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Enhancing self-management in type 1 diabetes with wearables
and deep learning
Taiyu Zhu 1✉, Chukwuma Uduku2, Kezhi Li 1,3✉, Pau Herrero1, Nick Oliver 2 and Pantelis Georgiou1

People living with type 1 diabetes (T1D) require lifelong self-management to maintain glucose levels in a safe range. Failure to do
so can lead to adverse glycemic events with short and long-term complications. Continuous glucose monitoring (CGM) is widely
used in T1D self-management for real-time glucose measurements, while smartphone apps are adopted as basic electronic diaries,
data visualization tools, and simple decision support tools for insulin dosing. Applying a mixed effects logistic regression analysis to
the outcomes of a six-week longitudinal study in 12 T1D adults using CGM and a clinically validated wearable sensor wristband
(NCT ID: NCT03643692), we identified several significant associations between physiological measurements and hypo- and
hyperglycemic events measured an hour later. We proceeded to develop a new smartphone-based platform, ARISES (Adaptive,
Real-time, and Intelligent System to Enhance Self-care), with an embedded deep learning algorithm utilizing multi-modal data from
CGM, daily entries of meal and bolus insulin, and the sensor wristband to predict glucose levels and hypo- and hyperglycemia. For a
60-minute prediction horizon, the proposed algorithm achieved the average root mean square error (RMSE) of 35.28 ± 5.77 mg/dL
with the Matthews correlation coefficients for detecting hypoglycemia and hyperglycemia of 0.56 ± 0.07 and 0.70 ± 0.05,
respectively. The use of wristband data significantly reduced the RMSE by 2.25 mg/dL (p < 0.01). The well-trained model is
implemented on the ARISES app to provide real-time decision support. These results indicate that the ARISES has great potential to
mitigate the risk of severe complications and enhance self-management for people with T1D.
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INTRODUCTION
Diabetes is a group of chronic metabolic disorders that affect
almost half a billion people worldwide1, and around 10% of them
have type 1 diabetes (T1D)2. Due to an absolute deficiency of
endogenous insulin caused by pancreatic β-cell loss, the manage-
ment of T1D relies on exogenous insulin delivery and adherence
to a group of self-care behaviors, such as estimating dietary
carbohydrate and exercise, and titrating insulin therapy. The
primary objective of T1D self-management is to prevent
immediate adverse glycemic events, including hypoglycemia
and hyperglycemia, and minimize the risk of long-term diabetes
complications. Severe hypoglycemia may cause seizures, brain
damage, and intellectual impairment3, while hyperglycemia is a
risk factor for cardiovascular diseases, neuropathy, nephropathy
and retinopathy 4.
The development of continuous glucose monitoring (CGM) has

led to therapeutic benefits in diabetes management5,6. The usage
of real-time CGM systems has been demonstrated to reduce the
number of severe hypoglycemic events for T1D subjects with
multiple daily injection (MDI)7. As a wearable device that
automatically measures glucose levels with a fixed frequency
(e.g. five minutes), CGM can be combined with an insulin pump as
sensor-augmented therapy or an artificial pancreas for closed-loop
glycemic control8,9. Smartphone apps to log daily events10,11 and
calculate bolus insulin are increasingly being adopted to success-
fully reduce the daily burden associated with T1D self-
management. Other wearables, such as wristbands, have been
used in recent literature to estimate physical activity for T1D
subjects12,13. Nonetheless, the clinical efficacy of apps and sensor
wristbands remains unproven14, and there is a lack of an

integrated platform that synchronizes the real-time physiological
measurements of sensor wristbands and other wearable devices
to improve decision support14,15.
Despite CGM enabling correction of glucose concentrations

outside of the target range ([70, 180] mg/dL), self-management
can be challenging for people with T1D due to the variable
pharmacokinetics and pharmacodynamics of insulin16 and the
multiple endogenous and exogenous influences on glucose.
Combined with CGM systems, a predictive low-glucose suspend
feature, commonly found in continuous subcutaneous insulin
infusion (CSII) systems, has been shown to significantly reduce
exposure to hypoglycemia17. Accurate glucose prediction is,
therefore, a useful tool to enable proactive interventions and
timely medication administration to enhance T1D self-
management. However, the performance of physiological and
rule-based prediction models are still limited by the influence of
various external factors and high inter and intra-subject variability
on glucose dynamics18.
The widespread use of wearable devices and smartphone apps

