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Gangliosides are cell membrane components, most abundantly in the central nervous

system (CNS) where they exert among others neuro-protective and -restorative functions.

Clinical development of ganglioside replacement therapy for several neurodegenerative

diseases was impeded by the BSE crisis in Europe during the 1990s. Nowadays,

gangliosides are produced bovine-free and new pre-clinical and clinical data justify

a reevaluation of their therapeutic potential in neurodegenerative diseases. Clinical

experience is greatest with monosialo-tetrahexosyl-ganglioside (GM1) in the treatment

of stroke. Fourteen randomized controlled trials (RCTs) in overall >2,000 patients

revealed no difference in survival, but consistently superior neurological outcomes vs.

placebo. GM1 was shown to attenuate ischemic neuronal injuries in diabetes patients

by suppression of ERK1/2 phosphorylation and reduction of stress to the endoplasmic

reticulum. There is level-I evidence from 5 RCTs of a significantly faster recovery with GM1

vs. placebo in patients with acute and chronic spinal cord injury (SCI), disturbance of

consciousness after subarachnoid hemorrhage, or craniocerebral injuries due to closed

head trauma. In Parkinson’s disease (PD), two RCTs provided evidence of GM1 to

be superior to placebo in improving motor symptoms and long-term to result in a

slower than expected symptom progression, suggesting disease-modifying potential.

In Alzheimer’s disease (AD), the role of gangliosides has been controversial, with some

studies suggesting a “seeding” role for GM1 in amyloid β polymerization into toxic forms,

and others more recently suggesting a rather protective role in vivo. In Huntington’s

disease (HD), no clinical trials have been conducted yet. However, low GM1 levels

observed in HD cells were shown to increase cell susceptibility to apoptosis. Accordingly,

treatment with GM1 increased survival of HD cells in vitro and consistently ameliorated

pathological phenotypes in several murine HD models, with effects seen at molecular,

cellular, and behavioral level. Given that in none of the clinical trials using GM1 any

clinically relevant safety issues have occurred to date, current data supports expanding

GM1 clinical research, particularly to conditions with high, unmet medical need.
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Gangliosides are a cell membrane component ubiquitous in
vertebrates and most abundant in the central nervous system
(CNS). Gangliosides are glycosphingolipids composed of a
ceramide base with an oligosaccharide chain to which one or
more sialic acids are bound. Description of the structure and
the biosynthesis steps of the major gangliosides can be found in
recent reviews (1, 2). Among over 60 known natural gangliosides,
monosialo-tetrahexosyl-ganglioside (GM) 1, disialo-gangliosides
GD1a and GD1b, and trisialo-ganglioside GT1b are the most
common ones, with GM1 accounting for ∼28% of the total
human brain gangliosides (3). Although gangliosides are known
for about 75 years, much of their role is still unknown and
the research interest in their diverse functions remains high, as
demonstrated by about 400–500 articles published in scientific
journals worldwide every year.

Gangliosides have extensively been tested in diverse clinical
applications. Until the early 1990s, a ganglioside extract produced
from calf brains was marketed in Europe as treatment for
acute or chronic CNS lesions and Parkinson’s disease (PD) (e.g.,
Cronassial R© in Germany, Nevrotal R© in Spain, and Sygen R© in
Italy). Eventually, the product was withdrawn from the European
market after reports of Guillain-Barré-Syndrome (GBS), a rare
misdirected immune response to gangliosides causing peripheral
nerve damage, often following infections. Noteworthy, this
withdrawal coincided in Europe with the peak time of bovine
spongiform encephalopathy (BSE) through a newly discovered
type of infection caused by prions, raising scrutiny for any
human use of products derived from bovine brain. Meanwhile,
bovine-free ganglioside products were developed from porcine
brain material. BSE has never been documented in pigs and is
almost eradicated in 2019, limiting the potential for a spread
across species. Neither epidemiological studies (4, 5) nor post-
marketing safety data in over 1 million patients exposed to
a GM1-product from porcine brain worldwide support the
incidence of GBS to be associated with GM1 use. Additionally,
the injection of GM1 alone had no immune-stimulant effects
(6) and no anti-GM1 antibodies were detected after long-term
treatment with GM1 doses of 1,000mg i.v. followed by 200
mg/day s.c. for 18 weeks (7).

Recently, gangliosides have been proposed to play a key role
also in cancer (8), diabetes (9), and infection (10). However,
while these indications currently have effective treatments,
therapy of many degenerative neurological diseases has not
progressed much. The medical need for new treatments of
neurodegenerative conditions continues to increase in aging
populations and, particularly in those with orphan status,
remains largely unmet. In parallel, preclinical evidence of
potentially beneficial GM1 effects in such indications has evolved.
Therefore, further clinical testing of GM1 in some neurological
indications may warrant a reevaluation.

MECHANISMS OF ACTION

Gangliosides play an important role in the development,
protection, and repair of the CNS (1, 11, 12). Not surprisingly,
genetic defects that affect their synthesis result in severe early-
onset neurological diseases (13). Mutations in the ST3GAL5

gene, which encodes the first sialyltransferase (GM3 synthase)
in the ganglioside biosynthetic pathway, cause an early-
onset epilepsy syndrome with severely delayed motor and
cognitive development and choreoathetosis. Blindness and
deafness are also present in most patients (14). Mutations in
B4GALNT1, which codes for GM2/GD2 synthase, are linked
to a form of hereditary spastic paraplegia characterized by
limb spasticity, dysarthria, peripheral neuropathy, and severe
intellectual disability (15, 16).

