
1SCIEnTIfIC REPOrtS | 7: 7552  | DOI:10.1038/s41598-017-07867-5

www.nature.com/scientificreports

Long-range spontaneous droplet 
self-propulsion on wettability 
gradient surfaces
Chaoran Liu1,4, Jing Sun2, Jing Li2, Chenghao Xiang1,4, Lufeng Che1,3, Zuankai Wang2 & 
Xiaofeng Zhou1

The directional and long-range droplet transportation is of great importance in microfluidic systems. 
However, it usually requires external energy input. Here we designed a wettability gradient surface 
that can drive droplet motion by structural topography. The surface has a wettability gradient range of 
over 150° from superhydrophobic to hydrophilic, which was achieved by etching silicon nanopillars and 
adjusting the area of hydrophilic silicon dioxide plane. We conducted force analysis to further reveal 
the mechanism for droplet self-propulsion, and found that the nanostructures are critical to providing 
a large driving force and small resistance force. Theoretical calculation has been used to analyze the 
maximal self-propulsion displacement on different gradient surfaces with different volumes of droplets. 
On this basis, we designed several surfaces with arbitrary paths, which achieved directional and long-
range transportation of droplet. These results clarify a driving mechanism for droplet self-propulsion 
on wettability gradient surfaces, and open up new opportunities for long-range and directional droplet 
transportation in microfluidic system.

The spontaneous and directional liquid droplet transportation on a solid surface without any externally applied 
force has attracted increasing interests in microfluidic systems, especially for analytical chemistry and bioassay 
applications in recent years1–11. Directed self-propulsion of droplets normally requires an energy supply (passive 
or active) to overcome the inherent contact line pinning or defects as well as the spatial asymmetry to rectify and 
sustain the transport of droplet in the preferential direction12, 13.

Elegant approaches to break the wettability symmetry of a droplet on a surface have been developed by lever-
aging on the gradients of chemical2, 7, 14, 15, structural topography16–21, temperature22, electric force23–26, mechan-
ical vibration12, 27, PH-induced28, 29 or their combinations30–33. Among these strategies, the creation of wettability 
gradient by structural topography or chemical heterogeneity has gained increasing attention owing to its advan-
tages such as the alleviation of external energy supply and easy operation13, 28, 34–41. In the aspect of chemical 
heterogeneity, the spontaneous droplet motion resulting from the flat surface with a wettability gradient is first 
experimentally demonstrated by Chaudhury and Whitesides1. By allowing the vapor of decyltrichlorosilane to 
diffuse over a silicon wafer, the droplet can move uphill. The grading of the chemical functional group density 
was recently extended to 2-D materials such as graphene, which can drive the droplet to move a total of 1–3 mm 
in one direction25. The motion of liquid droplets on chemically defined radial wettability gradients consisting 
of alternating wettability, i.e., hydrophilic and hydrophobic was also reported42, 43. Despite extensive progress, 
chemical gradient surfaces involve the functionalization of the surface with molecular gradient of alkanethiolate 
or alkylsilane, which may deteriorate due to migration or degradation of organic molecules and result in decay of 
chemical gradient in the long term operation. Thus, the directional droplet transport purely driven by the struc-
tural topography provides a compelling strategy to address this problem.

The long-range transport demands a large wetting contact angle (CA) gradient and a small contact angle 
hysteresis. To reduce the contact angle hysteresis and enlarge the wettability gradient range, a superhydrophobic 
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surface is preferred which normally requires a hydrophobic coating44. While the hydrophobic coating provides 
a barrier for fabricating wettability gradient ranges from hydrophilicity to superhydrophobicity. As a result, the 
wettability gradient range based on the hydrophobic coating ranges from 100° to 150°43, which dramatically limits 
the droplet transport distance. Thus, to enlarge the wettability gradient, an intrinsically superhydrophilic sur-
face is desired, however, the viscous energy dissipation imposed on such a design is large. Wang45 and Checco46 
experimentally demonstrated the tapered cone nanotextures surfaces exhibits the largest macroscopic contact 
angles and the weakest hysteresis, which can reduces the viscous energy dissipation47. To decouple the conflicting 
requirement, in this work we adopt this nanotextures surfaces and etch a 3D nanoscale silicon pillars structure 
as the superhydrophobic region. And the plane SiO2 is selected as the hydrophilic region which achieves a larger 
wettability gradient ranging from 15.5° to 166.0 100 100°. The designed wettability gradient path surfaces provide 
a discrete reduced CA by increasing the area fraction of plane SiO2 which can impart a wettability gradient range 
over 150° for a continuous and spontaneous droplet motion. In general, surfaces exhibit contact angle hysteresis 
that provides an additional energy barrier for droplet motion. The nanoscale silicon pillars structure has a hys-
teresis CA 3.1°, which optimizes the pinning of droplet advancing and receding lines. We further analyze the 
maximal self-propulsion displacement on different gradient surfaces with different volumes of droplets by theo-
retical calculation which is consistent with our experimental results. And more droplet motion paths besides the 
reported path are achieved by this surface wettability gradient method.

