handled theoretically and
at the same time is more simple and applicable to im-
plement in practice. )is model of reliability contains a
strength variable X and a stress variable Y, which is ex-
posed to it. Such a system will properly function when X

exceeds Y; namely, R � P(X>Y) denotes the reliability
system. Many estimation studies of reliability system are
considered by several statistician researchers under both
complete and censored samples from different models, for
example, exponential distribution under progressive type-
II censoring by Saraçoğlu et al. [1], Weibull distribution
under complete samples by Kundu and Gupta [2],
Kumaraswamy distribution under upper record values by

Nadar and Kızılaslan [3], Kumaraswamy distribution
under progressive type-II censoring by Nadar et al. [4],
Lomax distribution under record values by Mahmoud et al.
[5], Burr X distribution under complete samples by Surles
and Padgett [6], inverse Lindley distribution under com-
plete samples by Sharma et al. [7], exponential and Weibull
by Kumar and Siju [8], Weibull-Gamma distribution under
progressively type-II censored samples by Mahmoud et al.
[9], general exponential form distribution under complete
samples by Mokhlis et al. [10], Rayleigh distribution under
complete samples by Afshin [11], modified Weibull model
under progressively type-II censored samples by Soliman
et al. [12], Lindley distribution using progressively first-
failure censoring by Kumar et al. [13], generalized inverted
exponential distribution under progressively first-failure
censoring by Krishna et al. [14], Kumaraswamy expo-
nential distribution under progressively type-II censored
samples by El-Sagheer and Mansour [15], Burr XII dis-
tribution under progressively first-failure censored sam-
ples by Saini et al. [16], and generalized Maxwell failure
distribution under progressive first-failure censoring by
Saini et al. [17].
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In previous reliability studies, it is evident that it is
difficult to observe the lifetime of highly reliable components
because few failures occur in a limited test time due to the
very long lifetimes under normal test conditions. )erefore,
to overcome this problem, we are looking for a catalyst for
early failure of the components. Since testing under normal
conditions takes a long time, then the development of
accelerated life testing (ALT) or partially accelerated life test
(PALT) is needed, where units are subjected to a more severe
environment (increased or decreased stress levels) than the
normal operating environment so that failures can be in-
duced quickly. In this case, ALT or PALT allows experi-
menters to control higher stress levels to be used in the test.

In PALT, only part of the test components run under a
higher stress level than the normal level, while all the test
components run under a higher stress level in ALT. We use
PALTwhen the acceleration factor is unknown, where items
are examined at both normal and accelerated conditions.
According to Nelson [18], there are three types of stress in
PALT: constant stress, step stress, and progressive stress. In
step-stress partially accelerated life test (S-SPALT), items are
tested at a normal level; if it does not fail, then the stress will
be changed at a certain time. )is type allows the experi-
menter to select multiple stress factors, for instance, tem-
perature, voltage stress, thermal and electrical cycling and
shock, vibration, mechanical stress, and radiation in life
testing.

Many authors have studied the inference based on the
S-SPALT models for different probability distributions
under various cases for censored or complete data, including
Weibull by Zhang et al. [19] and Ismail [20], extended
Weibull by Zhang and Shi [21], Burr type XII by Abd-
Elfattah et al. [22], exponentiated exponential distribution
by Abdel-Hamid and Al-Hussaini [23], Lomax by El-
Sagheer and Ahsanullah [24], Gompertz by Ismail [25],
modified Weibull by Mahmoud et al. [26], Kumaraswamy
Inverse Weibull by El-Sagheer and Mohamed [27], and
Weibull-Gamma by El-Sagheer et al. [28].

Recently, in parallel with progress in engineering,
technology, and manufacturing, the experimenters may
want to investigate the stress-strength reliability in case the
strength component of the reliability system is exposed to an
ALT. In this paper, we study a simple stress-strength model
R � P(X>Y) when the component strength exposes to
S-SPALT. )is system can be described as follows: such a
system starts with the normal use condition of the strength
variable X and stress variable Y. If the system does not fail
before the prespecified time τ, then the strength variable X

runs at an acceleration factor (λ). )is model will help us to
evaluate R when induced early failures to X. Moreover, force
to failure on strength may help us to see the effect of change
on R due to not only stress variable Y but also exposed stress
by accelerating on strength variable X. For this reason, we
consider the S-SPALT model introduced by DeGroot and
Goel [29] for strength variable X.

)e outline of the paper is as follows. In Section 2,
assumptions of S-SPALT for the stress-strength reliability
model are provided. Section 3 deals with the maximum
likelihood estimate and asymptotic confidence intervals.

