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Background. There is no evidence to suggest the predictive power of neutrophil percentage-to-albumin ratio (NPAR) in patients
with acute kidney injury (AKI). We hypothesized that NPAR would correlate with all-cause mortality in critically ill patients with
AKI. Methods. From the MIMIC-III V1.4 database, we extracted demographics, vital signs, comorbidities, laboratory tests, and
other clinical data. The clinical endpoints were 30-, 90- and 365-day all-cause mortality in critically ill patients with AKI. Cox
proportional hazards models were used to evaluate the prognostic values of NPAR, and subgroup analyses were performed to
measure mortality across various subgroups. Results. A total of 7,481 eligible subjects were enrolled. In multivariate analysis, after
adjustments for age, ethnicity, gender, and other confounding factors, higher NPARs were associated with an increased risk of 30-,
90- and 365-day all-cause mortality in critically ill patients with AKI (tertile 3 versus tertile 1: adjusted HR, 95%CI: 1.48, 1.30–1.69;
1.47, 1.31–1.66; 1.46, 1.32–1.62, respectively; P trend <0.01). A similar trend was observed in the NPAR group division by
quintiles. Subgroup analysis revealed no significant interactions in most strata. Conclusions. Increased NPAR correlates with
increased risk of all-cause mortality in critically ill patients with AKI.

1. Introduction

Acute kidney injury (AKI) is defined as a sudden deterio-
ration of renal function and is associated with high morbidity
andmortality [1], especially for critically ill patients. In theUS,
6–24% of critically ill patients in intensive care units (ICUs)
have AKI [2] and the mortality rate of these patients is as high
as 60–70% [3], greatly increasing healthcare costs and im-
posing substantial healthcare burdens. Given the poor
prognosis of AKI in critical illness, finding novel biomarkers
to identify the severity of AKI and adopting early effective
interventions to improve survival are critical. Investigators
have sought several few biomarkers of mortality in AKI [4, 5];
nevertheless, these efforts have been largely unsuccessful.

The pathogenesis of AKI has not been fully elucidated;
progression of AKI may be associated with systemic

inflammatory [6–8]. Leukocytes, including neutrophils,
produce inflammatory mediators such as cytokines and
chemokines that damage the kidneys. Albumin is a crucial
protein with several functions, including osmotic pressure
regulation and antioxidant and anti-inflammatory effects
[9, 10]; it too has been associated with AKI [11]. Therefore,
we hypothesize that neutrophil percentage-to-albumin
(NPAR) could serve as an inflammation-based prognostic
score. Neutrophil-to-albumin ratio (NAR) has been iden-
tified as a biomarker predicting prognosis in patients with
rectal cancer and end-stage pancreatic cancer [12, 13]. Based
on these findings, we have reason to speculate that NPAR
may affect the prognosis of AKI in critical illness. To our
knowledge, there has been no epidemiological study ex-
ploring the association between NPAR and mortality in
critically ill patients with AKI.
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2. Methods

2.1. Data Source. Similar to our previous studies, we fol-
lowed the methods of Wang et al. [14, 15]. The Multipa-
rameter Intelligent Monitoring in Intensive Care III version
1.4 (MIMIC-III v1.4) is an openly available dataset. It in-
cludes deidentified health data derived from ∼40,000 critical
care patients from 2001 to 2012 [16]. To apply for access to
the database, we passed the Protecting Human Research
Participants exam and obtained a certificate (No. 6182750).
The project is approved by the institutional review boards of
the Massachusetts Institute of Technology and Beth Israel
Deaconess Medical Center and was granted a waiver of
informed consent.

2.2.PopulationSelectionCriteria. We restricted the search to
adult patients (≥18 years) with AKI. The occurrence of AKI
was determined on the basis of Kidney Disease: Improving
Global Outcomes (KDIGO) definition [17], and Structured
Query Language (SQL) for extracting AKI was included in
supplementary material. For inclusion, patients needed to be
hospitalized in the ICU at first admission for more than two
days. Patients who met the following criteria were excluded:
(1) no neutrophil percentage and albumin measured during
ICU stay and (2) more than 5% of individual data missing.