Results and Discussion
To achieve the spontaneous droplet motion, we designed patterned surface with wettability gradient (Figs 1f 
and 2a). The surface is composed of regions with uniform SiO2 stripes and silicon nanopillars. The top surface is 
made of plane SiO2 with water static CA of 15.5° (Fig. 1). The valleys of the stripes are covered silicon nanopillars 
fabricated by deep reactive ion etching (RIE), which exhibits a static CA of 166.0°. To quantify the relative hydro-
phobicity of the patterns, we introduced a pattern density f as Fig. 2b shows.
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here, ASiO2 and ASNP are the area of SiO2 region (hydrophilic) and silicon nanopillars region (superhydrophobic), 
respectively. Thus the pattern density of the surface gradually increases from left to right, which leads to a wetta-
bility gradient ranging from superhydrophobic to hydrophilic regions. And the measured static CAs are consist-
ent with the ones calculated by Cassie-Baxter model46 (see Table S1).

Figure 1.  Fabrication process of wettability gradient surface. (a) Oxidation. (b) Patterns fabrication though UV 
lithography. (c) Silicon oxide etching via RIE. (d) Silicon etching via deep RIE. (e) Removal of photoresist.  
(f) SEM images of the patterned wettability gradient surface, SiO2 stripe and the silicon nanopillars structures.
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Figure 1f shows the SEM image of the as-fabricated surface. The size of each SiO2 stripe is 1 mm length × 90 μm 
width × 2 μm height. And the spacing between SiO2 stripes decreases from 180 μm to 0 μm along wettability gra-
dient direction, thus the pattern density of the surface increases from 0 to 1, accordingly. We also designed several 
surfaces with different wettability gradient ranges and stripe lengths.

We measured the static CA and hysteresis CA of a droplet on each region using OCA15EC Drop Shape 
Analysis (Dataphysics, Germany). Figure 2c shows the static contact angle and hysteresis contact angle profiles 
along the wettability gradient direction. It can be seen that the static CA reached up to 166.0° at superhydro-
phobic side and decreased gradually to 15.5° at hydrophilic side as the pattern density increases from 0 to 1. The 
top image shows that the real shape of droplets along the gradient direction, the shape of droplets changed from 
spherical segment to thin film while the static CA changed from 166.0° to 15.5° accordingly. Unlike other wetta-
bility gradient surfaces with a range less than 120°37, 43, 48, the superhydrophobic and hydrophilic region on two 
ends greatly enlarged the wetting CA gradient range over 150°.

To examine the effect of the as-prepared CA gradient surface on droplet motion, we conducted two contrast 
experiments, and introduced a dimensionless parameter λ as the ratio of stripe length L2 and droplet radius r, i.e., 
λ = L2/r. Figure 3a and b show a series of dynamic images of a 7 μL water droplet gently placed on the border of 
the first two regions. The droplet moved from static state and rapidly accelerated toward the more wetting direc-
tion of the gradient surface, and finally attained a stable state (see from videos ‘λ = 0.83 wettability gradient sur-
face’ and ‘λ = 2.5 wettability gradient surface’). The droplet velocity in self-propulsion has been measured and the 
results can be found in Fig. S5. The droplet velocity is nonlinear due to the discrete wettability gradient surface. 
For λ = 0.83, the droplet moved at a mean velocity of 75 mm/s and achieved a maximum displacement of 5.2 mm. 
And for λ = 2.5, the droplet moved at a mean velocity of 46 mm/s and only reached a maximum displacement of 
3.2 mm. With the time progression, the dynamic contact angle θd also decreased from 165.5° to 66.9° and 165.5° 
to 96.0° for λ = 0.83 and 2.5, respectively.