Two parametric bootstrap methods are proposed in Section
4. In a Bayes paradigm, estimation techniques have been
assayed in Section 5. In Section 6, a simulation study is
conducted to compare the proposed procedures. In Section
7, a real-life data example is presented to illustrate the
application of the proposed inference procedures. Finally, a
conclusion is furnished in Section 8.

2. Assumptions of S-SPALT for
Reliability System

Suppose that X denote the lifetime of a test item as strength
under S-SPALT can be determined, according to DeGroot
and Goel [29], by the relation

X �

T, T≤ τ,

τ +
(T − τ)

λ
, T> τ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

with probability density function (PDF)

f(x) �
f1(x), x≤ τ,

f2(x), x> τ,
 (2)

where T is the lifetime under normal use condition, τ is the
time when stress is changed, and λ is the acceleration factor
as λ> 1. Suppose X and Y are independent random variables
following Weibull distribution (WD) with parameters
(α, β1) and (α, β2), respectively, that is, X ∼ W D(α, β1) and
Y ∼ W D(α, β2), where the parameter α is common and
known, considering strength X under S-SPALT with the
PDF f(x) and CDF F(x) and primary stress Y with PDF
g(y) and CDF G(y). According to Çetinkaya [30], a par-
tially accelerated life test implemented stress-strength reli-
ability estimation can be written as

R � P(X>Y)

� 
τ

0


x

0
f1(x)g(y)dy dx + 

∞

τ


x

0
f2(x)g(y)dy dx.

(3)

)e PDF of S-SPALT implemented strength variable X

as suggested by DeGroot and Goel [29], which is given as
follows:

f(x) �
αβ1x

α− 1
e

− β1xα
, x≤ τ,

αλβ1[τ + λ(x − τ)]
α− 1

e
− β1(τ+λ(x− τ))α

, x> τ,

⎧⎨

⎩ (4)

and CDF is given as follows:

F(x) �
1 − e

− β1xα
, x≤ τ,

1 − e
− β1(τ+λ(x− τ))α

, x> τ.

⎧⎨

⎩ (5)

Also, the PDF and CDF of primary stress Y are given by

g(y) � αβ2y
α− 1

e
− β2yα

,

G(y) � 1 − e
− β2yα

, y> 0.
(6)

)en, by using equations (4) and (6) in equation (3), the
reliability of such a system can be obtained as
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R � P(X>Y)

�
β2

β1 + β2
1 +

1 − λ
λ + β2/β1

e
− τα β1+β2( ) .

(7)

)en, if we put α � 1 and βi � 1/θi, i � 1, 2, the reliability
of such a system, R � P(X>Y), devolves to one-parameter
exponential distribution. If λ � 1, equation (7) becomes the
reliability for a simple stress-strength system without any
acceleration. From Figures 1 and 2, we notice the following:
(i) )e reliability of the system increases with increasing
stress change time τ, when the acceleration factor λ is fixed.
(ii) Increasing on acceleration factor λ reduces the reliability
quickly.

In equation (7), α is common and known, τ is the
predetermined stress change time, and β1, β2, and λ are
unknown and need to be estimated; then

R � P(X>Y)

� Q β1, β2, λ( .
(8)

3. Maximum Likelihood Inference

Let X1, X2, . . . , Xn be a random sample of strength from
W D(α, β1) and Y1, Y2, . . . , Ym be a random sample of stress
from W D(α, β2). )en, by considering equations (4) and
(6), the likelihood function of observed samples in this
reliability system is given by (see Çetinkaya [30])

L α, β1, β2, λ|x, y( 

� 
r

i�1
αβ1x

(α− 1)
(i) exp − β1x

α
(i)  

m

i�1
αβ2y

α− 1
(i) exp − β2y

α
(i)  

n

i�r+1
αλβ1 τ + λ x(i) − τ  

α− 1
exp − β1 τ + λ x(i) − τ  

α
 ,

(9)

and equally

L α, β1, β2, λ( 

� α(n+m)βn
1β

m
2 λ

(n− r) exp (α − 1) 
r

i�1
log x(i) + 

n

i�r+1
log τ + λ x(i) − τ   + 

m

i�1
log y(i)

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭

exp − β1 

r

i�1
x
α
(i) + 

n

i�r+1
τ + λ x(i) − τ  

α⎛⎝ ⎞⎠ − β2 

m

i�1
y
α
(i)

⎧⎨

⎩

⎫⎬

⎭.

