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The development of language, social interaction and communicative skills is remarkably different in the childwith
autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient popula-
tion. However, the neural correlates underlying their disrupted language development and functioning are
still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the
language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and
compared them to the language related connectivity properties of 23 age-matched typically developing children.
A verb generation task was used to determine language components commonly active in both groups. Eight joint
language components were identified and subsequently used as seeds in a resting state analysis. Interestingly,
both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity
between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however,
a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial
regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory
control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory
control and automation function by the cerebellum may underlie the abnormal language function in children
with ASD-LI.

© 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Autism spectrum disorders (ASD) belong to the pervasive neuro-
developmental disorders. The prevalence of ASD has increased signifi-
cantly throughout recent decades, bringing the overall estimated
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prevalence to 11.3 per 1000 children (Wingate et al., 2012). ASD is char-
acterized by severe difficulties in reciprocal social interaction, stereo-
typed patterns of behavior and profound impairments in verbal and
nonverbal communication. The ability to communicate verbally is con-
sidered to be a positive prognostic indicator for children with ASD
(Groen et al., 2008; Wan et al., 2012; Williams et al., 2008). Although
pragmatic language impairment is themost prominent in ASD, detailed
linguistic studies have shown that for some children with ASD the lin-
guistic abilities can be altered in pragmatic, semantic, syntactic and pho-
nological domains extending to both receptive and expressive aspects
(Groen et al., 2008; Verhoeven et al., 2010; Williams et al., 2008). One
of those subgroups of ASD patients with comorbid all-encompassing
language impairments, referred to as ASD-LI, has extensively been
defined by Bishop (2010) and Kjelgaard and Tager-Flusberg (2001).
ved.
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In contrast to the variability for most of the observations made
in ASD research, the theory of a disorganized brain seems to be very
consistent. This theory links the core symptoms observed in ASD to a
deficient integration and synchronization of brain regions preferentially
affecting long-range connections (Courchesne et al., 2007). Findings
to date indicate that children with autism activate alternative and
possibly less flexible networks during phonetic, semantic, syntactic
and pragmatic language processing (Groen et al., 2008). Functional
and structural neuroimaging are promising methods for investigating
the neural correlates underlying the linguistic deficits in autism
(Verhoeven et al., 2010; Courchesne et al., 2007). Several functional neu-
roimaging studies reported aberrant functioning between cortical areas
on a range of language tasks (Harris et al., 2006; Just et al., 2004; Kana
et al., 2006; Knaus et al., 2010), suggesting that alterations in cortical
connectivity and the deficient communication among cortical regions
may be part of the language difficulties seen in ASD (Courchesne,
2004; Courchesne et al., 2003). Further evidence for atypical brain
connectivity of the language network in ASD has been corroborated
by structural imaging studies using diffusion tensor imaging (DTI)
(Barnea-Goraly et al., 2004; Fletcher et al., 2010; Keller et al., 2007;
Nagae et al., 2012). Those studies pointed towards abnormal DTI
parameters which may underlie the behavioral pattern observed in
autism. Although a diagnostic imaging marker is at present still lacking,
recent neuroimaging techniques seem to reveal subtle, but important,
functional and/or microstructural changes in the brains of autistic
children and adults. This highlights the importance of the investigation
of interregional connectivity necessary for the efficient completion of
higher cognitive functions such as language.

Moreover, several studies highlight a possible key role of cerebellar
abnormalities in ASD such as repeated postmortem studies of ASD
patients (Bailey et al., 1998; Kemper and Bauman, 2002; Ritvo et al.,
1986; Williams et al., 1980). The presence of a reduced number of
Purkinje cells is the most reproducible pathological observation in the
autopsied autistic brain (Kemper and Bauman, 1998, 2002; Ritvo et al.,
1986; Williams et al., 1980). In addition, magnetic resonance imaging
(MRI) studies have described volumetric cerebellar abnormalities
(Courchesne et al., 1994; Saitoh and Courchesne, 1998) and asymmetry
changes (Hodge et al., 2010). During the past decade, a direct associa-
tion between behavioral functioning in ASD and MRI findings was
demonstrated both for cerebellar structure (Akshoomoff et al., 2004;
Kates et al., 2004; Pierce and Courchesne, 2001; Webb et al., 2009)
and function (Allen et al., 2004; Mostofsky et al., 2009). The involve-
ment of the cerebellum in language, cognition and affective modulation
has been overlooked for a very long time, due to its prominent role in
motor functioning (Beaton and Marien, 2010). Currently, it is thought
that, in addition to its contribution to the regulation and coordination
of motor function, the right lateral cerebellum is actively involved in
the modulation of a broad spectrum of linguistic functions (Murdoch,
2010). Much of the credit for this development goes to Leiner and
colleagues. In 1989, they observed an expansion of the lateral portions
of the cerebellar hemispheres and dentate nuclei in humans. They hy-
pothesized that these regions project to pre-frontal and other association
cortices in humans, forming different cortico-cerebellar loops involved
in the regulation of voluntary movements and cognitive/linguistic func-
tions (Leiner et al., 1993). Other neuroanatomical studies have further
unraveled the complex reciprocal connections linking the cerebellum
with higher order cortical association areas, including areas crucially
involved in high-level cognitive and linguistic functions (Engelborghs
et al., 1998; Middleton and Strick, 1997, 2000; Schmahmann, 1996).
A number of positron emission tomography activation studies on
healthy subjects demonstrated that, in addition to Broca's area, the
contralateral cerebellar hemisphere was actively involved in the pro-
duction of semantically related verbs in response to visually presented
nouns (Papathanassiou et al., 2000; Petersen et al., 1988; Raichle et al.,
1984). First, Petersen et al. observed an increased blood flow in the
right lateral cerebellum, which projects to the left prefrontal language
areas, supporting the involvement of the cerebellum in non-motor
language (Petersen et al., 1988). Furthermore, emerging evidence for
the role of the cerebellum in linguistic functions was also provided
by functional MRI studies showing a consistent pattern of cerebellar
activation which was not due to motor verbal responses but to non-
motor cognitive processes subserving semantic word association
(Frings et al., 2006; Xiang et al., 2003). Subsequent studies used varia-
tions on the original verb generation task design and reported activa-
tion of the right lateral cerebellum during performance of a language
task in healthy subjects (Desmond and Fiez, 1998). Finally, cerebellar
lesion studies have further confirmed this link by the presence of
high level linguistic impairments in association with cerebellar pathol-
ogy, including problems in verbal fluency, word retrieval, syntax,
reading, writing and metalinguistic abilities (Gasparini et al., 1999;
Marien et al., 2001; Riva, 1998; Schmahmann and Sherman, 1998;
Silveri et al., 1994).