To further explore the underlying mechanism for droplet self-propulsion, we conducted force analysis. As 
commonly observed, the shape of a droplet depends on its size. Small droplets make spherical caps, while larger 
ones would be flattened by the effect of gravity if the droplet size larger than capillary length β γ ρ=− g/1

LV  
(2.73 mm for water). The spherical surface of the droplet is due to the surface tension dominating gravity, which 
tends to impose a minimal surface49, 50. And a 7 μL droplet (diameter 2.37 mm < β−1) is selected to ignore the 
gravity in our experiments and force analysis of the droplet motion. Equation 2 results from an analysis of force 
of a droplet moving on a patterned surface. The driving force (Fd) for the droplet movement on a heterogeneous 
surface results from the variation in the wettability property (or surface energy) of the liquid-solid interface, while 
the resistance force comes from two sources: one is the hysteresis force, Fh, originating from the hysteresis phe-
nomenon of droplet motion, and the other is the viscous resistance force, Fv, during the droplet motion2

Σ = − − =F F F F ma (2)d h v

The driving force a water droplet on the gradient surface can be expressed as51
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Figure 2.  Surface design and wettability characterization. The size of all the SiO2 stripe is 1 mm × 90 μm × 2 μm. 
(a) Top view schematic of the gradient surface. From left to right, the pattern densities are 0, 0.33, 0.40, 0.50, 
0.59, 0.71, 0.91, 1, and the space between SiO2 stripes are 180 μm, 135 μm, 90 μm, 63 μm, 36 μm, 9 μm, 0 μm, 
respectively. (b) Undercut structure of solid-liquid contact region. (c) The static contact angle (SCA) and 
hysteresis contact angle (HCA) of water droplet on each region of the gradient surfaces.
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where γLV represents the surface tension of the droplet, Rb is the base radius of the droplet in contact with the 
solid, θd is the dynamic contact angle of the water droplet on solid surfaces. We assume the contact area as nearly 
a circle to calculate (see from Supplementary Information). This equation reveals that the driving force is pro-
portional to contact angle gradient d cos θd/dx and solid-liquid contact area Rb

2. To activate motion, the droplet 
should overcome a moving barrier due to contact angle hysteresis, the hysteresis force is expressed as51

γ θ θ= −F R2 (cos cos ) (4)h LV b or oa

here, θoa and θor are the advancing and receding CA at the center of the droplet, respectively. When the droplet 
moves on the patterned surface, the viscous resistance force generated within the liquid can be expressed as49

∫ ∫σ π γ η= = .F fr x R V fr
h

x(0) d 1 5 d
(5)xz w

w

x
v

A

B
b LV

A

B

where σxz(0) is the viscous stress at solid/liquid interface, rw is the roughness of the SiO2 plane, hx is the height of 
droplet along the motion direction, η is the viscosity of the liquid and V is the velocity of the moving droplet, f 
represents pattern density of each wettability regions. Points A and B are the two endpoints of droplet (see from 
Supplementary Information). According to equation 3~5, increasing CA gradient and reducing CA hysteresis 
could improve driving force and reduce resistance force, thus promote droplet motion.

During the droplet self-motion process, droplet kinetic energy depends on the accumulated works applied by 
the driving, hysteresis and viscous forces. To further understand the droplet self-motion, theoretical calculation 
is used to analyze the maximal droplet displacement with different stripe length L2 and droplet volumes (4 μL, 
7 μL,10 μL) on the gradient surfaces with wettability range from 166.0° to 39.4°, and each pattern density in gra-
dient is 0, 0.33, 0.40, 0.50, 0.59, 0.71 and 0.91, respectively. Despite the wetting profile of gradient surface is dis-
crete, the forces acting on the dynamic droplets were simplified and defined points at middle positions of two 
(four) adjacent wettability gradient regions were used to calculate the driving and hysteresis forces (Fig. S2). And 
the work of these forces can be calculated by, = ∑ ∆W F x where ΣF is the resultant force at a defined position, 
and Δx is the displacement between two adjacent positions. In the calculation, the additional energy resulting 
from the descending of droplet barycenter has been considered. And the droplet will arrive at the maximal dis-
placement when the kinetic energy decreasing to zero. Figure 4 shows the calculation of the maximal displace-
ment of three volumes droplets moving on the gradient surfaces with different stripe length. As the results shows, 
the droplets can move toward the end of the gradient surface when the stripe length L2 is 1 mm. However the 
droplet cannot move toward the end of the gradient surface with stripe length increases to 2 mm. When the stripe 
length is longer than 3.5 mm, all three volumes droplet cannot move spontaneously because the kinetic energy is 
consumed before the advancing line overlaps the next wettability gradient.