(10)

Hence, the logarithm of the likelihood functionmay then
be written as

ℓ α, β1, β2, λ(  � (n + m)log α + n log β1 + m log β2 +(n − r)log λ

+(α − 1) 
r

i�1
log x(i) + 

n

i�r+1
log τ + λ x(i) − τ   + 

m

i�1
log y(i)

⎛⎝ ⎞⎠

− β1 

r

i�1
x
α
(i) + 

n

i�r+1
τ + λ x(i) − τ  

α⎛⎝ ⎞⎠ − β2
m

i�1
y
α
(i).

(11)

Taking the first partial derivatives of the log-likelihood in
(11) with respect to β1, β2, and λ, we get
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zℓ
zβ1

�
n

β1
− 

r

i�1
x
α
(i) − 

n

i�r+1
τ + λ x(i) − τ  

α
,

zℓ
zβ2

�
m

β2
− 

m

i�1
y
α
(i),

(12)

zℓ
zλ

�
n − r

λ
+(α − 1) 

n

i�r+1

x(i) − τ
τ + λ x(i) − τ 

− αβ1 

n

i�r+1
τ + λ x(i) − τ  

(α− 1)
x(i) − τ ,

(13)

where r≠ 0 and r≠ n. To get the MLEs of the unknown
parameters, denoted by β1, β2, and λ, we should equate
zℓ/zβ1, zℓ/zβ2, and zℓ/zλ to zero; thus,

β1 � n 
r

i�1
x
α
(i) + 

n

i�r+1
τ + λ x(i) − τ  

α⎡⎣ ⎤⎦
− 1

,

β2 � m 
m

i�1
y
α
(i)

⎡⎣ ⎤⎦
− 1

,

(14)
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Figure 1: R values and corresponding λ values with increasing τ in the case of (α, β1, β2) � (2, 0.4, 2).
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Figure 2: R values and corresponding τ values with increasing λ in the case of (α, β1, β2) � (2, 0.4, 2).
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n − r

λ
+(α − 1) 

n

i�r+1

x(i) − τ
τ + λ x(i) − τ 

− αβ1



n

i�r+1
τ + λ x(i) − τ  

(α− 1)
x(i) − τ  � 0.

(15)

)en, we use the Newton–Raphson iteration method to
solve (15). )erefore, the MLE of R, denoted by RML, can be
obtained by considering the invariance property of theMLEs
by replacing the parameters with their estimates as follows:

RML �
β2

β1 + β2
1 +

1 − λ
λ + β2/β1

e
− τα β1+β2( 

 , (16)

where the parameter α is common and known.

3.1. Asymptotic Confidence Interval. In this subsection, we
construct an asymptotic confidence interval (ACI) for R

based on the asymptotic normal property of MLEs. Let
δ � (β1, β2, λ) be the MLEs of δ � (β1, β2, λ); according to
Cohen [31], the observed Fisher information matrix,
denoted by I(δ), is defined by

I(δ) � Iij 

� −
z2ℓ

zδizδj

 
δ�δ

, i, j � 1, 2, 3,

(17)

where

I11 �
− n

β21
,

I22 �
− m

β22
,

I12 � I21 � I23 � I32 � 0,

I13 � I31 � − α 
n

i�r+1
τ + λ x(i) − τ  

(α− 1)
x(i) − τ ,

(18)

I33 �
− (n − r)

λ
− (α − 1) 

n

i�r+1

x(i) − τ 
2

τ + λ x(i) − τ  
2

− α(α − 1)β1 

n

i�r+1
τ + λ x(i) − τ  

(α− 2)
x(i) − τ 

2
.

(19)

Also, the variance of R is obtained by using the delta
method as follows:

σ2R �
zR

zβ1
 

2

I
− 1
11 +

zR

zβ2
 

2

I
− 1
22 +

zR

zλ
 

2

I
− 1
33 + 2

zR

zβ1
 

zR

zλ
 I

− 1
13 ,

(20)

where the first partial derivatives included in (20) can be
easily obtained and I− 1

ij is the ij − th element of the inverse of
the information matrix I(δ) as given by

I
− 1

(δ) �
1

|I(δ)|

Λ11 0 Λ13

Λ22 0

Λ33

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (21)

where |I(δ)| � I11I22I33 − I22I
2
13, Λ11 � I22I33,

Λ13 � − I13I22, Λ22 � I11I33 − I213, and Λ33 � I11I22. )ere-
fore, the 100(1 − c)% ACI of R is constructed as

R − zc/2σR, R + zc/2σR , (22)

where zc is 100(1 − c)th upper percentile of standard
normal variate N(0, 1).