2.3. Data Extraction. SQL with PostgreSQL tools (version
9.6) was used to extract the data from MIMIC-III. Demo-
graphics, vital signs, comorbidities, laboratory tests, and
others were extracted. The comorbidities included coronary
artery disease (CAD), congestive heart failure (CHF), atrial
fibrillation (AFIB), stroke, renal disease, liver disease,
pneumonia, malignancy, and respiratory failure. Laboratory
tests included neutrophil percentage, albumin, bicarbonate,
creatinine, chloride, glucose, hematocrit, hemoglobin,
platelet, sodium, potassium, blood urea nitrogen (BUN),
white blood cell (WBC), prothrombin time (PT), activated
partial thromboplastin time (APTT), and international
normalized ratio (INR). Sequential organ failure assessment
(SOFA) score [18] and simplified acute physiology score II
(SAPSII) [19] were calculated for each patient at the time of
ICU admission. The other extracted data included age,
gender, ethnicity, systolic blood pressure (SBP), diastolic
blood pressure (DBP), mean blood pressure (MBP), heart
rate, respiratory rate, temperature, SPO2, AKI stage, renal
replacement therapy, vasopressor use, and length of stay in
the ICU. Records containing laboratory tests were extracted
within 24 hours after admission to the ICU. Survival in-
formation regarding vital status was obtained from the
Social Security Death Index records. The endpoints for this
analysis were 30-day, 90-day, and 365-day all-cause
mortality.

2.4. Statistical Analysis. Baseline characteristics of all pa-
tients were stratified by NPAR tertiles. Continuous variables
were presented as mean± standard deviation (SD), and
categorical data were summarized as number or percentage.

We used chi-square or one-way ANOVA to test for dif-
ferences in categorical or continuous factors among various
categories of NPAR. The prognostic values of NPAR were
evaluated using Cox proportional hazards models, and the
results were presented as hazard ratios (HRs) with 95%
confidence intervals (CIs).

Two multivariate models were constructed on the basis
of NPAR group inclusion according to tertiles and quintiles
based on 30-, 90-, and 365-day all-cause mortality. The first
tertile or quintile was treated as the reference group. In
model I, covariates were only adjusted for age, ethnicity, and
gender. In model II, we further adjusted for age, ethnicity,
gender, AKI stage, CHF, AFIB, liver disease, CAD, stroke,
malignancy, respiratory failure, pneumonia, sodium, po-
tassium, chloride, BUN, INR, APTT, platelet, WBC, he-
matocrit, creatinine, glucose, bicarbonate, vasopressor use,
heart rate, SBP, DBP, respiration rate, temperature, SPO2,
SOFA, SAPSII, and renal replacement therapy. We selected
these confounders based on a change in effect estimate of
more than 10% [20]. Subgroup analyses were performed to
evaluate whether the effect of the 30-day mortality differed
across various subgroups classified by CHF, AFIB, CAD,
stroke, malignancy, liver disease, respiratory failure, pneu-
monia, AKI stage, WBC, sodium, BUN, INR, potassium,
APTT, platelet, hematocrit, creatinine, bicarbonate, glucose,
chloride, SBP, DBP, heart rate, respiratory rate, temperature,
SPO2, SOFA score, SAPSII score, vasopressor use, and renal
replacement therapy.

Receiver-operating characteristic (ROC) curve was per-
formed to measure the sensitivity and specificity of NPAR,

AKI patients from MIMIC-III
based on KDIGO definition

(32530)

Only include albumin data (13945
excluded)

Only include neutrophil percentage data
(4348 excluded)

Only include individual data missing
<5% (3981 excluded)

Eligible patients (7481)

Only include adult patients (212
excluded)

Only include the first ICU admission of
each patient (2563 excluded)

Figure 1: Illustration of exclusion and inclusion criteria as utilized
to select the final 7481 patients.
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Table 1: Characteristics of the study patients according to neutrophil percentage-to-albumin ratios.

Characteristics
Neutrophil percentage-to-albumin ratios

P value
<22.1 (n� 2492) ≥22.1, <28.1 (n� 2494) ≥28.1 (n� 2495)

Age (years) 62.0± 18.1 65.7± 17.0 65.8± 16.6 <0.01
Gender, n (%) <0.01

Female 989 (39.7) 1072 (43.0) 1184 (47.5)
Male 1503 (60.3) 1422 (57.0) 1311 (52.5)

Ethnicity, n (%) <0.01
White 1706 (69.6) 1777 (72.4) 1741 (71.1)
Black 331 (13.5) 231 (9.4) 221 (9.0)
Other 414 (16.9) 448 (18.2) 486 (19.9)