Motivated by a possible link between functional connectivity (FC)
and language performance in ASD, the present study investigated
the FC pattern of the language network, including the cerebellum. To
our knowledge, the functional connections with the cerebellum were
never subject of previous research. A subgroup of ASD patients with ap-
parent structural language impairment was compared to the FC pattern
of a group of age-matched typically developing (TD) children. As no
specific cooperation is required and the results are not dependent on
task performance, rfMRI is particularly useful for investigating pediatric
or non-cooperative patient samples. The resting human brain shows
low frequency (~b0.1 Hz) fluctuations in the blood-oxygenation-level
dependent (BOLD) signals that are not random, but represent neuronal
activity organized into structured spatiotemporal profiles that reflect
the functional architecture of the brain (Deco and Corbetta, 2011).
Resting state studies examine the level of co-activation between the
functional time series of anatomically separated brain regions during
rest, believed to reflect functional communication between them
(Biswal et al., 1995; Damoiseaux et al., 2006; Greicius et al., 2003).

By applying advanced neuroimaging techniques, the current study
aims to find a neurobiological substrate underlying the language
difficulties seen in a subgroup of children with ASD. For this study, we
applied a two-stage approach. First, we selected regions of interest
(ROIs) in the language network by determining commonly activated
areas using a conventional fMRI block-design with a verb generation
task. Second, these ROIs were used as seed regions to evaluate the
presence of altered functional connectivity in the language network
during the resting state. Group differences in functional connectivity
were evaluated and functional connectivity indices were correlated
with PIQ, language performance and autism severity measures. We
hypothesized that abnormal language function in ASD is related to a
neural functional connectivity deficit of the cortical language network;
particularly we hypothesized that the cortico-cerebellar connectivity
might play a crucial role.

2. Materials and methods

2.1. Participants

Nineteen individuals with ASD-LI (mean age 14.0 ± 1.5 y; 15males,
4 females) and 23 TD adolescents (mean age 14.3 ± 1.3 y; 16 males,
7 females) matched for age and PIQ were included. The majority of
these individuals also participated in a previous DTI study assessingmi-
crostructural alterations in ASD-LI (Verhoeven et al., 2012). All partici-
pants were right-handed, native Dutch speakers with normal hearing
with a performance or full scale IQ above 80, confirmed by an abbre-
viated version of the Dutch Wechsler Intelligence Scale for Children,
Third Edition (WISC-III-NL) (Kort and Schittekatte, 2005) at the time
of study intake (Table 1). ASD participants were selected from a
clinical sample, diagnosed based on DSM-IV-TR criteria by a multi-
disciplinary team including a pediatric neurologist/psychiatrist.



Table 1
Subject characteristics per group.

TD ASD-LI p value

Age 14.3 (1.3) 14.0 (1.5) 0.460
Verbal IQ 112.5 (13.6) 89.3 (18.7) b0.001
Performance IQ 105.8 (8.2) 100.3 (13.2) 0.098
Social Responsiveness Scale 17.3 (14.4) 93.5 (33.9) b0.001
Social Communication Questionnaire 3.5 (3.8) 20.7 (8.0) b0.001
Sentence Formulation 36.3 (2.2) 31.4(4.8) 0.001
Sentence Assembly 12.4 (0.8) 10.4 (2.2) 0.002
Word Definition 39.0 (6.3) 26.6 (7.3) b0.001
Text Comprehension 14.0 (1.0) 11.3 (3.9) 0.012
Semantic Relations 18.6 (1.3) 14.3 (4.4) b0.001
Word Classes Receptive 17.7 (1.8) 13.0 (3.1) b0.001
Word Classes Expressive 15.5 (2.8) 10.1 (4.0) b0.001

Overview of the participant characteristics in the patient group (ASD-LI n= 19) and their
age-matched TD group (CO-ASD n= 23). Mean and standard deviation are presented for
each parameter. p values are provided for between group comparisons.
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The Social Communication Questionnaire (SCQ) (Rutter and Couteur,
2003) and Social Responsiveness Scale (SRS) (Constantino and Davis,
2003) were additionally administered to ensure the current presence
of substantial ASD symptoms.