Besides these rare diseases, changes in the ganglioside profile
(i.e., in the relative abundance of specific gangliosides) were
reported in degenerative CNS conditions, including Alzheimer’s
(AD) (17, 18), PD (19), Huntington’s disease (HD) (20, 21),
multiple sclerosis (MS) (22, 23), and amyotrophic lateral
sclerosis (ALS) (24). GM1 deficiencies in particular have been
detected in PD (19) and HD (20), whereas GM1 expression
and distribution were shown to be affected in CNS injury
caused by trauma or disease (25, 26). GM1 is one of the
predominant brain gangliosides (3), with demonstrated anti-
neurotoxic, neuroprotective, and neurotrophic actions in vitro
and in vivo (27–29).

Early studies suggested that the action of gangliosides is
closely related to that of neurotrophins, as they display similar
neuroprotective effects and modulate neurotrophin signaling
(29, 30). This is supported by the ability of GM1 to facilitate
the activation of tropomyosin-related kinase (Trk) receptors and
the signaling cascade downstream, as well as the induction of
neurotrophin synthesis and release (31–33). The neurotrophin
family in mammals comprises 5 members, i.e., the nerve growth
factor, the brain-derived neurotrophic factor (BDNF), and the
neurotrophins 3, 4, and 5 (34). All neurotrophins promote
survival of subpopulations of neurons in the central and the
peripheral nervous system, but with different specificity, i.e., the
potency of protective effects deviates for different subpopulations
of neurons.

The neuroprotective profile of GM1, as shown in experimental
models of spinal cord injury (SCI), PD, stroke, HD, and AD, is
reminiscent of the actions of BDNF. BDNF has key neurotrophic
and neuroprotective functions in the developing and adult brain,
which makes it a potential tool for many therapeutic strategies
(35), e.g., BDNF was shown to protect against tau-related
neurodegeneration in amousemodel of AD (36). GM1 stimulates
release of BDNF (37) and acts synergistically with BDNF (38).
When BDNF binds to its receptor TrkB, it triggers the mitogen-
activated protein kinase (MAPK) pathway, which mediates
neurotrophic effects such as dendritic growth (39, 40). In
recent studies in cultured rat cortical neurons, GM1 did neither
stimulate BDNF synthesis or release, nor BDNF/TrkB signaling
pathways. In mature and more complex brain preparations such
as cortical prisms from adult mice, however, GM1 stimulated the
MAPK pathway. In mixed cultures and co-cultures of various
ages, GM1 activated the MAPK pathway in mature cultures, but
only when astrocytes were present (41). These findings indicate
that GM1 can activate similar pathways as BDNF, which has
key neuroplastic and neuroprotective roles in the adult brain.
Recent evidence has been provided that astrocytes can also be
a source for BDNF and that possibly a bidirectional transfer
of BDNF between astrocytes and neurons can be considered
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FIGURE 1 | Astrocytes are required for the activation of the MAPK pathway by

GM1 in neurons.

(42, 43), indicating that the presence of astrocytes is required for
this effect (Figure 1).

Additional mechanisms are likely to contribute to the
protective effects of GM1 across different diseases. These
could include a modulatory role of the ganglioside on ion
channels and/or neuronal Ca2+ homeostasis (44–47). These and
other potential neuroprotective roles of gangliosides have been
reviewed elsewhere (29, 48) and will not be discussed further
here. GM1 may have broader therapeutic potential than thought
in the 1990’s. To further elucidate the action of GM1 in the
brain, its effect on gene expression in primary cultures of rat
astrocytes and neurons was studied. Transcriptome analysis
with next-generation sequencing (49) was used to determine
the differential expression of genes under different conditions.
Significant results were selected based on a≥±1.5-fold change in
expression. A large number of differentially regulated genes with
GM1 vs. control were found: 291 in pure cultures of astrocytes,
800 in astrocytes co-cultured with neurons, 78 in pure cultures
of neurons, and 1,719 in neurons co-cultured with astrocytes.
Further studies are ongoing to identify major pathways regulated
by GM1 in neurons and astrocytes.

THERAPEUTIC POTENTIAL IN
NEUROLOGICAL INDICATIONS

Although many of the molecular mechanisms through which
GM1 may exert neuroprotective actions remain unknown, those
actions are quite evident, in vitro and in vivo, in animals
as well as in humans, as demonstrated in the following key
neurological indications.

Spinal Cord Injury
SCI is an indication with orphan designation in Europe and
the US. The incidence of SCI in the US is approximately
54 cases per million or approximately 17,000 new cases each
year (50). Although estimations of the annual incidence and

prevalence vary by country and region (51, 52), theWorld Health
Organization estimates the annual global incidence at 40-80 cases
per million, with 250,000–500,000 people worldwide suffering
from SCI every year (53). Most SCIs are traumatic in origin;
affected patients are often young and remain severely disabled
for the rest of their lives. Thus, the economic and social burden
caused by SCI is enormous (54).