NPAR 17.4± 4.7 25.0± 1.7 35.4± 7.3 <0.01
SBP (mmHg) 119.8± 18.2 118.7± 17.7 114.0± 16.4 <0.01
DBP (mmHg) 62.9± 11.9 60.6± 11.1 58.2± 10.7 <0.01
MBP (mmHg) 79.6± 12.1 77.7± 11.4 75.0± 11.1 0.03
Heart rate (beats/minute) 86.9± 17.9 87.4± 16.9 91.1± 17.1 <0.01
Respiratory rate (beats/minute) 19.4± 4.3 19.8± 4.2 20.4± 4.6 <0.01
Temperature (°C) 36.9± 0.7 36.8± 0.7 36.8± 0.8 <0.01
SPO2 (%) 97.0± 2.8 97.0± 2.3 97.0± 3.0 0.18
Comorbidities, n (%)

Coronary artery disease 360 (14.4) 524 (21.0) 384 (15.4) <0.01
Congestive heart failure 570 (22.9) 611 (24.5) 447 (17.9) <0.01
Atrial fibrillation 543 (21.8) 732 (29.4) 701 (28.1) <0.01
Stroke 257 (10.3) 216 (8.7) 152 (6.1) <0.01
Renal disease 384 (15.4) 458 (18.4) 431 (17.3) 0.02
Liver disease 203 (8.1) 259 (10.4) 339 (13.6) <0.01
Pneumonia 701 (28.1) 827 (33.2) 922 (37.0) 0.14
Malignancy 425 (17.1) 388 (15.6) 595 (23.8) <0.01
Respiratory failure 875 (35.1) 1015 (40.7) 1289 (51.7) <0.01

Laboratory parameters
Neutrophil (%) 65.8± 20.3 82.1± 8.8 85.2± 8.0 <0.01
Albumin (g/dl) 3.8± 0.6 3.3± 0.4 2.5± 0.4 <0.01
Bicarbonate (mmol/L) 20.7± 5.5 20.7± 5.5 19.6± 5.7 <0.01
Creatinine (mEq/L) 1.5± 1.7 1.7± 1.7 1.8± 1.7 <0.01
Chloride (mmol/L) 100.6± 6.8 101.0± 7.1 102.5± 7.7 <0.01
Glucose (mg/dl) 143.1± 50.0 147.1± 48.5 146.0± 52.4 <0.01
Hematocrit (%) 31.2± 6.5 30.1± 6.2 27.7± 5.6 <0.01
Hemoglobin (g/dl) 10.7± 2.3 10.2± 2.1 9.3± 1.9 <0.01
Platelet (109/L) 183.0± 99.5 201.1± 111.3 203.4± 139.0 <0.01
Sodium (mmol/L) 136.3± 5.4 136.0± 5.8 135.9± 6.2 0.01
Potassium (mmol/L) 3.7± 0.6 3.8± 0.6 3.7± 0.7 <0.01
BUN (mg/dl) 26.0± 21.7 32.7± 25.1 35.9± 26.5 <0.01
WBC (109/L) 9.7± 12.8 11.1± 6.8 12.8± 7.6 <0.01
PT (seconds) 14.8± 4.9 15.6± 6.1 16.0± 5.1 <0.01
APTT (seconds) 30.6± 11.8 31.5± 12.1 33.9± 12.7 <0.01
INR 1.4± 0.8 1.4± 0.7 1.5± 0.7 <0.001

Scoring systems
SOFA 5.1± 3.6 5.5± 3.4 6.6± 3.8 <0.01
SAPSII 37.9± 15.5 40.7± 13.9 45.8± 15.4 <0.01

AKI stage, n (%) <0.01
Stage 1 641 (25.7) 557 (22.3) 484 (19.4)
Stage 2 386 (15.5) 413 (16.6) 436 (17.5)
Stage 3 1465 (58.8) 1524 (61.1) 1575 (63.1)

Renal replacement therapy, n (%) 214 (8.6) 253 (10.1) 322 (12.9) <0.01
Vasopressor use, n (%) 841 (33.7) 921 (36.9) 1247 (50.0) <0.01
ICU LOS (days) 4.9± 6.4 5.7± 7.2 7.1± 8.7 <0.01
30-day mortality, n (%) 386 (15.5) 510 (20.4) 797 (31.9) <0.01
90-day mortality, n (%) 522 (20.9) 688 (27.6) 1032 (41.4) <0.01
365-day mortality, n (%) 702 (28.2) 939 (37.7) 1283 (51.4) <0.01
NPAR: neutrophil percentage-to-albumin ratio; SBP: systolic blood pressure; DBP: diastolic blood pressure; MBP: mean blood pressure; WBC: white blood
cell; BUN: blood urea nitrogen; PT: prothrombin time; APTT: activated partial thromboplastin time; INR: international normalized ratio; SOFA: sequential
organ failure assessment; SAPSII: simplified acute physiology score II; AKI: acute kidney injury; ICU: intensive care unit; LOS: length of stay.
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neutrophils percentage, albumin, and SOFA score. Moreover,
the area under the curve (AUC) was calculated to evaluate the
quality of NPAR as a predictor of 30-day all-cause mortality.
All statistical analyses were performed using EmpowerStats
version 2.17.8 (http://www.empowerstats.com/cn/, X&Y so-
lutions, Inc., Boston, MA) and R software version 3.42;
P< 0.05 was considered statistically significant.