Inclusion criteria for the ASD-LI groupwere: 1) a diagnosis of autistic
disorder or pervasive developmental disorder— not otherwise specified
(PDD-NOS) according to DSM-IV-TR criteria (APA, 2000), 2) SCQ score
≥15 and 3) SRS score ≥60. ASD participants with a significant history
of language delay and/or impairment, defined by the absence of
two-word combinations at the age of three, need for intensive speech
therapy during pre-school years and the presence of language prob-
lems at the time of diagnostic assessment, were specifically selected,
aiming for an ASD-LI subgroup. The identification of the ASD patients
as ASD-LI patients was confirmed by extensive language testing using
different subtests of the Dutch version of the Clinical Evaluation
of Language Fundamentals (CELF-4NL) (Kort et al., 2008). To assess
language performance of all language domains (e.g. semantics, phonol-
ogy, morphology, syntax, pragmatics) in an expressive and receptive
way, the following subtests of the CELF-4NL were used: Concepts
and following directions (CFD), Sentence Formulation (SF), Sentence
Assembly (SA), Word Definitions (WD), Word Classes Expressive
(WC-E), Word Classes Receptive (WC-R), Text Comprehension (TC),
Semantic Relations (SR) and Word Associations (WA). Two individuals
with ASD were receiving methylphenidate therapy and one was on
risperidone at the time of the acquisition. Participants were excluded
if therewas a chronicmedical illness,metabolic disorder or an abnormal
neurological examination, if ASD-LI was associated with a genetic
syndrome or if conventional MRI was found to be abnormal.

None of the healthy volunteers reported a history of neurological
or psychiatric conditions, nor a current medical, developmental, or
psychiatric diagnosis. They did not report any (history of) language
problems, which were confirmed by their adequate scores on the
CELF-4NL (Table 1). The SCQ and SRS questionnaires were administered
to the TD group as well, to exclude the presence of substantial ASD
symptoms in this group.

The study was approved by the local Ethical Board of the University
Hospitals Leuven, Belgium and informed consent was obtained from
all parents/guardians according to the Declaration of Helsinki, with
additional assent from all participating children.

2.2. General image acquisition parameters

Neuroimagingwas performedusing a Philips (Best, TheNetherlands)
3T MR scanner with an 8-channel phased-array head coil. Anatomical
imaging consisted of a high resolution structural volume acquired
using a coronal three-dimensional turbo field echo T1-weighted images
sequence with the following parameters: 182 contiguous coronal slices
covering the whole brain and brainstem, slice thickness = 1.2 mm;
repetition time (TR) = 9.7 ms; echo time (TE) = 4.6 ms; matrix
size = 256 × 256; field-of-view (FOV) = 250 × 250 mm2; in-plane
pixel size = 0.98 × 0.98 mm2; and acquisition time = 6 min 38 s.

2.3. Blocked design language related fMRI

2.3.1. Task
As the choice of the fMRI task is guided by the participants' ability to

cooperate with the procedure, we chose a relatively easy-to-perform
and well-known fMRI language task, i.e. a verb generation task. This
task was originally used in positron emission tomography studies
(Benson et al., 1999; Petersen et al., 1988) and is very robust in localizing
cortical regions involved in language function. During the task a noun is
visually displayed on a screen inside the magnet bore and the partici-
pant is instructed to covertly generate one or more verbs associated
with it (e.g. ‘chair’ → ‘sit’). Stimuli were presented in a block design.
Four task epochs (30 s each, 3 s for a single noun) are alternated with
four periods of rest (30 s each). During rest epochs participants passively
view a series of unpronounceable scrambled visual symbols at the center
of the screen (e.g. #/°*-). Before the scan session, task performance was
assessed outside the scanner. Visual stimuli were presented using
Presentation software; Version 14.1 (Neurobehavioral Systems,
California, USA) projected via an LCD projector on a translucent screen
and viewedwith amirror placed above the head coil. Task performance
assessment before the scan session showed that all participating indi-
viduals were able to generate correct verbs in response to the presented
nouns. Response times outside the scanner were 1.5 s, suggesting that
they had enough time in the scanner to complete each trial within the
time given (TR = 3 s).

2.3.2. Acquisition parameters
For the task-related fMRI session a T2* weighted gradient echo-echo

planar imaging (GE-EPI) sequence was used with the following
parameters: TR = 3000 ms; TE = 33 ms; matrix size = 80 × 80;
FOV = 230 mm; flip angle 90°; slice thickness 4 mm, no gap; and
axial slices = 35. A total of 80 functional volumes per subject were
collected.