4. Parametric Bootstrap

In this section, we propose a resampling technique, the
bootstrap procedure, to obtain a more widely used confi-
dence interval. DiCiccio and Efron [32] introduced the
bootstrap method and showed that the bootstrap method
can improve the accuracy of the confidence intervals, es-
pecially when the sample is small such that the normal
approximation is inappropriate. Besseris [33] showed that
the bootstrap method can provide tighter confidence in-
tervals. Reiser et al. [34] compared difference bootstrap
confidence intervals by applying Monte Carlo simulation.
Here, we study two bootstrap methods: bootstrap-p and
bootstrap-t. )ese bootstrap confidence intervals work as
follows.

4.1. Bootstrap-p

(1) Generate random samples x1, x2, . . . , xn from F(x)

and y1, y2, . . . , ym from G(y) in (5) and (6), re-
spectively. Calculate the MLEs of β1, β2, and λ.

(2) Use β1, β2, and λ to generate independent bootstrap
samples x∗1 , x∗2 , . . . , x∗n from F(x) and y∗1 , y∗2 , . . . , y∗m
from G(y). Calculate the MLEs of unknown pa-
rameters based on the bootstrap samples, denoted by
β
∗
1 , β
∗
2 , and λ

∗
.

(3) Calculate the bootstrap estimate of R in (16), and
denote by R

∗.
(4) Repeat Steps 2 and 3 N times; then we have

(R
∗
(1),

R
∗
(2), . . . , R

∗
(N)).

(5) Let φ(x) � P(R
∗ ≤x) be the CDF of R

∗. Define
Rboot− p(x) � φ− 1(x) for given x. )en, two-side
100(1 − c)% percentile confidence intervals of R are
given by

Rboot− p

c

2
 , Rboot− p 1 −

c

2
  . (23)

4.2. Bootstrap-t

(1) )e same as the bootstrap-p.
(2) )e same as the bootstrap-p.
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(3) )e same as the bootstrap-p.
(4) Obtain the t∗R-statistics t∗R � (R

∗
− R)/σ∗R, where σ∗R

given in (20).
(5) Repeat Steps 2, 3, and 4 M times; then we have

(t
∗ (1)
R , t

∗ (2)
R , . . . , t

∗ (M)
R ).

(6) Let ψ(x) � P(t∗R ≤ x) be the CDF of t∗R. Define
Rboot− t(x) � R + ψ− 1(x)σR for given x. )en, two-
side 100(1 − c)% bootstrap-t confidence intervals of
R are given by

Rboot− t

c

2
 , Rboot− t 1 −

c

2
  . (24)

5. Bayes Estimation

Bayes estimation is quite different from MLE and bootstrap
methods because it takes into consideration both the in-
formation from observed sample data and the prior infor-
mation. It can characterize the problemsmore rationally and
reasonably. Assume that both parameters β1 and β2 have

independent Gamma priors, while the parameter λ has usual
noninformative prior; see Carlin and Louis [35]:

π1 β1( ∝ β a1− 1
1 e

− b1β1 , a1, b1 > 0,

π2 β2( ∝ β a2− 1
2 e

− b2β2 , a2, b2 > 0,

(25)

π3(λ) �
1
λ
, λ> 1. (26)

Here, a1, a2, b1, and b2 are the hyperparameters that
reflect the prior knowledge about the unknown parameters.
)e joint prior of the unknown parameters β1, β2, and λ is
then given by

π β1, β2, λ( ∝ β a1− 1
1 β a2− 1

2 λ− 1
e

− b1β1− b2β2 . (27)

Via Bayes’ theorem, based on the considered joint prior
(27) and the likelihood (10), the posterior distribution of β1,
β2, and λ given data takes the form

π∗ β1, β2, λ|x, y( ∝ βn+a1− 1
1 βm+a2− 1

2 λn− r− 1
e

− b1β1− b2β2

× 

n

i�r+1
τ + λ x(i) − τ  

α− 1
exp − β1 τ + λ x(i) − τ  

α
  × 

r

i�1
exp − β1x

α
(i)  

m

i�1
exp − β2y

α
(i) .

(28)

It is clear that the conditional posterior densities of β1,
β2, and λ can be written as

π∗1 β1|β2, λ; x, y(  � βn+a1− 1
1 exp − β1 

r

i�1
x
α
(i) + 

n

i�r+1
τ + λ x(i) − τ  

α
+ b1

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭, (29)

π∗2 β2|β1, λ; x, y(  � βm+a2− 1
2 exp − β2 

m

i�1
y
α
(i) + b2

⎛⎝ ⎞⎠
⎧⎨

⎩

⎫⎬

⎭, (30)

π∗3 λ|β1, β2; x, y(  � λn− r− 1


n

i�r+1
τ + λ x(i) − τ  

α− 1
exp − β1 τ + λ x(i) − τ  

α
 . (31)