Current medical management of SCI is mechanical
decompression and restoration of normal blood pressure to
correct the low perfusion to the injured spinal cord tissue within
4 h post-injury and by this to limit secondary injury. Ideally,
at about 24 h post injury medical management would add
neurotrophic and regenerative therapy to block neuronal death.
Currently, several neuroprotective and regenerative agents are
in clinical development (55, 56), but none has obtained US FDA
clearance or scientific community acceptance yet. Although
the US FDA never approved high-dose methylprednisolone
(MPSS) for the treatment of SCI, it has broadly been used as a
neuroprotective treatment since the 1990s, based on the US NIH
recommendations following the second National Acute Spinal
Cord Injury Study (NASCIS II) (57). This study was a large
NIH funded, multicenter, double-blind, randomized, controlled
trial comparing the efficacy and safety of MPSS and naloxone
vs. placebo. Following the subsequent NASCIS III study, the
US NIH added further recommendations for patients to be
maintained onMPSS for either 24 or 48 h, depending on whether
treatment was initiated within 3 or within 3–8 h post-injury,
respectively (58).

Prior to the initial scientific publication of the NASCIS II in
the NEJM, abbreviated lay study conclusions were disseminated
via media, press release, and even the unprecedented step of
sending a US NIH clinical alert to all US emergency rooms to
start MPSS therapy in SCI patients. This massive dissemination
of the claimed results of the NASCIS II study quickly established
the use of MPSS in common practice in the US. However, it soon
became apparent that the NASCIS II design was flawed and that
the statistical analysis was incomplete and poorly reported. At
least 11 peer reviewed articles on such issues were published (59)
and acknowledged by the American College of Surgeons (60).
In two Cochrane reviews, the latest in 2012, the main authors
of the NASCIS studies still concluded though, that high-dose
MPSS therapy was “the only pharmacologic therapy shown to
have efficacy in a phase-III randomized trial when administered
within 8 h of injury” and “additional benefit by extending the
maintenance dose from 24 to 48 h, if start of treatment must be
delayed to between 3 and 8 h after injury” (61, 62). However,
in addition to the criticism of methods used in the NASCIS
trials, CRASH (Corticosteroid Randomization After Significant
Head injury), a randomized, placebo-controlled trial in 10,000
adults with head injury and Glasgow Coma Scale score of ≤14,
revealed a higher risk of death in patients treated with the
recommended MPSS regimen as compared to those treated with
placebo (relative risk: 1.15, 95% CI 1.07–1.24; p = 0.0001).
The CRASH results strongly discouraged further routine use of
MPSS in any trauma patients (63) including those with SCI.
It is noteworthy that the NASCIS studies required an initial
neurologic examination from a cooperative patient, so acute SCI
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trauma patients unconscious from a head injury or intubated
from chest trauma were excluded. This explains why the NASCIS
studies did not reveal any negative MPSS drug effect on acute SCI
trauma patients.

As a consequence of the CRASH results, evidence-based
treatment guidelines no longer recommended routine use of
high-doseMPSS for the treatment of SCI in the US (64, 65). Based
on the flaws in design, presentation, analysis, and interpretation
of results, the NASCIS trials were classified by Neurosurgery
Guidelines as providing level III evidence at best (65). By
contrast, two trials conducted with GM1 in acute traumatic SCI at
about the same time were considered to provide level I evidence
(64–66). In a single-center, double-blind, randomized, placebo-
controlled, pilot study, 37 patients with SCI were enrolled
to evaluate the efficacy of daily intravenous doses of 100mg
GM1 given for 18–32 doses starting within 72 h post-injury in
enhancing the functional recovery of damaged neurons over a 1-
year follow-up period (67, 68). Neurologic recovery was assessed
using the 5-point Frankel score and the American Spinal Injury
Association (ASIA) motor score. Patients treated with GM1
showed superior improvement vs. placebo in both these scores
over 1 year.

Based on these encouraging results, a large multicenter,
double-blind, randomized, placebo-controlled trial was launched
testing two dose regimens of GM1 vs. placebo in 760 patients
with acute SCI (69). Eligible patients had to have major SCI
with a neurological deficit in one lower limb and a total ASIA
motor score ≤15, without cord transection or penetration, cauda
damage, significant plexus, or peripheral nerve injury. After
completion of MPSS treatment within 8 h post-injury, patients
were block-randomized to receive either placebo or GM1, at
high (600mg initially, followed by 200 mg/day i.v.) or low doses
(300mg initially, followed by 100 mg/day i.v). Randomization
was stratified by the level of injury (cervical vs. thoracic), baseline
ASIA Impairment Score (complete: nomotor or sensory function
preserved [A]; incomplete with sensory but no motor function
preserved [B]; incomplete with motor function preserved [C+D]
below the neurological level), and age (<29 vs. >29 years).
Treatment started within 72 h post-injury and lasted for 8 weeks.
The main efficacy measure was the fraction of patients achieving
at least a 2-grade improvement from the entry ASIA Impairment
Score to the modified 7-point Benzel classification during follow
up (Figure 2) (70). This classification by marked recovery
allowed using one common binary assessment of neurologic
function. In 28 centers, 3,130 patients were screened of whom 797
were eligible and randomized, and 760 were analyzed for efficacy.
In 482 patients SCI was complete (ASIA Impairment Score: A),
in 278 incomplete (B-D), in 579 the lesion was at cervical and
in 181 at thoracic level; 395 patients had cervical traction and
600 patients a spinal operation. The study population was typical
for SCI patients in the distribution of neurological level, age,
and sex. Median times from injury to MPSS treatment was <2 h.
There were no relevant differences among treatment groups at
baseline. At 8 (end of treatment) and 16 weeks, the proportion
of patients with marked recovery, i.e., ≥2 grade improvement
in the modified Benzel classification was significantly greater
in both GM1 dose groups as compared to placebo (Figure 2).