3. Results

3.1. Subject Characteristics. A total of 7,481 eligible subjects
were enrolled (Figure 1). Characteristics of the study patients
stratified by NPARs tertiles are displayed in Table 1. A total

of 2,492 patients were in the low-NPAR group (tertile 1:
NPAR< 22.1), 2,494 patients were in the mid-NPAR group
(tertile 2: 22.1–28.1), and 2,495 patients were in the high-
NPAR group (tertile 3: NPAR≥ 28.1). The subjects included
3,245 women and 4,236 men, most of whom were white.
Patients with high NPAR values (NPAR≥ 28.1) were more
likely to receive renal replacement therapy and vasopressors
and to report a history of stroke, liver disease, malignancy,
and respiratory failure; they also had lower SBP, DBP, MBP,
bicarbonate, hematocrit, and hemoglobin; finally, they also
had higher levels of heart rate, respiratory rate, creatinine,
chloride, platelet, BUN, WBC, PT, APTT, SOFA, SAPSII,
ICU LOS, and mortality.

Table 2: HRs (95% CIs) for all-cause mortality across groups of neutrophil percentage-to-albumin ratios.

NAR
Nonadjusted Model I Model II

HR (95% CIs) P value HR (95% CIs) P value HR (95% CIs) P value
30-day all-cause mortality

Tertiles
<22.1 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥22.1, <28.1 1.35 (1.18, 1.54) <0.01 1.27 (1.11, 1.45) <0.01 1.20 (1.05, 1.38) 0.01
≥28.1 2.24 (1.99, 2.53) <0.01 2.11 (1.86, 2.39) <0.01 1.48 (1.30, 1.69) <0.01

P trend <0.01 <0.01 <0.01
Quintiles
<19.6 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥19.6, <23.2 1.04 (0.87, 1.24) 0.67 0.95 (0.79, 1.14) 0.58 0.97 (0.80, 1.17) 0.74
≥23.2, <26.7 1.29 (1.09, 1.53) <0.01 1.18 (0.99, 1.40) 0.06 1.13 (0.94, 1.35) 0.19
≥26.7, <31.8 1.76 (1.49, 2.07) <0.01 1.56 (1.32, 1.84) <0.01 1.33 (1.12, 1.58) <0.01
≥31.8 2.48 (2.13, 2.90) <0.01 2.29 (1.96, 2.68) <0.01 1.48 (1.25, 1.75) <0.01

P trend <0.01 <0.01 <0.01
90-day all-cause mortality

Tertiles
<22.1 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥22.1, <28.1 1.36 (1.22, 1.53) <0.01 1.28 (1.14, 1.43) <0.01 1.21 (1.07, 1.36) <0.01
≥28.1 2.24 (2.02, 2.49) <0.01 2.10 (1.89, 2.34) <0.01 1.47 (1.31, 1.66) <0.01

P trend <0.01 <0.01 <0.01
Quintiles
<19.6 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥19.6, <23.2 1.09 (0.93, 1.27) 0.27 1.00 (0.85, 1.16) 0.96 1.04 (0.89, 1.23) 0.62
≥23.2, <26.7 1.31 (1.13, 1.52) <0.01 1.19 (1.02, 1.38) 0.02 1.16 (0.99, 1.35) 0.06
≥26.7, <31.8 1.84 (1.60, 2.12) <0.01 1.63 (1.41, 1.88) <0.01 1.39 (1.20, 1.61) <0.01
≥31.8 2.50 (2.18, 2.86) <0.01 2.31 (2.01, 2.65) <0.01 1.50 (1.30, 1.74) <0.01

P trend <0.01 <0.01 <0.01
365-day all-cause mortality

Tertiles
<22.1 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥22.1, <28.1 1.41 (1.28, 1.56) <0.01 1.31 (1.18, 1.44) <0.01 1.22 (1.10, 1.35) <0.01
≥28.1 2.18 (1.99, 2.39) <0.01 2.06 (1.88, 2.27) <0.01 1.46 (1.32, 1.62) <0.01