2.3.3. Data analysis
SPM8 was used for image pre-processing and statistical analysis

(Ashburner and Friston, 2011). Single subject functional image time-
series were realigned to each other using a two-pass procedure,
registering the images to the mean image after a first realignment.
Next, the structural image was coregistered with the mean of the
functional time series. Finally, the images were normalized to standard
MNI EPI space, resliced to a voxel size of 2 × 2 × 2 mm and smoothed
with a fullwidth at half-maximum(FWHM)Gaussian Smoothing kernel
of 8 mm.

After pre-processing, the following analyses were carried out.
First, for each subject a general linear model was used to regress the
time-course of verb generation versus rest as predictors and with the
realignment parameters as regressors of no interest. A high-pass filter
with a cutoff of 128 s was used to remove slow signal drifts. Voxel-
wise T-maps were constructed for each subject. Second, the contrast
maps were carried to a second level analysis to test for significant
group effects using a two level, one-way ANOVA (Analysis of Variance).
Third, a conjunction analysis was performed starting from the single-
group fMRI statistical activation maps in order to select those voxels
active in both subject groups during the execution of the language
task. The conjunction maps were thresholded at p = 0.001 uncor-
rected and 10 voxel cluster size. At each peak of activation a seed was
selected and the volume of the seed was extended to a maximum of
approximately 200 voxels, which corresponds to a sphere of 11 mm.
The selected seeds are assumed to encompass the language network
(see below).
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2.4. Seed definitions for the resting state functional connectivity analysis

2.4.1. Functional connectivity analysis of the language network
The conjunction map of the brain responses during the active

language task revealed the following eight activation peaks which
were used as seeds for the functional connectivity analysis of the lan-
guage network: 1–2) The left and right inferior frontal gyrus (IFG-L,
IFG-R) including parts of Brodmann areas (BA) 44, 45, and 47, constitut-
ing the ‘expressive’ language area or Broca's area; 3) the left dorsolateral
prefrontal cortex (DLPF-L) including parts of BA 46 and BA 10, implicat-
ed in semanticworkingmemory (Gabrieli et al., 1998); 4–5) the left and
right middle and superior temporal gyrus (STG-L, STG-R) including BA
21 and BA 22, constituting the receptive language region or Wernicke's
area; 6) the leftmedial frontal gyrus including themedial side of BA 6 or
supplementary motor area (SMA), crucial in the programming and
fluent execution of extended action sequences (Alario et al., 2006),
and BA 32which is the dorsal part of the anterior cingulate cortex linked
to error detection and online monitoring of performance (Carter et al.,
1998); 7) the left premotor cortex (Premotor) at BA 6 implicated in
planning of articulation and naming (Duffau et al., 2003); and 8) the
right cerebellar lobule VI, crus I (cerebellar), similar to the activations
found in a meta-analysis of neuroimaging studies investigating
the functional topography of the human cerebellum (Stoodley and
Schmahmann, 2009). MNI coordinates of the peak activation (center
of the seed), the T-value of the peak and the cluster size are given in
Table 2.

2.5. Resting state fMRI data acquisition and analysis

2.5.1. Participant instruction
All participants were instructed to relax (but not sleep), keep their

eyes closed and think of nothing in particular during the rfMRI scanning.

2.5.2. Acquisition parameters
For the non-task related resting state fMRI (rfMRI), data was

acquired using a T2* weighted GE-EPI sequence with the following
parameters: TR = 1700 ms; TE = 33 ms; matrix size = 64 × 64,
FOV = 230 mm; flip angle 90°; slice thickness = 4 mm, no gap; and
axial slices = 32. Two hundred and fifty functional volumes were
obtained in 7 min.

2.5.3. Functional connectivity analysis
Functional connectivity analysis was performed using in-house de-

veloped software (Ebisch et al., 2011). To check for potential differences
in headmovement between participants of the TD group and the ASD-LI
group, we compared both groups with respect to motion parameters,
using the root mean squared variance (rmsvariance) (Church et al.,
2009). Pre-processing of the rfMRI data was very similar to the pre-
processing of the task-related fMRI time series, comprising realignment
to the mean, followed by a coregistration to the structural image and
normalization into standard MNI EPI space. Images were resliced to a
Table 2
Seed definitions: language related areas.

Region of interest (ROI) MNI coordinates of
peak activation x y z

Cluster
size

T peak
value

IFG left −52 14−2 165 6.06
IFG right 48 14−2 132 3.93
MTG left −52 −44 2 113 3.88
MTG right 54−34−6 108 3.80
DLPF left −36 50 14 144 4.63
Premotor cortex left −44 2 54 127 4.08
SMA −4 16 48 210 6.24
Cerebellar cortex right 36−62−32 132 5.36

Characteristics of the seeds defining the language network are presented with MNI
coordinates of the peak activations, T-value of the peak and cluster size.
3 × 3× 3mmvoxel size and smoothedwith a FWHMGaussian Smooth-
ing kernel of 8mm. Further pre-processing included 1) band-pass filter-
ing between 0.009 and 0.08 Hz; 2) regression of the white matter and
cerebrospinal fluid signals based on theMNI white matter and the ven-
tricular segmentation mask and 3) regression of the 3D motion param-
eters. To avoid the introduction of false negative correlations, the global
signal was not regressed out (Weissenbacher et al., 2009). For each ROI,
a representative BOLD time-course was obtained by averaging the sig-
nal of all the voxels within the ROI.