This difference in neurologic recovery between treatment groups
was no longer present at week 26, the primary endpoint.
Thus, the study demonstrated a significantly faster, although
ultimately not greater recovery with GM1 therapy. Detailed
analysis demonstrated that the partial SCI patients had the
most pronounced acceleration in recovery rate (Figure 2C). The
ASIA motor, light touch, and pinprick scores as well as bowel
and bladder function, sacral sensation, and anal contraction all
showed a consistent trend in favor of GM1 enhancing neurologic
recovery (69–71).

Also in the literature were three rather small, double-
blind, randomized, placebo-controlled trials demonstrating
faster recoveries through GM1 in patients with chronic SCI (72),
disturbance of consciousness after subarachnoid hemorrhage
(73), or craniocerebral injuries due to closed trauma (74). None of
these trials reported any clinically relevant safety issue with GM1.

Stroke
By far the greatest clinical experience with GM1 exists in the
treatment of stroke with overall 14 double-blind, randomized,
placebo-controlled, clinical trials in overall >2,000 patients
(Table 1). The 4 largest trials enrolled 792, 502, 287, and 99
patients with acute ischemic stroke within 5, 12, 48, and 48 h
from its onset, respectively (75–78). In 2 trials, higher i.v. loading
doses of 300 and 200mg were used (75, 78), otherwise GM1 was
given in all studies at constant dose levels of either 40 or 100mg
and either i.v. or i.m. for 2–6 weeks. Patients were followed for
3–6 months.

In 3 of these largest 4 trials survival was analyzed, but none
found any difference vs. placebo. Methods for the neurological
evaluation varied among the four trials and only the Canadian
Neurological and the Barthel scale were used more than once,
i.e., each of them in two trials. In the largest study (75), the
improvement from baseline in the Canadian Neurological score
was greater with GM1 than with placebo, but only in the
subgroup of patients treated within 4 h from stroke onset, the
difference was significant. In the second study (76), among 427
patients who presented with a first ischemic hemispheric stroke,
a significantly greater neurological improvement was found vs.
placebo at the end of treatment. In the third study (77), the
Toronto Stroke scale and Barthel Index showed no significant
difference vs. placebo on Day 84. However, the difference in the
improvement of the motor component of the Toronto Stroke
scale was significant on Day 28 and still in favor of GM1 on
day 84, as were all 10 components of the Barthel Index. In the
last study (78), significant differences were found vs. placebo
for both the Fritz-Werner and the Barthel Index on Day 21
which for the Barthel Index persisted for 6 months. Overall,
all 4 studies demonstrated benefits through GM1 vs. placebo in
neurological outcomes.

In 10 additional, smaller studies with <50 patients per trial,
GM1 was given at either 40 or 100 mg/day again either i.m. or
i.v. for up to 6 weeks, and outcomes were observed for up to 6
months. Of the 9 studies that assessed neurological outcomes,
8 reported significant effects in favor of GM1 (79–84, 86, 87)
and one, i.e., the smallest trial with <20 patients, showed greater
improvement with GM1 without reaching significance though
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FIGURE 2 | Percentage of SCI patients with marked recovery, i.e., ≥2-grade improvement from the entry ASIA Impairment Score to the modified 7-point Benzel

classification during follow up. (A) Patients with complete SCI and no motor or sensory function preserved; (B) Patients with incomplete SCI and sensory but no motor

function preserved; (C) Patients with incomplete SCI and motor function preserved below the neurological level.
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TABLE 1 | Double-blind Randomized Clinical Trials (RCTs) on the efficacy and safety of GM1 in patients with acute stroke in the order of decreasing size.

Efficacy measures

References N of patients GM1 dose

[mg/day]

Treatment

duration

Follow-up Neurological

assessment

Barthel

scale

CT EEG PET Survival Other scales

Lenzi et al. (75) 792 300 i.v. (d1),

100 i.v.

(d2–10), 100

i.m. (d11–21)

3w 4m X Canadian

neurological

Argentino et al. (76) 502 100 i.v. ±

hemodilution

2w 4m X Rankin, modified;

Canadian

neurological

Alter et al. (77) 287 100 i.m. 4w 3m X X Toronto stroke

Scarpino et al. (78) 99 100/200 i.v.

(d1), 100 i.v.