P trend <0.01 <0.01 <0.01
Quintiles
<19.6 1.0 (ref ) 1.0 (ref ) 1.0 (ref )
≥19.6, <23.2 1.11 (0.97, 1.27) 0.12 1.01 (0.88, 1.16) 0.87 1.06 (0.92, 1.22) 0.41
≥23.2, <26.7 1.34 (1.18, 1.52) <0.01 1.20 (1.06, 1.37) <0.01 1.17 (1.02, 1.33) 0.03
≥26.7, <31.8 1.83 (1.62, 2.07) <0.01 1.61 (1.42, 1.82) <0.01 1.36 (1.20, 1.55) <0.01
≥31.8 2.40 (2.13, 2.70) <0.01 2.25 (2.00, 2.54) <0.01 1.49 (1.31, 1.70) <0.01

P trend <0.01 <0.01 <0.01
HR: hazard ratio; CI: confidence interval. Models were derived from Cox proportional hazards regression models. Nonadjusted model, adjusted for none.
Adjust I model, adjusted for age, ethnicity, and gender. Adjust II model, adjusted for age, ethnicity, gender, acute kidney injury stage, congestive heart failure,
atrial fibrillation, liver disease, coronary artery disease, stroke, malignancy, respiratory failure, pneumonia, sodium, potassium, chloride, BUN, INR, APTT,
platelet, WBC, hematocrit, creatinine, glucose, bicarbonate, vasopressor use, heart rate, systolic blood pressure, diastolic blood pressure, respiration rate,
temperature, SPO2, SOFA, SAPSII, and renal replacement therapy.
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3.2.NPARasaPredictor of theClinicalEndpoints. In model I,
after adjustments for age, ethnicity, and gender, higher
NPARs were associated with increased risk of all-cause
mortality than were the first tertile (<22.1) or quintile
(<19.6). In model II, after adjusting for more confounding
factors, NPAR was also an independent predictor of 30-, 90-,
and 365-day all-cause mortality in critically ill patients with
AKI (tertile 3 versus tertile 1: adjusted HR, 95% CI: 1.48,
1.30–1.69; 1.47, 1.31–1.66; 1.46, 1.32–1.62, P trend <0.01). A
similar trend was observed in NPAR group inclusion
according to quintiles (Table 2). Moreover, the ROC curves
were generated, and we found that the AUCs for NPAR,
neutrophils percentage, albumin, and SOFA score were
0.693, 0.538, 0.633, and 0.758, respectively (Figure 2).
Comparing AUCs, NPAR was found to be lower than SOFA
score but was a better predictor than neutrophil percentage
or albumin alone (P< 0.01).

3.3. Subgroup Analyses. There were no significant interac-
tions in most strata in the subgroup analyses (Table 3).
Patients with high values of potassium, platelet, hematocrit,
bicarbonate, and SBP had higher risks of all-cause mortality
for high NPAR. Similarly, patients with SOFA scores <4,
SAPSII scores <34, temperature <36.5°C, heart rate <80
beats/minute, and glucose <119.9mg/dl were at increased
risk with a NPAR ≥28.1.

4. Discussion

We demonstrated that higher NPARs were associated with
an increased risk of 30-, 90-, and 365-day all-cause mortality
in critically ill patients with AKI after adjustments for age,
ethnicity, and gender. Furthermore, after adjusting for more
confounding factors, NPAR was also an independent pre-
dictor of all-cause mortality in these patients. Moreover,
NPAR was found to be a better predictor than neutrophil
percentage or albumin alone. There were no significant
interactions in most strata in the subgroup analyses. To our
knowledge, our study is the first to find that increased NPAR
was independently associated with poor prognosis in crit-
ically ill patients with AKI.

Several studies have shown that AKI was associated
with local and systemic inflammatory responses [21, 22];
therefore, as markers of inflammation and immune re-
sponses, neutrophil and albumin have been shown to
provide additional information regarding the prognosis of
AKI [23, 24]. Combinations generating new biomarkers,
including neutrophil-to-lymphocyte (NLR) and platelet-
to-lymphocyte ratio (PLR), are good prognostic indicators
in patients with AKI [25, 26]. Several studies have shown
that hypoalbuminemia is a risk factor for the development
and poor prognosis of AKI in critical illness [27–29].
Serum albumin protects the kidneys from toxic substances
and maintains optimal colloid pressure to ensure renal
perfusion [30]. Tawfik et al. [12] and Tingle et al. [13]
suggested that NAR is an independent prognostic marker
for survival in patients with solid tumors. The findings of
the present study suggested that NPAR was an

independent predictor of all-cause mortality in critically
ill patients with AKI and was a better predictor than
neutrophil percentage or albumin alone. Therefore, we
have reason to believe that NPAR has important clinical
significance.