To assess functional connectivity, we first calculated the Pearson
correlation coefficient between the mean signal intensity time courses of
each ROI pair. A Fisher's r-to-z transformationwas applied to each corre-
lation map, to obtain an approximately normal distribution of the func-
tional connectivity values and accordingly apply parametric statistics.
Next, a random-effect analysis was performed independently for each
of the two groups of participants in order to reveal coherent functional
connectivity patterns between ROIs that were consistent across partic-
ipants. Statistical significance was assessed using a statistical threshold
p b 0.001 corrected by the False Discovery Rate (FDR). Using the results
from the random-effect analysis, an independent-sample t-test was
used to calculate direct contrasts between ASD-LI patients and TD
with respect to all the different ROIs. Here, a statistical threshold of
p b 0.05 FDR corrected was applied.

Secondly, a whole brain connectivity analysis was performed. Here,
the Pearson correlation coefficient between the signal intensity time
courses of each ROI and the time courses of all the residual brain voxels
(p b 0.001 FDR corrected) was calculated. Again independent-samples
t-tests were used to calculate direct contrasts between ASD-LI patients
and TD, according to a random-effect analysis between the whole-
brain connectivity maps for the different seed ROIs of the TD and
ASD-LI patients. Statistical significance was assessed using a statistical
threshold p b 0.01 FDR corrected.

2.6. Functional connectivity linked to behavioral parameters

In a final step we evaluated the relation between functional connec-
tivity and behavioral measures in the ASD-LI group, focusing on PIQ,
language performance [verbal IQ (VIQ), Sentence Formulation (SF),
Sentence Assembly (SA), Word Definitions (WD), Text Comprehension
(TC), Semantic Relations (SR), Word Classes Receptive (WCR), Word
Classes Expressive (WCE)] and autism severity scores [SRS, SCQ].
Although the age range is not too large within the ASD-LI sample, age
is a crucial component while evaluating language skills. Therefore, we
calculated Pearson correlations corrected for age when testing the asso-
ciation between behavioral scores and neural connectivity. To account
for errors due to multiple comparisons we constrained the correlation
analysis to those ROI-pairs that showed significant functional connec-
tivity difference in the direct contrasts between ASD-LI patients and
TD. To reduce the number of behavioral components related to language
performance and autism severity, we performed a principal component
factor analysis with orthogonal varimax rotation on all behavioral
measures and extracted the main factors.

3. Results

3.1. Demographics

Nineteen right-handed children with ASD and 23 age-matched
right-handed TD control children were included in the study. An over-
view of the group characteristics is shown in Table 1. ASD-LI patients
and TD controls were well matched for age and performance IQ (PIQ).
VIQ was significantly lower in the ASD-LI patients compared to the TD
group (p b 0.001), reflecting the inherent language problems. These
language problems were confirmed by a significantly weaker perfor-
mance of the ASD-LI patients on all assessed language subtests of the



Fig. 1. This figure shows the statistical group activation maps of language in TD and ASD-LI patients as well as the conjunction map that displays the common activated voxels in TD and
ASD-LI patients (p b 0.001, minimal cluster size 10 voxels). The center of the seeds was defined by the peak activations of the conjunction map.
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CELF-4NL. The ASD-LI subjects scored on average −2.82 SD below the
mean of their controls across all language tests.

3.2. Control analyses

Statistical comparison of the amount of head movement between
patients and TD participants was performed. The average subject
Fig. 2.A andB show the correlationmatrices representing functional connectivity links among th
ASD-LI patients (n = 13) (B). C presents the correlation matrices showing differences in funct
language processing. The color represents the T value of connectivity between the two conne
FDR for between group comparison) are indicated with a dot at the center of the matrix squa
as lines on an axial slice. Line thickness and color vary according to the scale above. The semi-
rmsvariance (Church et al., 2009) of motion was 0.084 mm (SD 0.026)
in the TD group and 0.091 mm (SD 0.038) in the ASD-LI group and did
not significantly differ between groups (p = 0.47).

A general linear model analysis of the functional data in response to
the verb generation task showed statistically significant (p b 0.001,
minimal cluster size 10 voxels) activations of the main language-related
regions, consistent with previous descriptions of BOLD activations related
e eight identified languagenetwork regions evaluated in this study in TD (n=19) (A) and
ional connectivity between TD and patients among the eight network regions involved in
cted brain regions. Significant correlations (p b 0.001 FDR for within group and p b 0.05
re. Below each correlation matrix, significant correlations are schematically represented
transparent lines represent the connections to the cerebellum.



Fig. 3. This figure represents the voxel-wise functional connectivity maps using the right
cerebellar network region (#) and left Broca region (*) as a seed for whole brain connec-
tivity analyses. The outline of the task-based language activationmap of the TD is overlaid
to ease the comparison. TD maps present a high degree of spatial specificity, showing
correlation almost exclusively with other regions belonging to the language network
(p b 0.001, FDR corrected). In the ASD-LI maps an important reduction of connectivity
starting from the right cerebellar seed and left IFG (Broca's area) is shown (p b 0.001,
FDR corrected). Also, significant differences for a statistical threshold of p b 0.01 FDR-
corrected are presented (TD N ASD-LI).
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to verb generation (Allendorfer et al., 2012; Frings et al., 2006; Holland
et al., 2001; Wood et al., 2004), in both TD and ASD groups (Fig. 1).
A conjunction map confirms the presence of activation overlap in the
language related areas: DLPF, MTG, SMA, Premotor, IFG and Cerebellum
(Fig. 1).