(d2–21)

3w 6m X Fritz-Werner

Hoffbrand et al. (79) 49 100 i.m. 4w 6m X X

Reuther et al. (80) 42 100 i.v. 3w 3m X X

Battistin et al. (81) 40 40 i.m. 6w 6w X X X

Bassi et al. (82) 38 40 i.m. 6w 6w X X Mathew

Frattola (83) 38 40 i.m. 6w 6w X X X

D’Agnini and Cesari

(84)

37 40 i.m. 6w 6w X X X

Jamieson et al. (85) 30 40 i.v. n.s. 6m X X X

Heiss et al. (86) 25 100 i.v. 3w 3m X X X X Stroke index

De Blasio et al. (87) 20 100 i.v. 10 d 10 d Glasgow-pittsburg

coma, acute

stroke, modified

Abraham and Lange

(88)

19 100 i.m. 4w 3m X X

CT, computed tomography; d, day; EEG, electroencephalogram; i.m., intramuscular; i.v., intravenous; m, month; PET, positron emission tomography; s.c., subcutaneous; w, week.

(88). Of the 6 efficacy studies with brain imaging during follow-
up (81–86), the 2 trials using PET showed a trend for an
improvement of brain metabolism with GM1 (85, 86), whereas
in none of the studies, CT revealed anymorphological differences
vs. placebo.

Except for one patient who stopped treatment due to an
exfoliative dermatitis probably related to GM1, none of the 14
trials reported any major difference as compared to placebo
regarding the frequency, nature, or severity of AEs.

Diabetes mellitus is a well-known risk factor for cerebral
ischemia, and both acute hyperglycemia and chronic diabetes
exacerbate ischemic brain damage (89). To determine if
GM1 might be used as a neuroprotective agent in diabetes-
associated cerebral ischemia/reperfusion injury, two in vivo
studies in rats have investigated its effects in hyperglycemia-
exacerbated ischemic brain damage. The first study indicated that
GM1 attenuated diabetic-augmented ischemic neuronal injuries
through the suppression of ERK1/2 phosphorylation (90). The
second study showed that the attenuation of diabetes-associated
cerebral ischemia/reperfusion injury by GM1 was related to the
prevention of endoplasmic reticulum stress-induced apoptosis
(91). These findings are in accordance with published results
that have shown diabetes-enhanced ischemic brain damage is
associated with activation of ERK1/2 (92) and augmentation of

endoplasmic reticulum stress (93). Drugs that suppress ERK1/2
or elevate the endoplasmic reticulum stress have been reported
to ameliorate brain damage in diabetic animals (94–96). These
new experimental findings warrant further clinical investigation
of GM1 particularly in the treatment of diabetes patients suffering
ischemic stroke.

Parkinson’s Disease
PD is the second most common, progressive neurodegenerative
disorder after AD, with 1–2 cases per 1,000 being affected
at any time (97, 98). Clinically, the disease is characterized
by bradykinesia, rigidity, resting tremor, gait disturbance, and
postural instability as well as by cognitive, affective, and
autonomic components. Pathological characteristics are α-
synuclein-containing Lewy bodies and a loss of dopaminergic
neurons in the substantia nigra and forebrain. In most cases, the
cause of PD is unknown, however some genetic factors have been
identified in 5–10% of patients (97) and several environmental
factors have been shown to be associated with an increased risk
of PD (99).

Although there are numerous clinical trials ongoing in
PD, the unmet need for better symptomatic as well as
disease-modifying therapies is still high. The most efficacious
symptomatic treatment for PD is still the first drug approved,
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i.e., the combination of levodopa and a dopa decarboxylase
inhibitor and no treatment has yet been shown to unequivocally
slow disease progression. Development of therapies with
neuroprotective/restorative effects is a rational approach for drug
development in PD: the disease is slowly progressive and patients
get worse over time; the dopaminergic reserve early in the disease
(i.e., residual intact dopamine neurons) is a potential target
for neuroprotection; damaged or dysfunctional, but still viable,
dopamine neurons are targets for restoration.

Treatment of PD with GM1 may particularly make sense as
the pathology of PD is multifactorial, including mechanisms
such as Fas-mediated cell death, oxidative stress, mitochondrial
dysfunction, cytoskeletal disruption, expression of inflammatory
cytokines, ATP depletion, excitotoxicity, and loss of trophic
support, among other possible factors. Accordingly, to achieve
effective disease modification, multiple mechanisms may need
to be targeted and GM1 is known to act through diverse
mechanisms including inhibiting apoptosis, inflammation,
excitotoxicity, and oxidative stress reactions, modulating
calcium homeostasis, neurotrophic factor signaling, membrane
integrity, cAMP levels, protein kinase activity, neuritogenesis,
and axonogenesis (29, 48). Additionally, GM1 levels in neuronal
plasma membranes may stabilize lipid raft signaling domains
(100, 101) and intracellularly, may inhibit toxic synuclein
aggregation (102).

GM1 was shown to rescue damaged dopaminergic neurons in
vitro (103) and in vivo, to cause (a) increases in striatal dopamine
levels and tyrosine hydroxylase-positive fiber density in the
striatum and (b) reduced loss of pars compacta neurons in the
substantia nigra in mice exposed to the Parkinson-producing
neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) (104). These results were confirmed in MPTP-treated
monkeys, which in addition to increased striatal dopamine levels
and enhanced dopaminergic innervation of the striatum, also
recovered from PD-like motor symptoms after treatment with
GM1 (105). GM1 also increased the density of striatal dopamine
transporter sites, suggestive of recovery or possibly sprouting of
dopaminergic terminals. Based on these and other promising
results in animal models of PD, GM1 went into clinical testing in
PD patients.