We further elucidated the effect of nanostructure on the fast droplet transport. Given the ratio of stripe length 
and droplet radius λ as 0.83, we designed surfaces of two types, pillar-Si and plane-Si. The surfaces are composed 
of several regions with identical stripe length of 1 mm, and the pattern densities sequences are 0, 0.33, 0.40, 0.50, 
0.59, 0.71, and 0.91. While pillar-Si surface has silicon nanopillars around the SiO2 stripes, as for plane-Si surface, 
all the silicon nanopillars were replaced by silicon plane. Plane-Si surface caused CA gradient range dramatically 
decreased to 57.34° in contrast of the pillar-Si surface (over 150°). Moreover, the first region on pillar-Si surface 
has a much smaller CA hysteresis (3.1°) than plane-Si surface (59.6°). To quantitatively analyze the effect of 

Figure 3.  Time-resolved images of a 7 μL water droplets spontaneously moving along surfaces with different λ 
(ratio of stripe length and droplet radius). (a) λ = 0.83. (b) λ = 2.5. (c) The variation of dynamic contact angle as 
a function of time.
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nanostructures on droplet motion, we calculated the driving force and hysteresis force when the droplet was 
placed on the boundary of the first two regions, and the resultant force (Fd − Fh) were shown in Fig. 5c, the initial 
resultant force was 30.94 μN and −87.86 μN for pillar-Si and plane-Si surface, respectively. Thus the droplet on 
pillar-Si surface can overcome the energy barrier and move towards the higher wetting surface, and it should be 
noted that the negative force means there exists a much larger hysteresis resistance force that the droplet cannot 
move, which is consistent with our experimental results (see from video ‘λ = 0.83 wettability gradient surface 
without silicon nanopillars’). We observed that the droplet merely spread on the surface with a contact angle of 
70°, and the droplet shape remained unchanged as time progresses. Taken together, these results demonstrate the 
importance of nanoscale structure to provide a large driving force and smaller resistance force.

To further explore the directional and long-range droplet transport, we designed several wettability gradient 
surfaces with arbitrary paths, such as annular path, straight path, and ‘S’ path (see from videos ‘Annular path’, 
‘Long straight path’ and ‘S path’). Figure 6 shows a series of dynamic images of a water droplet gently placed on 
the three wettability gradient surfaces with a static CA gradient more than 150°, as time progressed, the droplet 
shape continuously changed from sphere segment to thin film. The annular surface has an inner diameter of 
3 mm and outer diameter of 20 mm, and it’s composed of twelve identical fan-shaped regions with varying wetta-
bility. The droplet has a large volume of 60 uL so that it can overlap several regions simultaneously. We observed 
that the droplet spontaneously rotated nearly 210° from hydrophobic side to hydrophilic side around the center 
(Fig. 6a). The straight path is composed of ten identical regions and it has a total length of 47 mm. The droplet 

Figure 4.  Theoretical calculation of the maximal motion displacement of different volume droplets self-
propulsion on different stripe length L2 gradient surfaces with wettability range from 166° to 39.4°, and each 
pattern density in gradient is 0, 0.33, 0.40, 0.50, 0.59, 0.71 and 0.91, respectively.

Figure 5.  (a) The spatial variation of static contact angle (SCA) and the hysteresis contact angle (HCA) as a 
function of pattern density f for the surface without nanostructures. (b) Time-resolved images of a 7 μL water 
droplets moving on plane-Si gradient stripes with λ = 0.83. (c) The comparison of resultant force of droplet on 
two types of surfaces. Pillar-Si surface has nanostructures around SiO2 stripes. While on plane-Si surface, all the 
nanostructures are replaced by silicon plane.
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spontaneously moved on the surface and achieved a maximum displacement of 37.5 mm (Fig. 6b). In addition, 
we designed paths with ‘S’ shape, which has a length of 34 mm between two endpoints. The droplet self-propelled 
and swerved on the ‘S’ path along gradient direction (Fig. 6c). The designed wettability gradient paths have a good 
reproducibility (see from Fig. S6 and video ‘Droplet flow’). These multi paths provide the capability to realize 
directional and long-range transportation of large volume droplets.