3.3. Results of functional connectivity analysis

Based on the resting state data, we first evaluated the functional
connectivity in the language network by correlating themean signal in-
tensity time courses for each ROI pair combination in the eight language
network components described above. The mean functional connectiv-
ity of the language networkwas significantly reduced in ASD individuals
compared to TD subjects (p b 0.001). Fig. 2A, B shows the functional
connectivity correlation map as well as a schematic representation
of the significant connections between the language nodes, plotted on
an axial slice. In the TD group, significant connectivity (p b 0.001 FDR
corrected) was identified in 21 of 28 functional connectivity links
(Fig. 2A). In the patient group, only 9 of 28 functional connectivity
links were significant (p b 0.001 FDR corrected) (Fig. 2B). Note the
preserved connectivity between IFG left (Broca's area) and STG left
(Wernicke's area) in the ASD group and the profound loss of connec-
tivity with the right cerebellar seed in this group.

Fig. 2C contrasts the functional connectivity strength between
ASD-LI patients and TD participants and shows a significant reduction
(p b 0.05 FDR corrected) in the following connections: right cerebellum
with left DLPF, right cerebellum with left premotor, right cerebellum
with SMA, right cerebellum with left IFG, left IFG with right IFG, left
IFG with SMA, left IFG with left DLPF cortex and left DLPF cortex with
right STG. To examine the specificity of the seed-based findings, a
whole brain connectivity analysis was performed estimating the spatial
pattern of whole brain cortical connectivity seeded from a predefined
language network component. For each study group, a group-level
voxel wise functional connectivity map (FDR corrected p b 0.001)
was created starting from the right cerebellar seed and the left IFG
seed (Broca's area). These maps were statistically compared between
ASD-LI patients and TD participants (FDR corrected p b 0.01). Fig. 3
illustrates these group-level voxel wise functional connectivity maps
for all TD subjects (Fig. 3; TD) and all ASD-LI patients (Fig. 3; ASD-LI).
Here, Fig. 3 (TD) confirms that almost all areas that co-activate with
the right cerebellum are involved in language processing, even when
all brain voxels were evaluated in this analysis. Furthermore, in Fig. 3
(ASD-LI) one can appreciate that connectivity starting from the right
cerebellar seed and left IFG seed is very limited in ASD-LI patients.
Also, Fig. 3 (TD N ASD-LI) shows the areas of significantly different con-
nectivity seeding from the right cerebellar area and left IFG seed. Table 3
gives a more detailed description of the brain regions with significant
connectivity differences between both groups concerning their connec-
tivity with the seed ROI (right cerebellar seed and left IFG seed).

3.4. Links between functional connectivity and behavioral parameters

We limited our analysis to those ROI pairs for which the functional
connectivity was significantly different (p b 0.05 FDR corrected)
between ASD-LI and TD participants and we correlated them with PIQ
and the factor scores of the language and autism severity measures.

Based on the eigenvalue N1 criterion we extracted three factors ac-
counting for 71% of the total variance. Language subtestswere randomly
assigned to two factors. The first language factor had factor loading
above 0.7 on SF (0.77), DW (0.75), WC-R (0.87), and WC-E (0.85). The
second language component was determined by high loadings on TC
(0.88) and SR (0.71). The third component describes ASD severity and
was determined by high loadings on SRS (0.88) and SCQ (0.83). Factor
scores were calculated using the regression method. The results of
correlating the pair-wise functional connectivity measures with the
behavioral measures are shown in Table 4. The ASD severity index
showed a significant negative correlation with the quality of functional
connectivity between the right cerebellum and left DLPF seed (r =
−0.43; p = 0.04; two tailed probability). No individual behavioral
measures correlated with the connectivity measures.

4. Discussion

Many children with ASD show a marked delay in the initial
onset of speech and language development (Rapin and Dunn, 1997).



Table 3
Whole brain functional connectivity from right cerebellar and left Broca's area.

Seed ROI Brain region functionally connected with seed ROI MNI coordinates
(x, y, z)

T-score
TD group

T-score
ASD-LI group

T-score
TD vs ASD-LI group

Cerebellum right
Left superior frontal gyrus, SEF −2 22 48 8.15 1.36 4.01
Anterior cingulate gyrus 0 34 36 7.40 1.83 2.24
Left superior frontal gyrus, sup orb −26 58 −2 7.77 0.68 3.81
Left middle frontal gyrus, premotor, SMA −32 6 62 6.48 0.23 4.09
Left middle frontal gyrus −34 4 46 6.24 0.30 3.59
Left inferior frontal gyrus −44 12 24 7.82 0.07 5.13
Left parietal lobe −38 −62 46 6.42 0.55 2.49
Right middle frontal gyrus, premotor, SMA 34 12 56 5.87 0.99 2.23
Right precentral gyrus 48 4 46 6.68 1.28 1.52
Left thalamus −6 −8 6 6.84 1.88 3.38
Left cerebellum crus I, declive −24 −76 −26 10.79 7.30 3.00
Left cerebellum crus II, pyramis −34 −72 −44 7.71 1.92 3.66
Right cerebellum crus II, pyramis 26 −70 −42 8.69 3.27 4.12
Right cerebellum crus I, tuber 40 −70 −30 22.64 13.93 2.92
Left nodule, vermis −2 −80 −16 9.60 5.89 0.35