In a first, open-label study, effects of GM1 were tested in 10
PD patients who received 1,000mg GM1 i.v. once after the last
of three baseline functional assessments. Thereafter, patients self-
administered GM1 at 200 mg/d s.c. for 18 weeks (7). There were
no serious adverse events and none of the patients developed
elevated anti-GM1 antibody titers. Most patients demonstrated
improvements on at least some functional measures, beginning
after 4–8 weeks of treatment. When functional improvements
occurred, they lasted for the duration of the study. In a
subsequent double-blind, randomized, placebo-controlled study,
45 patients with mild to moderate PD received either placebo or
GM1, again with an i.v. loading dose of 1,000mg followed by
200 mg/day s.c. for 16 weeks (Figure 3A) (106). The primary
efficacy measure was the change in the Unified Parkinson’s
Disease Rating Scale (UPDRS) motor score, assessed at three
independent baseline visits and thenmonthly while on treatment.
At 16 weeks, there was a significant difference between treatment

and placebo groups in UPDRS motor scores as well as in
activities of daily living (ADL) scores. GM1-treated patients also
had significantly greater improvements in performance of timed
motor tests, including tests of arm, hand, and foot movements,
and walking. GM1 was well tolerated and no serious adverse
events were reported.

To evaluate long-term safety and efficacy of GM1, patients
completing this 16-week trial were offered to enter an open-label
extension study (108). Twenty-six patients received GM1 at 200
mg/day s.c. for up to 5 years. Safety was evaluated monthly and
efficacy every 6 months. After 5 years, patients of the former
placebo group improved in UPDRS motor, but not ADL scores.
Patients treated with GM1 throughout both the double blind and
the open-label extension study showed only a slight deterioration
of UPDRS motor and ADL scores over 5 years, with both scores
remaining significantly below those obtained at baseline prior to
randomization into the original study. No relevant safety issues
or changes in safety laboratory measurement were noted over the
course of the study. Results suggested that long-term GM1 use
in PD is safe and may have some disease modifying potential.
That the patients treated with placebo during the double-blind
study did not fully catch up to the patients who used GM1 during
the double-blind study over the subsequent 5-year period is of
particular interest, as this would have been expected for a purely
symptomatic treatment.

These findings led to the conduct of another double-blind,
randomized, placebo-controlled study using a delayed-start
design to distinguish between potential symptomatic and disease
modifying effects of GM1 in PD: 77 patients were randomized
to receive either GM1 (early-start) for 120 weeks or placebo for
the first 24 weeks and subsequently GM1 for 96 weeks (delayed-
start); 17 additional patients received standard-of-care in order to
follow the natural disease progression (Figure 3B) (107). At week
24, the early-start group demonstrated significant improvement
in UPDRS motor scores vs. a significant worsening of scores
in the delayed-start (placebo) group. The delayed start group
showed improvements in UPDRS scores after starting GM1 after
week 24. The early-start group showed a sustained benefit vs.
the delayed-start group at week 72 and at week 120, and the
trajectory of the two groups remained divergent at the end
of the treatment period. Both groups had significant symptom
worsening after 1 and 2 years of washout. Themost prevalent AEs
were injection site reactions and only 3 subjects reported serious
adverse events (i.e., asthenia, worsening of PD symptoms, and
anastomotic ulcer/stomach cancer). There were no consistent
relevant changes in clinical chemistry. This study provided
evidence that GM1 use for 24 weeks was superior to placebo in
improving motor symptoms and that extended GM1 use (up to
120 weeks) resulted in a lower than expected rate of symptom
progression. Thus, GM1 may not only have symptomatic effects
on PD but may also have disease-modifying effects.

Huntington’s Disease
HD is an autosomal-dominant, progressive neurodegenerative
disorder with the highest prevalence in the Caucasian population,
with 7 per 100,000 being affected (109). The disease usually
starts at around 40 years of age and progresses inexorably
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FIGURE 3 | (A) Significant improvements in mean (±SD) Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores were noted in GM1-treated patients

(red bars) beginning after 4 weeks of treatment and were maintained during the 16-week study. Mean UPDRS motor scores for the placebo group (blue bars)

did not change significantly. Asterisks represent significant difference from baseline within the GM1 group. [Reprinted with permission from: Schneider et al. (106).

https://n.neurology.org/content/neurology/50/6/1630.full]. (B) Changes in Unified Parkinson’s Disease Rating Scale (UPDRS) Motor Subsection scores in a delayed

start trial of GM1 in PD. The mean (±SE) change from baseline (observed scores) in Early-start and Delayed-start study subjects and in the standard-of-care

Comparison group, assessed in the practically defined “off” condition. The dashed vertical line at week 24 indicates the end of study Phase I. The dashed vertical line

at week 120 indicates the end of study Phase II. The horizontal dashed line indicates baseline level. An increase of score indicates symptom worsening; a decrease in

score indicates symptom improvement. These data suggest a potential disease modifying effect of GM1 on PD. *p < 0.0001 Early-start vs. Delayed-start; p < 0.05

Early-start vs. Delayed-start. [Reprinted from Schneider et al. (107), with permission from Elsevier].

to death within 10–20 years. Patients with HD display
characteristic choreic involuntary movements and impaired
motor coordination, but also cognitive and psychiatric problems
such as anxiety and depression, that often precede motor
symptoms and are the most difficult to manage (110, 111).