)us, under the squared error loss function, the Bayes
estimate of R, denoted by RMC, can be obtained as the mean
of the posterior function as given in the following:

RMC � 
∞

1

∞

0

∞

0
Q β1, β2, λ( π∗ β1, β2, λ|x, y( dβ1dβ2dλ.

(32)

From (29) and (30), the full conditional posterior
densities of β1 and β2 are Gamma(n + a1, 

r
i�1 xα

(i) + 
n
i�r+1

[τ + λ(x(i) − τ)]α +b1) and Gamma(m + a2, 
m
i�1 yα

(i) + b2),
respectively. )us, the samples of β1 and β2 can be generated

by using any Gamma routine. On the other hand, the ex-
pression of π∗3(λ|β1, β2; x, y) cannot be written as any well-
known distribution. One can use the method proposed by
Devroye [36] to generate sample data from this distribution.

However, the Metropolis–Hastings (MH) with the Gibbs
sampling scheme by using normal proposal N(., .) can be
effectively used to simulate random samples from (25)–(27).
)e MH algorithm and Gibbs sampler work as follows:

(1) Use the MLEs as the initial value, denoted by
β

(0)

1 , β
(0)

2 , λ
(0)

(2) Set i � 1

6 Computational Intelligence and Neuroscience



(3) Generate β(i)
1 from Gamma(n + a1, 

r
i�1 xα

(i) +


n
i�r+1 [τ + λ(x(i) − τ)]α + b1)

(4) Generate β(i)
2 from Gamma(m + a2, 

m
i�1 yα

(i) + b2)

(5) Using MH algorithm,

(i) Generate λ∗ from the proposal normal distri-
bution N(λ(i− 1),Var(λ)).

(ii) Evaluate the acceptance probabilities

Ωλ � min 1,
π∗3 λ∗|β(i)

1 , β(i)
2 ; x, y 

π∗3 λ(i− 1)
|β(i)

1 , β(i)
2 ; x, y 

⎡⎢⎢⎣ ⎤⎥⎥⎦. (33)

(iii) Generate u from Uniform (0, 1) distribution.
(iv) If u<Ωλ, accept the proposal and set λ∗ � λ(i);

else set λ(i) � λ(i− 1).

(6) Compute R
(i)
MC at β(i)

1 , β(i)
2 , and λ(i)

(7) Set i � i + 1
(8) Repeat Steps 3 − 10N times and obtain R

(i)
MC,

i � 1, 2, . . . , N

)en, the Bayesian estimators of RMC under the squared
error loss function are given by

RMC �
1

N − N0


N

i�M+1
R

(i)
MC, (34)

where N0 is burn-in to guarantee the convergence and to
remove the affection of the selection of initial values.
)erefore, the 100(1 − c)% highest posterior density (HPD)
Bayes credible interval is given by

RMC c/2 N− N0( )[ ],
RMC (1− c/2) N− N0( )[ ]. (35)

6. Simulation Study

In this section, we apply a Monte Carlo simulation to assess
the performance of MLEs, bootstrap, and Bayes estimator
methods for the stress-strength reliability model with
component strength under PALT, along with their ACIs,
bootstrap CIs, and HPD credible intervals. Furthermore, we
study the variations on reliability with the different cases for
both acceleration factor λ and stress change time τ. )e
performance of estimators is evaluated in terms of mean
square error (MSE) for the point estimates, also coverage
probability (CP), and average lengths (ALs) for interval
estimates (asymptotic, bootstrap, and HPD). We consider
five sample sizes such as (n, m) � (10, 15), (20, 25), (40, 45),
(60, 60), and (90, 90) for eight cases of the true values of the
parameters, stress change times, acceleration factor, and
corresponding actual values of R, when the common pa-
rameter α � 2. )ese cases are as follows:

Case 1. β1 � 0.4, β2 � 2, τ � 0.5, λ � 2, and R � 0.76799.

Case 2. β1 � 0.4, β2 � 2, τ � 1.25, λ � 5, and R � 0.82549.

Case 3. β1 � 0.4, β2 � 2, τ � 1.5, λ � 3, and R � 0.8323.

Case 4. β1 � 0.4, β2 � 2, τ � 2, λ � 3, and R � 0.8333.

Case 5. β1 � 2.5, β2 � 1.5, τ � 0.4, λ � 2, and R � 0.2989.

Case 6. β1 � 2.5, β2 � 1.5, τ � 1.5, λ � 2, and R � 0.3749.

Case 7. β1 � 2.5, β2 � 1.5, τ � 0.4, λ � 4, and R � 0.3092.