AKI involves a complex physiological process caused by
a series of factors, and its pathogenesis remains unclear [31].
Previous studies have proposed several possible explana-
tions, one of which is that high circulating levels of in-
flammatory mediators are crucial causes of AKI. The known
inflammatory mediators associated with AKI and its
prognosis include neutrophils, lymphocytes, platelets, in-
terleukin- (IL-) 6, IL-10, tumor necrosis factor receptor-
(TNF-R-) I, TNF-R-II, C-reactive protein (CRP), albumin
concentrations, and red blood cell distribution width
(RDW) [32–34]. Another possible pathogenesis of AKI is
impaired renal blood flow autoregulation [35]. Decreased
renal blood flow depletes intracellular ATP, destroys in-
tracellular calcium homeostasis, generates free radicals,
activates inflammatory pathways, and destroys the integrity
of the cytoskeleton [36, 37]. These lesions eventually lead to
hypoxic damage to tubular cells, and damaged cells form
casts obstruct renal tubules.

There were some limitations in our study. First, the study
had a single-center retrospective design, and biases were
inevitable. Second, we calculated NPAR only upon admis-
sion to the ICU; a single measure of NPAR may affect the
accuracy of the results.Third, although we did our best to use
a multivariate model to control bias, there remain numerous
other known and unknown factors. Finally, retrospective of
databases has many defects; therefore, multicenter, pro-
spective studies are needed to confirm these findings.
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Figure 2: ROC curves for the prediction of 30-day all-cause
mortality in critically ill patients with AKI. AUCs for NPAR,
neutrophils percentage, albumin, and SOFA score were 0.693,
0.538, 0.633, and 0.758.
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Table 3: Subgroup analysis of the associations between the neutrophil percentage-to-albumin ratios and 30-day all-cause mortality.

N
Neutrophil percentage-to-albumin ratios

P for interaction
<22.1 ≥22.1, <28.1 ≥28.1

CHF 0.92
No 6213 1.0 (ref) 1.28 (1.10, 1.48) 2.06 (1.81, 2.35)
Yes 1268 1.0 (ref) 1.31 (0.93, 1.84) 2.25 (1.61, 3.14)

AFIB 0.22
No 5505 1.0 (ref) 1.33 (1.13, 1.56) 2.22 (1.92, 2.58)
Yes 1976 1.0 (ref) 1.08 (0.86, 1.36) 1.80 (1.45, 2.23)

CAD 0.06
No 5853 1.0 (ref) 1.15 (0.99, 1.34) 1.90 (1.66, 2.18)
Yes 1628 1.0 (ref) 1.70 (1.27, 2.27) 2.67 (2.00, 3.55)

Stroke 0.22
No 6856 1.0 (ref) 1.29 (1.11, 1.49) 2.23 (1.95, 2.55)
Yes 625 1.0 (ref) 1.23 (0.88, 1.71) 1.65 (1.18, 2.32)

Malignancy 0.03
No 6073 1.0 (ref) 1.37 (1.17, 1.59) 2.21 (1.91, 2.55)
Yes 1408 1.0 (ref) 1.01 (0.77, 1.31) 1.61 (1.29, 2.02)

Liver disease 0.32
No 6680 1.0 (ref) 1.19 (1.03, 1.38) 2.01 (1.76, 2.30)
Yes 801 1.0 (ref) 1.39 (0.98, 1.97) 1.86 (1.35, 2.57)

Respiratory failure <0.01
No 4302 1.0 (ref) 1.33 (1.09, 1.64) 2.48 (2.05, 3.01)
Yes 3179 1.0 (ref) 1.10 (0.92, 1.31) 1.49 (1.27, 1.75)

Pneumonia 0.05
No 5031 1.0 (ref) 1.38 (1.16, 1.64) 2.27 (1.94, 2.66)
Yes 2450 1.0 (ref) 1.04 (0.84, 1.28) 1.71 (1.41, 2.07)

AKI stage 0.02
Stage 1 1682 1.0 (ref) 1.11 (0.83, 1.48) 2.36 (1.82, 3.08)
Stage 2 1235 1.0 (ref) 1.08 (0.77, 1.51) 1.44 (1.05, 1.98)
Stage 3 4564 1.0 (ref) 1.35 (1.14, 1.59) 2.16 (1.85, 2.52)