The underlying cause of HD is the pathological expansion
of a polyQ stretch at the N-terminus of huntingtin (HTT)
(112), a ubiquitous scaffold protein with roles in vesicular

traffic, autophagy, and transcriptional control of neural genes,
among others (113). The HD mutation results in mutant
HTT misfolding and aggregation, which in turn cause a
plethora of cellular and network dysfunctions, leading first to
changes in brain connectivity and generalized atrophy of the
white matter, and then to neuronal death, mainly in regions
that control movement, i.e., the striatum and the cerebral
cortex (114).

Frontiers in Neurology | www.frontiersin.org 8 August 2019 | Volume 10 | Article 859

https://n.neurology.org/content/neurology/50/6/1630.full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Magistretti et al. Gangliosides for Neurodegenerative Diseases

Synthesis of gangliosides was shown to be decreased in cellular
and animal models of HD (20, 21, 115) and in fibroblasts from
HD patients (20). In HD cells, GM1 levels lower than normal
correlated with increased susceptibility to apoptosis, suggesting
a potential role in disease pathogenesis and/or progression (20).
Administration of GM1 restored ganglioside levels and normal
survival in HD cells in vitro, in part by increasing activation of the
PI3K/AKT pathway and HTT phosphorylation (20). These initial
observations prompted extensive pre-clinical in vivo studies to
assess the therapeutic potential of ganglioside in HD.

In line with rigorous NIH guidelines, GM1 was tested
in three different - and for many aspects complementary—
genetic models of HD, i.e., R6/2, Q140, and YAC128 mice
(Figure 4) (116–118). Intraventricular infusion of GM1 for
28–42 days (depending on the animal model used) resulted
in profound therapeutic and disease-modifying effects across
all models (119, 120). Motor behavior was dramatically
improved in R6/2 mice and restored to normal in YAC128
and Q140 mice, including gait abnormalities which are
often resistant to treatments (119, 120). GM1 administration
also corrected anxiety-like and depression-like behaviors, and
improved cognitive functions in both YAC128 and Q140
mice (120). Phenotypic improvement upon treatment with
GM1 correlated with profound disease-modifying effects. In
R6/2 mice, which express a toxic N-terminal fragment of
mutant HTT that causes widespread neuronal death and an
accelerate disease phenotype (117), GM1 treatment slowed down
neurodegeneration and decreased white matter atrophy and
ferritin levels (120), which in HD patients correlate with iron
accumulation and cortical and striatal atrophy (121, 122). In
Q140 and YAC128 mice, GM1 administration restored normal
expression and phosphorylation levels of dopamine- and cAMP-
regulated neuronal phosphoprotein 32 (DARPP32) (119, 120),
a key regulator of dopamine signaling and striatum output
pathways (123, 124), suggesting that GM1 improved overall
HD striatal function. Additional beneficial outcomes of GM1
administration were restoration of normal cortical levels of key
neurotransmitters, including glutamate and GABA, modulation
of dopamine and serotonin metabolism, and normal expression
of glia markers (120).

Remarkably, GM1 treatment affected mutant HTT itself.
Administration of GM1 increased HTT phosphorylation at
Ser13 and Ser16 (119), a post-translational modification that
was shown to decrease mutant HTT aggregation (125) and
toxicity (125–127). Moreover, GM1 decreased levels of soluble
and aggregated (SDS-insoluble) mutant HTT, without affecting
HTT gene transcription and wild-type HTT levels (120).
These important effects on mutant HTT, along with the
more general neuroprotective activities described for GM1
(29, 30, 128), explain the widespread therapeutic effects of
GM1 in HD models, which were comparable to (and in
some cases exceeded) those observed in pre-clinical studies
where antisense oligonucleotides were used to lower HTT
levels (129).

In view of the wide therapeutic and disease-modifying effects
of GM1 in HD models, clinical studies in this indication
are certainly encouraged. To date, there is no cure or

disease-modifying therapy for HD. Drug candidates in clinical
development are either still in early phases or have failed to show
benefits in HD patients (114, 130, 131). A Phase I/IIa clinical
trial with antisense oligonucleotides (ASO) (ClinicalTrials.gov
Identifier: NCT02519036) to lower HTT levels was recently
completed and showed dose-dependent reduction of mutant
HTT, prompting a Phase III trial to assess efficacy. While there
is obvious enthusiasm toward the possibility to reduce, at least in
part, mutant HTT levels in patients, important questions remain
to be answered concerning long-term safety and the potential
consequences of concomitantly lowering the levels of wild-type
HTT, which has important functions in the nervous system
(132). In light of these considerations, a combination therapy
with ASOs and GM1 could be desirable and highly effective, by
engaging additional pathways for mutant HTT clearance and
neuroprotection, allowing for decreased ASO dosing and for
extended therapeutic benefits.