Conclusions
In summary, we designed surfaces with wettability gradient by MEMS compatible process technology, which 
could achieve droplet self-propulsion without external force or energy applied. The varying wettability of the 
surface was achieved by modulating the area fraction of superhydrophobic silicon nanopillars and hydrophilic 
SiO2 stripes. We define the pattern density as the area fraction of SiO2 stripes on each region. The static contact 
angle decreases from 166.0° to 15.5° with the increasing of pattern density, and it achieved a large wettability 
gradient range of over 150°. We introduced a dimensionless parameter λ as the ratio of stripe length and droplet 
radius, and carried out experiments to investigate the motion behavior of droplet on the as-prepared surface. We 
found that droplet moved longer and faster with a smaller λ, the droplet moved with a mean velocity of 75 mm/s 
and 46 mm/s and achieved a displacement of 5.2 mm and 3.2 mm given λ = 0.83 and 2.5, respectively. To further 
explore the underlying mechanism for droplet self-propulsion, we conducted force analysis, and elucidated the 
effect of nanostructure on the fast droplet transport. By contrast, we prepared two types of surfaces with the same 
stripe length and pattern density. Pillar-Si surface has silicon nanopillars around SiO2 stripes, and the nanostruc-
tures were replaced by silicon plane on plane-Si surface. The experimental results showed that droplet on pillar-Si 
surface can overcome the energy barrier and move towards higher wetting surface, while the biggish hysteresis 
resistance force on plane-Si surface hindered the droplet motion. Therefore, the nanostructure on surface is criti-
cal in providing a large driving force and smaller resistance force for droplet. And theoretical calculation has been 
used to analyze the maximal self-propulsion displacement on different gradient surfaces with different volumes 
of droplets. On the basis of theoretical analysis and fabrication technology, we designed several surfaces to realize 
the directional and long-range droplet motion on arbitrary paths. These results reveal the underlying mechanism 
for droplet self-propulsion and present the potential for directional and long-range droplet transportation in 
microfluidic system, micropump needles, biochips, and so on.

Methods
Sample Fabrication.  We employed standard Micro-Electro-Mechanical System (MEMS) process technol-
ogy to fabricate roughness gradient structures on silicon surface, which consists of two essential structural and 
chemical features, silicon nanopillars, and silicon dioxide (SiO2) stripes. Figure 1 shows the fabrication procedure 
of the patterned surface. Briefly, to amplify the range of wettability gradient, we first fabricated a 2-μm-thick SiO2 
film on the silicon wafer at high temperature (Fig. 1a). Then, we used photolithography process to selectively 

Figure 6.  Three surfaces with arbitrary paths are designed for large volume droplet transport. The pattern 
density on these surfaces range from 0 to 1, and the CA gradient of the three surfaces are over 150°. (a) Droplet 
self-propulsion on annular path, which has an inner diameter of 3 mm and outer diameter of 20 mm, droplet 
could rotate about 210° around the center. (b) Droplet self-propulsion on straight path, the total length of the 
path is about 47 mm, and the droplet achieved a displacement of 37.5 mm (c) Droplet self-propulsion on ‘S’ 
shape path, the path has a length of 34 mm between two endpoints.
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cover photoresist on SiO2 film (Fig. 1b), following by Reactive Ion Etching (RIE) to etch the SiO2 that are not 
protected by photoresist (Fig. 1c), and deep RIE was used to further etch the silicon substrate, thus formed silicon 
nanopillars (Fig. 1d). The deep RIE process included cyclic passivation and etching modes in which C4F8 and 
SF6 were used. In the etching cycle, the SF6 flow rate was ~130 sc cm and platen power was set at ~12 W. In the 
passivation cycle, the C4F8 flow rate was ~85 sc cm52. Finally, we removed the photoresist, the surface fabrication 
process was completed (Fig. 1e).

Experiment Process.  The liquid droplet was formed using a syringe pump (Lead Fluid TYD01-01) and gen-
tly released to the sample with the highest contact angle. A Photron FASTCAM SA4 high speed camera (Photron, 
Japanese) was employed to record the instantaneous movement of water droplet, and the frame rate was set as 
3600 fps.
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