Case 8. β1 � 2.5, β2 � 1.5, τ � 1.5, λ � 4, and R � 0.3750.
)e first four cases provide us with the upper (around

0.81477) actual values of R and their outcomes presented in
Tables 1–4, while the second four cases provide us with the
lower (around 0.3395) actual values of R and their results are
given in Tables 5–8. )e study is performed for 1000 rep-
licates. For each replication, 1000 bootstrap samples are
used. )e Bayes estimates and the credible intervals are
computed based on 12000 MCMC samples and discard the
first values 2000 as “burn-in.” For Bayesian analysis, we
consider informative prior with hyperparameters values
a1 � 2, b1 � 1, a2 � 2, and b2 � 1.)e results of this study are
reported in Tables 1–8. In the first rows of these tables, the
estimates and their ACIs are given, respectively, for all
sample sizes (n, m). Besides, the MSEs, ALs for ACIs, and
their corresponding CPs are reported in the second rows in
all sample sizes.

7. Application to Real-Life Data

In this section, for illustrative purposes, real-life data are
presented to inspect the inference procedures. We used two
sets of data introduced by Badar and Priest [37] and used by
Kundu and Gupta [2]. Set 1, denoted by (X) given in Table 9,
is strength measured in GPA for single carbon fibers tested
under tension at gauge lengths of 20mm. Set 2, denoted by
(Y) given in Table 10, is strengthmeasured in GPA for single
carbon fibers tested under tension at gauge lengths of
10mm. Both Set 1 and Set 2 are of size 63. For the purpose of
the goodness of fit test, the Kolmogorov–Smirnov (KS)
distance between the empirical and the fitted distribution
functions has been computed. It is 0.087588 and the asso-
ciated p value is 0.7192 for Set 1, while it is 0.050055 and the
associated p value is 0.9975 for Set 2. Hence, the p value for
KS has the highest value for Sets 1 and 2. )is leads us to
conclude that WD is the best fit for the two real data sets.
Empirical,Q − Q, and P − P plots are shown in Figures 3 and
4, which make it clear that the WD fits the data very well.

Under the S-SPALT implementation on the strength
variable X, the corresponding estimates of parameters
change depending on the stress change time τ. For example,
at τ � 2.25 and α � 2, MLEs of β1 � 6.0934, β2 � 3.0594, and
λ � 16.6242. )us, using (16), the MLE of R and its corre-
sponding ACI is calculated as RML � 0.48062 and
(0.38595, 0.57531) with length 0.18936, respectively. Also,
by implementing the iterative algorithms mentioned in
Section 4, the boot-p and boot-t CIs are computed as
(0.33673, 0.52209) and (0.34746, 0.52972) with lengths
0.18536 and 0.18026.

Now, to compute the Bayesian estimate of R, the prior
distributions of the parameters β1 and β2 are needed to
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Table 1: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 1.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10,15) 0.75324 0.74654 0.67047 0.67288 0.69195 0.65232
0.00667 0.00653 (0.9054) (0.9123) (0.9241) (0.9436)

(20, 25) 0.75841 0.74995 0.59351 0.58632 0.61472 0.60534
0.00573 0.00564 (0.9147) (0.9145) (0.9345) (0.9498)

(40, 45) 0.76245 0.75942 0.45368 0.44564 0.47235 0.45214
0.00457 0.00446 (0.9238) (0.9324) (0.9217) (0.9524)

(60, 60) 0.76349 0.76012 0.33452 0.32687 0.35647 0.34251
0.00338 0.00325 (0.9417) (0.9214) (0.9356) (0.9532)

(90, 90) 0.76468 0.76219 0.21354 0.21000 0.23546 0.21344
0.00213 0.00212 (0.9426) (0.9335) (0.9482) (0.9547)

Table 2: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 2.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.82021 0.81988 0.57013 0.57227 0.63138 0.59241
0.00622 0.00613 (0.9024) (0.9185) (0.9324) (0.9428)

(20, 25) 0.82152 0.82932 0.42635 0.43571 0.46354 0.44352
0.00531 0.00520 (0.9354) (0.9248) (0.9245) (0.9398)

(40, 45) 0.82574 0.81873 0.35962 0.35441 0.37149 0.35912
0.00407 0.00395 (0.9312) (0.9187) (0.9298) (0.9425)

(60, 60) 0.82648 0.81995 0.28874 0.28547 0.31645 0.29381
0.00295 0.00271 (0.9399) (0.9355) (0.9358) (0.9512)

(90, 90) 0.82881 0.82116 0.20398 0.19564 0.21540 0.21011
0.00183 0.00180 (0.9432) (0.9452) (0.9487) (0.9501)