Broca left
Left inferior frontal gyrus −52 16 16 21.96 10.61 0.44
Left superior frontal gyrus −2 14 54 10.02 5.93 3.26
Anterior cingulate gyrus 0 26 28 7.28 3.13 2.54
Left precentral gyrus −50 4 38 6.76 2.40 3.39
Left middle temporal gyrus −60 −46 0 8.01 3.87 3.10
Left inferior parietal lobule, supramarginal gyrus −54 −46 44 7.21 4.99 2.12
Right middle frontal gyrus 42 38 30 6.19 1.33 2.97
Right inferior frontal gyrus 50 14 −6 11.48 7.13 2.61
Right inferior frontal gyrus 54 14 30 8.37 1.50 3.53
Right middle temporal gyrus 52 −40 0 8.85 2.25 2.63
Right parietal lobule, supramarginal gyrus 56 −32 50 7.78 2.28 2.20
Frontal operculum 34 26 0 8.85 3.74 2.76
Right cerebellum crus I 30 −66 −32 6.73 1.00 4.63
Left cerebellum crus I −34 −62 −32 5.53 0.89 3.18

Brain regions showing seed-based functional connectivity differences at a significance level of p b 0.01 (FDR corrected) starting from the right cerebellar seed region and starting from the
left Broca's area, respectively.
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The fraction of language problems that persist throughout life, however,
can vary from subtle isolated pragmatic problems to extensive language
deficits including syntactic, semantic and phonological domains (Rapin
and Dunn, 2003; Riches et al., 2011; Roberts et al., 2004). In a previous
study, we assessed the white matter microstructural properties in a
subgroup of ASD patients with clear co-occurring language impairment
(ASD-LI) (Verhoeven et al., 2012). We focused on the integrity of
the superior longitudinal fascicle (SLF), a major association white
matter tract involved in language processing connecting Broca's and
Wernicke's area. DTI, however, showed no microstructural differences
comparing the mean fractional anisotropy values and mean diffusivity
values of the SLF in the ASD-LI patients to those of the age-matched
TD controls. The present study investigated the functional connectivity
properties of the language network in those ASD-LI patients using
resting state fMRI. Two important findings emerge from this study.
Firstly, a global decrease of functional connectivity in the language
network of ASD-LI patients has been found. More specifically, major
decreases in connectivity were observed in the connections with the
right cerebellar region as well as in the connectivity of left Broca's area
Table 4
Correlations between FC strengths and behavioral factors.

r Language 1 Language 2 Autism severity PIQ

L-Broca–L DLPF 0.14 0.10 −0.05 0.19
L-Broca–R Broca 0.16 0.23 −0.16 0.29
L Broca–SMA 0.04 0.02 −0.26 0.03
L Broca–R cerebellum 0.43 0.34 −0.19 0.39
L DLPF–R Wernicke 0.22 0.17 0.15 0.16
L DLPF–R cerebellum 0.02 −0.01 −0.43⁎ 0.20
L Premotor–R cerebellum 0.42 0.31 −0.20 −0.37
SMA–R cerebellum 0.31 0.22 −0.14 0.01

⁎ p b .05.
with its contra-hemispheric analog, left SMA and with the left DLPF
cortex. Secondly, the loss of connectivity was related to a lower
language performance in ASD-LI patients.

Firstly, in this studywe focused on the functional connectivity prop-
erties of the language network in a group of ASD-LI children.We did not
limit our analysis to the classical Broca–Wernicke connection, but inves-
tigated the distributed brain network for semantic retrieval. Eight com-
mon language components were identified using a well-established
easy-to-perform verb-generation task,which has proven to consistently
activate the regions involved in language processing (Benson et al.,
1999; Petersen et al., 1988). Functional connectivity between those
components was assessed using task-independent fMRI. In agreement
with previous DTI findings (Verhoeven et al., 2012), the functional
connectivity analysis confirmed a preserved intra-hemispheric connec-
tivity between left IFG and left STG in the ASD-LI group. In contrast, a
profound loss of functional connectivity was found between the inter-
hemispheric Broca regions, SMA and modulatory control dorsolateral
prefrontal region. Also, a prominent decrease in functional connectivity
was found in the cortico-cerebellar circuits, especially in the indirect
links to the main Broca's and Wernicke's area. Both the ROI-based
functional connectivity maps as well as the whole-brain voxel-wise
functional connectivity maps show a disruption of the cerebello-DLPF,
cerebello-SMA, cerebello-IFG and cerebello-premotor loops; all
suggesting a dysfunction in cerebellar control and/or modulation of
language functioning. This indicates, as previously suggested by Hodge
et al. (2010), that these fronto–cortico–cerebellar interconnections
could facilitate most areas of cognitive function, including language,
executive function, working memory, attention and emotion.