yields a substantial amount of granular data and has boosted
machine learning-based algorithms in the literature19. Previous
work has explored several classic machine learning approaches for
the prediction of glucose levels or glycemic events20–24 using
prediction horizons between 15 and 60min. In a recent study,
non-invasive wearable measurements combined with food logs
were employed as digital biomarkers to estimate interstitial
glucose using a machine learning method25. As indicated by a
recent review26, deep learning technologies have attracted
increasing attention in the field of diabetes, such as diabetic
retinopathy27,28, neuropathy29, and glycemic control30,31.
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Empowered by various deep neural networks, deep learning has
also achieved the state of the art in glucose prediction26,32–38 and
has been applied to detect hypoglycemia using non-invasive vital
signs, e.g., electrocardiograms (ECG)39.
In this work, we introduce ARISES (Adaptive, Real-time, and

Intelligent System to Enhance Self-care), a smartphone-based
platform, to facilitate decision support and enhance self-
management for people with T1D. It is based on an innovative
mobile app with an embedded deep learning model for real-time
glucose prediction and hypo- and hyperglycaemia warnings,
which integrates data from CGM (Dexcom G6, Dexcom Inc., San
Diego, CA, US) and a clinically validated physiological data
acquisition sensor (Empatica E4 wristband, Boston, MA, US). In
particular, we develop the prediction algorithm with an architec-
ture of the recurrent neural network (RNN), leveraging a number
of recent advances in deep learning, including attention mechan-
isms40, evidential regression41, and model-agnostic meta-learning
(MAML)42. Fig. 1 shows the overall system architecture. The app
interacts with the wearable devices via Bluetooth connections and
has a new graphical user interface (Supplementary Fig. 1), which is
specifically designed according to the feedback of T1D users,
aiming to reduce cognitive burden and facilitate the visualization
of information. The app allows users to record various daily
activities, including meal composition, insulin injection, exercise,
and health conditions, view the glucose trajectories, historical
daily logs and predictions with the metaphor underlying the
bifocal display43, and receive warnings of potential adverse
glycemic events.

RESULTS
Participant characteristics
Table 1 presents the demographic and clinical characteristics of
the 12 T1D participants in the phase I prospective study. We
collected a median (IQR) of 1113.5 (1059.0–1184.0) and 832.5
(733.0–953.0) hours of glucose data and sensor wristband data,
respectively, and received a total of 5767 daily entries with a
median (IQR) of 396 (237–732.3) interactions (Supplementary
Table 1 and 2), including carbohydrates, protein, fat, insulin bolus,
exercise, alcohol, stress, and illness, where the carbohydrate
entries account for the largest portion.

Independent predictors using non-invasive physiological data
The association of the non-invasive physiological measurements
with adverse glycemic events over a 60-minute prediction horizon
by mixed effects logistic regression is shown in Fig. 2.
Hypoglycemia is negatively associated with a larger range of
inter-beat intervals (IBIs) (odds ratio (OR): 0.72, 95% confidence
interval (CI): 0.57–0.91; p < 0.01), while higher mean IBIs and mean
skin temperature increases the OR of hypoglycemia (OR: 1.23, 95%
CI: 1.17–1.30; p < 0.01; and OR: 1.18, 95% CI: 1.07–1.29; p < 0.01,
respectively). Similarly, we observe that, besides the IBIs and skin
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Fig. 1 System architecture and clinical scheme of ARISES. A T1D subject is equipped with CGM and the wristband to measure glucose levels
and vital signs, both of which communicate with the ARISES app via Bluetooth connectivity and provide input data for the deep learning
models. The wearable devices in the system are marked by *. The data collected in phase I are used to train a population model with meta-
learning, which is then fine-tuned in phase II to develop personalized models.

Table 1. Demographic characteristics and clinical characteristics of
the 12 T1D participants in the phase I clinical study.

Demographic characteristics Median (IQR)

Age (years) 40.0 (30.0–49.0)

Gender (male/female) 6/6 (50.0% male)

Insulin regimen (CSII/MDI)1 6/6 (50.0% CSII)

HbA1c (mmol/mol) 50.4 (41.5–57.5)

Glucose data length (hours) 1113.5 (1059.0–1184.0)

Sensor wristband data length (hours) 832.5 (733.0–953.0)