WBC (109/L) 0.07
<7.6 2449 1.0 (ref) 1.19 (0.95, 1.49) 1.85 (1.50, 2.29)
≥7.6, <12.1 2528 1.0 (ref) 1.58 (1.23, 2.03) 2.53 (1.98, 3.22)
≥12.1 2502 1.0 (ref) 0.98 (0.78, 1.23) 1.61 (1.31, 1.99)

Sodium (mmol/L) 0.09
<134 2010 1.0 (ref) 1.05 (0.82, 1.35) 1.85 (1.48, 2.30)
≥134, <138 2333 1.0 (ref) 1.40 (1.11, 1.76) 1.87 (1.49, 2.34)
≥138 3136 1.0 (ref) 1.27 (1.02, 1.57) 2.34 (1.92, 2.85)

BUN (mg/dl) 0.28
<17 2295 1.0 (ref) 1.45 (1.09, 1.94) 1.90 (1.44, 2.52)
≥17, <34 2677 1.0 (ref) 1.19 (0.96, 1.48) 2.06 (1.68, 2.52)
≥34 2506 1.0 (ref) 1.02 (0.83, 1.26) 1.68 (1.39, 2.03)

INR 0.06
<1.2 2404 1.0 (ref) 1.36 (1.05, 1.76) 2.52 (1.96, 3.24)
≥1.2, <1.4 2176 1.0 (ref) 1.06 (0.81, 1.39) 1.59 (1.24, 2.05)
≥1.4 2639 1.0 (ref) 1.11 (0.91, 1.35) 1.62 (1.36, 1.93)

Potassium (mmol/L) <0.01
<3.5 2415 1.0 (ref) 1.06 (0.83, 1.34) 1.52 (1.23, 1.88)
≥3.5, <4 2560 1.0 (ref) 1.23 (0.97, 1.56) 2.24 (1.80, 2.79)
≥4 2505 1.0 (ref) 1.40 (1.12, 1.75) 2.49 (2.02, 3.06)

APTT (seconds) 0.48
<26.7 2402 1.0 (ref) 1.29 (1.00, 1.67) 2.11 (1.63, 2.72)
≥26.7, <32.2 2404 1.0 (ref) 1.29 (1.01, 1.66) 1.91 (1.52, 2.41)
≥32.2 2405 1.0 (ref) 1.05 (0.85, 1.28) 1.65 (1.37, 1.98)

Platelet (109/L) 0.01
<139 2468 1.0 (ref) 1.10 (0.90, 1.35) 1.61 (1.35, 1.93)
≥139, <223 2492 1.0 (ref) 1.56 (1.23, 1.99) 2.39 (1.89, 3.03)
≥223 2518 1.0 (ref) 1.30 (1.00, 1.71) 2.47 (1.93, 3.15)

Hematocrit (%) <0.01
<26.9 2470 1.0 (ref) 0.88 (0.69, 1.12) 1.60 (1.31, 1.95)
≥26.9, <32.3 2515 1.0 (ref) 1.29 (1.02, 1.63) 1.85 (1.48, 2.31)
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Table 3: Continued.

N
Neutrophil percentage-to-albumin ratios

P for interaction
<22.1 ≥22.1, <28.1 ≥28.1

≥32.3 2495 1.0 (ref) 1.57 (1.26, 1.96) 3.05 (2.44, 3.81)
Creatinine (mEq/L) 0.13
<0.9 2440 1.0 (ref) 1.59 (1.22, 2.09) 2.41 (1.88, 3.10)
≥0.9, <1.5 2490 1.0 (ref) 1.21 (0.96, 1.52) 2.03 (1.62, 2.53)
≥1.5 2549 1.0 (ref) 1.00 (0.82, 1.22) 1.67 (1.39, 2.00)

Bicarbonate (mg/dl) <0.01
<18 2068 1.0 (ref) 1.00 (0.81, 1.24) 1.38 (1.14, 1.68)
≥18, <23 2775 1.0 (ref) 1.24 (0.99, 1.57) 2.08 (1.68, 2.58)
≥23 2636 1.0 (ref) 1.51 (1.18, 1.94) 2.72 (2.15, 3.45)

Glucose (mg/dl) 0.03
<119.9 2485 1.0 (ref) 1.43 (1.11, 1.84) 2.63 (2.10, 3.30)
≥119.9, <152.8 2484 1.0 (ref) 1.39 (1.10, 1.76) 2.16 (1.73, 2.71)
≥152.8 2485 1.0 (ref) 1.00 (0.82, 1.24) 1.62 (1.33, 1.96)