Table 3: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 3.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.83023 0.82988 0.35341 0.36236 0.37138 0.35012
0.00542 0.00539 (0.9188) (0.9412) (0.9314) (0.9424)

(20, 25) 0.83362 0.83179 0.29351 0.28952 0.31654 0.29551
0.00410 0.00409 (0.9258) (0.9289) (0.9258) (0.9432)

(40, 45) 0.83012 0.83472 0.22348 0.21743 0.23452 0.23247
0.00345 0.00347 (0.9314) (0.9412) (0.9347) (0.9511)

(60, 60) 0.82973 0.83147 0.16936 0.17638 0.18476 0.17325
0.00255 0.00254 (0.9287) (0.9384) (0.9388) (0.9521)

(90, 90) 0.83362 0.82984 0.11084 0.10917 0.12331 0.11245
0.00128 0.00129 (0.9425) (0.9399) (0.9481) (0.9499)

Table 4: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 4.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t HPD

(10, 15) 0.82961 0.82247 0.34323 0.35001 0.36221 0.35221
0.00523 0.00522 (0.9001) (0.9264) (0.9354) (0.9532)

(20, 25) 0.83213 0.82382 0.27234 0.26489 0.29652 0.28145
0.00398 0.00399 (0.9254) (0.9324) (0.9136) (0.9421)

(40, 45) 0.82345 0.83347 0.20124 0.19999 0.22473 0.21003
0.00332 0.00332 (0.9488) (0.9455) (0.9094) (0.9542)

(60, 60) 0.84998 0.83667 0.16210 0.16196 0.17235 0.17049
0.00212 0.00211 (0.9378) (0.9387) (0.9324) (0.9498)

(90, 90) 0.83325 0.83471 0.10564 0.10588 0.11354 0.11134
0.00111 0.00110 (0.9412) (0.9541) (0.9366) (0.9493)
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Table 5: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 5.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.30453 0.29547 0.24310 0.25834 0.26363 0.25549
0.00282 0.00279 (0.9165) (0.9134) (0.9344) (0.9475)

(20, 25) 0.30145 0.30851 0.20154 0.21399 0.22632 0.21351
0.00235 0.00228 (0.9226) (0.9245) (0.9481) (0.9722)

(40, 45) 0.31369 0.30658 0.15984 0.16541 0.18364 0.16543
0.00186 0.00181 (0.9425) (0.9219) (0.9358) (0.9655)

(60, 60) 0.30487 0.29998 0.11369 0.12365 0.13841 0.11863
0.00124 0.00117 (0.9344) (0.9415) (0.9410) (0.9534)

(90, 90) 0.29548 0.29963 0.08846 0.09476 0.10211 0.10254
0.00089 0.00081 (0.9518) (0.9424) (0.9399) (0.9714)

Table 6: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 6.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.38369 0.37247 0.43215 0.44124 0.46278 0.43891
0.00429 0.00425 (0.9021) (0.9147) (0.9247) (0.9457)

(20, 25) 0.37360 0.36981 0.35621 0.36452 0.38124 0.36112
0.00361 0.00362 (0.9245) (0.9025) (0.9148) (0.9542)

(40, 45) 0.36961 0.37998 0.28352 0.29417 0.31254 0.29341
0.00293 0.00289 (0.9199) (0.9235) (0.9365) (0.9366)

(60, 60) 0.37351 0.36457 0.21356 0.22458 0.23457 0.22154
0.00214 0.00213 (0.9325) (0.9471) (0.9472) (0.9547)

(90, 90) 0.36543 0.36664 0.11347 0.13329 0.14328 0.12548
0.00156 0.00155 (0.9398) (0.9432) (0.9398) (0.9732)

Table 7: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 7.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.31256 0.30647 0.29541 0.30584 0.31712 0.30097
0.00372 0.00351 (0.9025) (0.9035) (0.9348) (0.9641)

(20, 25) 0.31131 0.31139 0.23752 0.24215 0.25136 0.24012
0.00318 0.00315 (0.9184) (0.9348) (0.9412) (0.9547)

(40, 45) 0.31127 0.30694 0.18369 0.18985 0.19874 0.91414
0.00249 0.00246 (0.9378) (0.9254) (0.9356) (0.9523)

(60, 60) 0.29987 0.29987 0.13258 0.13947 0.14692 0.13545
0.00176 0.00168 (0.9501) (0.9399) (0.9188) (0.9641)

(90, 90) 0.30111 0.30654 0.09984 0.10564 0.12355 0.11021
0.00099 0.00092 (0.9412) (0.9410) (0.9376) (0.9752)

Table 8: Means estimates of R (first row) with their MSEs (second row) and ALs (first row) for asymptotic, bootstrap, and HPD of R with
their CPs (second row) in Case 8.