Alzheimer’s Disease
AD is the most prevalent cause of dementia worldwide and
remains a therapeutic challenge despite rapidly expanding
research efforts (133). Given the important neuroprotective
roles of brain gangliosides, GM1 was proposed as a therapeutic
agent in AD (134). However, early clinical investigations of
GM1 in AD were inconclusive (135): a double-blind, placebo-
controlled trial of intramuscular GM1 did not find any
significant cognitive amelioration (136); an uncontrolled study
of intraventricular GM1 in five patients with AD showed marked
improvements in several clinical outcomes (137). Nevertheless,
these studies confirmed safety of GM1 administration even upon
intraventricular administration.

AD is characterized by amyloid deposits, consisting mainly
of aggregated variants of amyloid β (Aβ). The involvement of
gangliosides in AD remains controversial. Early studies showed
that GM1 binds to Aβ and seeds the conformational transition
from random coil to an ordered structure rich in β-sheets (138), a
pathological hallmark of the disease. Later experiments, however,
suggested that this happens only at very high concentrations,
while physiological levels of GM1 in an environment that mimics
the composition of the neuronal plasma membrane inhibits the
oligomerization of Aβmonomers driven by sphingomyelin (139).
It remains to be determined whether high concentrations of
GM1 with Aβ seeding can be achieved locally in specialized
cellular compartments such as endosomes and synaptic terminals
(140, 141). Studies in animal models support a non-detrimental
or even a protective role of GM1 in AD.

In an AD mouse model with deletion of GD3 synthase
(APP/PS-1/GD3S−/−), which lacked b-series gangliosides but
had >50% increase in a-series gangliosides, including GM1 and
GD1a, decreased accumulation of Aβ deposits and dramatically
improved neuropathology and behavior were observed (142).
Beneficial effects were also reported with administration of
GM1 in the APP/PSEN-1 model of AD (143). At therapeutic
concentrations, GM1 may help reducing overall Aβ load,
sequestering excess Aβ in AD patients (144), activating
autophagy to help with Aβ clearance (145), and by promoting Aβ

elimination by microglia (146).
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FIGURE 4 | Disease-modifying effects of GM1 administration in HD mouse models. (A) Intraventricular infusion of GM1for 28 days resulted in a significant decrease in

striatal neuron loss in the R6/2 mouse model of HD. LH, Left brain hemisphere. (B) Brain ferritin accumulation was attenuated in R6/2 mice treated with GM1. (C)

Mutant HTT protein levels were decreased in the striatum of Q140 mice treated with GM1 for 42 days. (D) GM1 administration also attenuated accumulation of

SDS-insoluble mHTT aggregates (as measured by a filter-trap assay). (E) GM1 administration resulted in restoration of normal motor function in YAC128 mice. Motor

performance was scored as the mice walked along a narrow beam. (F) GM1 administration decreased depression-like behavior in YAC128 mice, as measured by the

time mice spent immobile in a forced swim test. (G) In the novelty-suppressed feeding test, GM1 corrected anxiety-like behavior in YAC128 mice, as measured by the

latency to consume sweetened condensed milk in a novel environment. Box-and-whisker plots show median, maximum and minimum values. *p < 0.05; **p < 0.001;

***p < 0.0001. (A–D,F,G) are reproduced with permission from Alpaugh et al. (120); (E) is reproduced with permission from Di Pardo et al. (119).

In conclusion, although the clinical experience of GM1 in AD
is inconclusive, new insights into the neuroprotective potential of
GM1 in AD might revitalize clinical research in this field.

PERSPECTIVES

In summary, there is good evidence for faster recovery by
GM1 in SCI, but the total extent of recovery about the same
as without GM1. Therefore, there might be an adjunctive
role only and it is not the highest medical need. Stroke is
best investigated and numerous trials provided evidence of
clinical efficacy of GM1; new clinical trials may only be needed
for specific aspects. In PD, benefits are well documented,
although studies need to be repeated in larger patient groups;
other disease modifying therapies are under development.
AD is highly prevalent and medical need for new treatment
is high but the role of GM1 is still unclear and clinical
data not conclusive. In HD, the medical need is high and

preclinical results are convincing, but there are no clinical
trials yet.

An important issue to be considered in the design of
future clinical trials in neurodegenerative conditions is
the route of drug administration and the extent to which
GM1 would cross the blood-brain barrier. Although
“central” neurotrophic effects of peripherally administered
gangliosides have been shown in animal models of PD or
stroke (105, 147, 148), and in PD patients by slowing down
the loss of a marker for striatal dopaminergic terminals (149),
it remains unclear whether GM1 can cross an intact blood-
brain barrier (BBB) and reaches therapeutic concentrations
in the human brain (150–153). In favor of the use of GM1
in various neurodegenerative/trauma-related indications is
that the BBB is not entirely intact, so that more peripherally
administered GM1 crosses a leaky BBB than predicted based
on studies in models with an intact BBB. Perhaps, negative
or inconclusive results in some of the past trials with GM1
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might have been related to use of suboptimal dosages and/or
lack of significant CNS penetration if the BBB was not
compromised (154–156).

To facilitate the design of successful new clinical trials,
distributions of the ganglioside to different brain regions
upon administration through various routes should be
carefully determined in relevant non-human primate disease
models, as rodents often display different BBB permeability
to various molecules (157, 158). Recent developments in
strategies to overcome issues with drug delivery across
the BBB might also help with GM1 CNS delivery in
future studies.
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