Chloride (mmol/L) 0.76
<99 2206 1.0 (ref) 1.17 (0.94, 1.47) 1.90 (1.53, 2.35)
≥99, <104 2370 1.0 (ref) 1.35 (1.07, 1.70) 2.33 (1.87, 2.89)
≥104 2903 1.0 (ref) 1.24 (0.98, 1.58) 2.12 (1.72, 2.63)

SBP (mmHg) 0.02
<108 2486 1.0 (ref) 0.99 (0.81, 1.21) 1.53 (1.28, 1.83)
≥108, <123 2485 1.0 (ref) 1.47 (1.15, 1.88) 2.21 (1.75, 2.79)
≥123 2486 1.0 (ref) 1.40 (1.08, 1.81) 2.40 (1.87, 3.07)

DBP (mmHg) 0.36
<55 2485 1.0 (ref) 1.19 (0.96, 1.48) 2.01 (1.65, 2.44)
≥55, <64 2486 1.0 (ref) 1.07 (0.85, 1.35) 1.81 (1.47, 2.23)
≥64 2486 1.0 (ref) 1.50 (1.18, 1.92) 2.22 (1.74, 2.83)

Heart rate (beats/minute) 0.02
<80 2487 1.0 (ref) 1.52 (1.20, 1.92) 2.63 (2.10, 3.31)
≥80, <96 2488 1.0 (ref) 1.26 (0.99, 1.61) 2.04 (1.63, 2.55)
≥96 2490 1.0 (ref) 1.00 (0.80, 1.24) 1.54 (1.27, 1.86)

Respiratory rate (beats/minute) <0.01
<18 2483 1.0 (ref) 1.72 (1.31, 2.25) 2.62 (2.03, 3.38)
≥18, <22 2482 1.0 (ref) 1.28 (1.01, 1.64) 2.45 (1.96, 3.06)
≥22 2485 1.0 (ref) 0.93 (0.76, 1.13) 1.40 (1.17, 1.67)

Temperature (°C) 0.04
<36.5 2464 1.0 (ref) 1.47 (1.19, 1.83) 2.37 (1.94, 2.88)
≥36.5, <37.1 2465 1.0 (ref) 1.28 (1.00, 1.66) 2.37 (1.87, 2.99)
≥37.1 2470 1.0 (ref) 1.04 (0.83, 1.32) 1.55 (1.25, 1.93)

SPO2 (%) 0.07
<96.5 2478 1.0 (ref) 1.06 (0.86, 1.30) 2.01 (1.67, 2.43)
≥96.5, <98.3 2491 1.0 (ref) 1.17 (0.91, 1.51) 2.05 (1.63, 2.57)
≥98.3 2485 1.0 (ref) 1.61 (1.26, 2.05) 2.28 (1.81, 2.87)

SOFA score <0.01
<4 2295 1.0 (ref) 1.49 (1.09, 2.05) 2.52 (1.83, 3.45)
≥4, <7 2581 1.0 (ref) 1.24 (0.96, 1.59) 2.01 (1.59, 2.54)
≥7 2605 1.0 (ref) 1.02 (0.85, 1.22) 1.34 (1.14, 1.58)

SAPSII score <0.01
<34 2375 1.0 (ref) 1.42 (0.93, 2.16) 2.93 (1.97, 4.36)
≥34, <47 2607 1.0 (ref) 1.36 (1.06, 1.74) 1.98 (1.56, 2.52)
≥47 2499 1.0 (ref) 1.02 (0.86, 1.21) 1.27 (1.09, 1.48)

Vasopressor use <0.01
No 4472 1.0 (ref) 1.48 (1.20, 1.83) 2.66 (2.18, 3.25)
Yes 3009 1.0 (ref) 1.03 (0.86, 1.22) 1.40 (1.20, 1.64)

Renal replacement therapy <0.01
No 6692 1.0 (ref) 1.24 (1.07, 1.43) 2.17 (1.90, 2.48)
Yes 789 1.0 (ref) 1.16 (0.83, 1.63) 1.34 (0.97, 1.84)

CHF: congestive heart failure; AFIB: atrial fibrillation; CAD: coronary artery disease; AKI: acute kidney injury; WBC: white blood cell; BUN: blood urea
nitrogen; INR: international normalized ratio; APTT: activated partial thromboplastin time; SBP: systolic blood pressure; DBP: diastolic blood pressure;
SOFA: sequential organ failure assessment; SAPSII: simplified acute physiology score II.
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5. Conclusions

We demonstrated that higher NPARs were associated with
increased risk of 30-, 90-, and 365-day all-cause mortality in
critically ill patients with AKI. Nevertheless, these findings
need to be confirmed by large prospective multicenter
studies.
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