(n, m)
Point estimation Interval estimation

RML
RMC ACI boot − p boot − t CRI

(10, 15) 0.36415 0.36931 0.48542 0.49548 0.50321 0.47632
0.00454 0.00453 (0.9132) (0.9199) (0.9244) (0.9573)

(20, 25) 0.35989 0.36791 0.41562 0.43251 0.45567 0.42635
0.00388 0.00389 (0.9245) (0.9365) (0.9523) (0.9497)

(40, 45) 0.36840 0.37113 0.33541 0.34564 0.36542 0.33988
0.00317 0.00317 (0.9412) (0.9274) (0.9345) (0.9584)

(60, 60) 0.37465 0.36447 0.25356 0.27613 0.28941 0.26357
0.00251 0.00249 (0.9348) (0.9522) (0.9388) (0.9548)

(90, 90) 0.36475 0.37894 0.13245 0.15328 0.16345 0.14571
0.00176 0.00177 (0.9511) (0.9463) (0.9571) (0.9612)
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specify. Because we have no prior information, we used
the noninformative Gamma prior for β1 and β2 that is, the
hyper-parameters are close to or equal to zero ai � 0.0001

and bi � 0.0001, i � 1, 2. Under the MCMC technique, the
posterior analysis was done across combining MH al-
gorithm within Gibbs sampler. To conduct the MCMC
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Figure 3: Empirical, Q-Q, and P-P plots of WD for Set 1.

Table 9: Set 1 (X).
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997
2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270
2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684
2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012
3.067 3.084 3.090

Table 10: Set 2 (Y).
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 2.454 2.474
2.518 2.522 2.525 2.532 2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738
2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996 3.030 3.125 3.139 3.145
3.220 3.223 3.235 3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435
3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 4.027
4.225 4.395 5.020
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algorithm, which was described in Section 5, the initial
values for the parameters β1, β2, and λ were taken to be
their MLEs. In addition, 12000 MCMC samples were
generated. To avoid the effect of the initial values, we
expunge the first β1 samples as “burn-in.” )us, the

Bayesian estimate of R and its corresponding CRI is
calculated as RMC � 0.47874 and (0.34096, 0.51537) with
length 0.17441, respectively. Figure 5 displays 12000
chain values for R. )e histogram and the kernel density
estimate of R are shown in Figure 6. Also, we obtained
more results with different values of τ as shown in
Table 11.
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Figure 4: Empirical, Q-Q, and P-P plots of WD for Set 2.
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8. Conclusions

In this paper, we consider the estimation of the stress-
strength reliability model when the strength variable is
subjected to the S-SPALT. By exposing the strength variable
to the acceleration factor, a normal stress-strength model is
forced to early failure; this design of the reliability has an
effect on the level of reliability. We can illustrate it as follows:
(i) In a specific stress change time, the increasing on ac-
celeration loadings decreases the stress-strength reliability.
(ii) Delaying stress change time helps maintain a level of
reliability.

)emain aim of this paper is to study the effect of external
stress loading on the strength variable. )is external stress
includes, for instance, temperature, voltage stress, thermal
and electrical cycling and shock, vibration, mechanical stress,
and radiation. )us, the estimations of the stress-strength
reliability model with the corresponding ACIs using the
maximum likelihood, two parametric bootstrap, and Bayesian
estimationmethods are obtained. For illustrative purposes, we
have applied a real-life example. A simulation study is
computerized to inspect and compare the rendition of the
proposed methods for different sample sizes (n, m), different
acceleration factor λ, and different stress change time τ. From
the results, we observe the following:

(1) It is clear that, from Tables 1–8, as sample sizes
(n, m) increase, the MSEs and average interval
lengths decrease.

(2) MLE, bootstrap, and Bayesian methods have very
close estimates, and their ACIs have quite high CPs
(around 0.95).

(3) )e ALs are decreasing with parallel to increasing on
the actual value of R.

(4) Bayes estimates perform better than the MLEs in
terms of MSEs.

(5) )e ACIs of the MLEs have the smallest ALs, and the
ACIs of the bootstrap-t have the largest ALs. At the
same time, the Bayesian HPD intervals have the
highest CPs.

(6) Finally, we can conclude that the proposed inference
methods give consistent results.

(7) Sometimes, it is worth noting that the available data
may be affected by uncertainties and/or inaccuracies.
)en, strictly speaking, it would be necessary to carry
out a fuzzy preprocessing of the data; see [38] as a
future work.
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