The present study reveals a functional dissociation of the right cere-
bellum and the supratentorial cortical language network consisting of
the contralateral Broca's andWernicke's area, DLPF, SMA and premotor
area. These findings are in agreement with the findings of Mostofsky
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et al. that describe a relative dissociation of the cerebral and cerebellar
motor regions in ASD children (Mostofsky et al., 2009). Connections
with other modulatory areas (DLPF, SMA, premotor area) are particu-
larly affected. Those results strongly support the hypothesis that the
cortical functioning of Broca's area is not affected per se, but that
language dysfunction in ASD-LI is the result of a dysfunctional regulatory
control of this region. The significantly reduced functional connectivity
between Broca's area and DLPF, which is an important modulatory area
for language, together with an intact Broca–Wernicke connection,
further supports this hypothesis (Kovelman et al., 2012; Nardone
et al., 2011; Romanski et al., 1999).

Secondly, we correlated our behavioral measures with the connec-
tivity strengths in those language related ROI-pairs that showed signif-
icant group differences. Here, we demonstrated a significant negative
correlation between the functional quality of the DLPF — right cerebel-
lar connections and an ASD severity index. These findings suggest that
underconnectivity of the DLPF-right cerebellar circuit is directly linked
to the autistic phenotype. On the other hand, the quality of the func-
tional connections between the right cerebellum and left premotor
area, right cerebellum and left Broca area showed a trend (defined
as p b 0.10) to be associated with general language ability.

This study has limitations, some of which relate to the included
studypopulation and others to the technical aspects of fMRI. By focusing
on a specific ASD-LI subsample, we reduced the complex heterogeneity
prevalent in ASD and hence increased statistical power. The use of more
homogeneous patient samples may facilitate unraveling the brain–
behavior association in the complex neurobiology of ASD. However,
this limits the conclusions that can be drawn regarding the findings of
this study. Therefore, the complicated relationship between language
impairment and neuroconnectivity in ASD requires further investiga-
tion using a more general group of ASD patients with intact language
ability, as well as a group of patients with specific language impairment
without ASD. These additional analyses are necessary to further disen-
tangle connectivity findings specifically linked to language deficits and
to ASD features. We believe that further study will give us a clearer
view to know if the brain characteristics reported in this study are
related to ASD, to language impairments or to both. Thirdly, currently
we do not have information on the microstructural white matter
characteristics of the bundles connecting the cerebellum with the
supratentorial language network. Refinement of the neurobiological
properties of these bundles is wanted to correctly reconstruct these fi-
bers using DTI tractography and to correlate our functional connectivity
findings with anatomical connectivity measures derived from white
matter microstructure. However, partial volume effects and complex
multiple fiber orientations within a single voxel detract from the accu-
racy of DTI based fiber tracking (Vos et al., 2011; Wedeen et al., 2008).
Such challenges could be addressed by other techniques such as, prob-
abilistic fiber tracking, Qball andQ-space imaging, constrained spherical
deconvolution which hold promise for future work (Jeurissen et al.,
2011; Tournier et al., 2008). Although these recently developed tech-
niques might provide more accurate and unambiguous results, the
more complex data processing, long imaging times and strong demands
on the magnetic field gradient hardware still impede practical applica-
tion in a clinical setting, particularly with an autistic pediatric popula-
tion. Finally, it is important to acknowledge the general limitations
of rfMRI. Using a task-based fMRI in children with autism may have its
limitations because of the potential influence of subject performance
on fMRI activity. Interpretation becomes complicated when perfor-
mance on the well-known and well-validated language task is not
matched. More specifically, in such cases, the abnormal fMRI response
may be either the result or the cause of the performance deficit.
Therefore, drawing extended conclusions may not be preferable. We
did use the task-based fMRI to identify the language system in both
patients and controls. Activation peaks were used as seeds for the
rfMRI analysis. In addition, resting state connectivity is vulnerable to
noise and physiological artifacts. Although we ruled out differences
due to head motion and regressed out physiological variations of the
time series data, it might be of additional value to perform cardiac
gating and synchronize the respiratory signal. Because wewereworking
with an autistic and young population, we were not able to perform this
extra monitoring.

In conclusion, understanding the neuronal basis of ASD is crucial for
gaining further insight into several clinical aspects of this complex
neurodevelopmental disorder: differentiation between subgroups,
treatment options, correlations between behavior, underlying anatomy,
refinement of the language network and genetics. Our results contain
novel connectivity data describing a relative dissociation of cerebral
and cerebellar language regions in children with ASD-LI. The detach-
ment from the normal modulatory control and automation function
of the cerebellum might alter normal language development and
functioning in this subgroup of children with ASD. Furthermore, it
might also explain in part the great diversity of language deficits
found in ASD with respect to both the extent as well as the type of
linguistic problems seen. Larger study groups, combining structural
and functional connectivity with extensive psychometric assessments
are required to further unravel the role of the cerebellum in the severity
of the language deficits in ASD. However, we believe this study has put
some steps forward into a better understanding of the neurobiology of
language problems in ASD.
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