Clinical characteristics Mean ± SD

Time below range (<54mg/dL) (%) 0.4 ± 0.3

Time below range (<70mg/dL) (%) 2.9 ± 1.9

Time in range ([70, 180] mg/dL) (%) 63.4 ± 15.8

Time above range (>180mg/dL) (%) 33.7 ± 16.9

Low blood glucose index 0.8 ± 0.5

High blood glucose index 7.6 ± 4.2

Average daily risk range 40.4 ± 10.5

Inter-day coefficient of variation (%) 35.2 ± 4.5

Intra-day coefficient of variation (%) 30.9 ± 4.8

Mean glucose level (mg/dL) 161.2 ± 25.9

Median glucose level (mg/dL) 154.8 ± 26.8

1MDI multiple daily injection, CSII continuous subcutaneous insulin
infusion.
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temperature, variables derived from electrodermal activity (EDA)
and acceleration are also significant predictive factors for
hyperglycemia prediction. Considering all the physiological signals
are significantly associated with adverse glycemic events, we,
therefore, combined these non-invasive measurements with CGM
and daily entries to extract a total of 20 real-time features
(Supplementary Table 3), which were used in feature selection for
the deep learning-based prediction model.

Glucose level prediction
Table 2 presents the performance of the personalized ARISES
model with 15, 30, 45, 60-minute prediction horizons. The
proposed model outperformed all the considered baseline
methods in terms of root mean square error (RMSE), glucose-
specific RMSE (gRMSE), mean absolute error (MAE), mean absolute
percent error (MAPE), and the time lag. The results of the baseline
methods are presented in Supplementary Table 2. The ARISES
obtained significant improvement in RMSE, gRMSE, MAE, and
MAPE, when compared with the best performance of the baseline

methods (convolutional recurrent neural networks (CRNNs)34; p <
0.01). When only one day of data was used for fine-tuning, the
MAML approach obtained the average RMSE of 39.37 ± 7.14 for
the 60-minute prediction horizon, which is much smaller than the
RMSE obtained by a baseline method of transfer learning36 (RMSE:
43.07 ± 8.41; p < 0.05).
In addition, Fig. 3 shows the results of ablation analysis, where

we removed certain components from the model and evaluated
their impact on the prediction performance. In particular, the use
of MAML and wristband input respectively reduced the average
RMSE by 1.41 and 2.25 mg/dL (p < 0.05) for the 60-minute
prediction horizon.

Hypoglycemia and hyperglycemia prediction
Tables 3 and 4 respectively show the results of hypoglycemia and
hyperglycemia prediction using the lower and upper bounds
derived from evidential deep learning. We observe that the
proposed ARISES model achieved the accuracy of 88.58% with
the sensitivity of 70.30% and the accuracy of 87.20% with the

Fig. 2 Forest plots of mixed effects logistic regression showing the association between non-invasive physiological measurements and
adverse glycemic events. a Analysis for hypoglycemia. b Analysis for hyperglycemia. The measurements include electrodermal activity (EDA),
inter-beat intervals (IBIs), acceleration (ACC), and skin temperature (TEMP). The horizontal error bars represent 95% confidence intervals (CIs).
The regression coefficients were computed for mean values, standard deviation (SD), range, and maximum and minimum differential (diff )
values over a one-hour retrospective window. The differential values refer to difference between adjacent measurements. The significance of a
predictor is indicated as *p < 0.05, **p < 0.01.
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sensitivity of 86.62% for hypoglycemia and hyperglycemia predic-
tion over the 60-minute prediction horizon, respectively. For the
considered baseline methods (Supplementary Tables 5 and 6), we
used the predicted glucose levels, i.e., single trajectories, to detect
adverse glycemic events. Among these, the autoregressive moving
average (ARMA)44 and the physiologically-based kinetic model
(PKM)45 achieved the best baseline results for hypoglycemia and
hyperglycemia prediction, respectively, which are reported in
Tables 3 and 4 for comparison. It is worth noting that, compared
with the ARMA, the ARISES model significantly increased sensitivity
by 13.35% and reduced the mean deviation (MD) by 13.29mg/dL
for hypoglycemia prediction. Compared with the PKM for
hyperglycemia prediction, the ARISES model significantly increased
specificity and precision by 5.38% and 5.43%, respectively, while
reducing the MD by 13.80mg/dL. As shown in Fig. 4, we observe
that the use of lower bounds and wristband input data enhanced
the average Matthews correlation coefficient (MCC) scores by 0.34
(p < 0.01) for hypoglycemia prediction with the 60-minute predic-
tion horizon.

DISCUSSION
This study proposes a deep learning algorithm embedded in a
smartphone-based platform to predict glucose levels and hypo-
and hyperglycemia, with the input of CGM, daily entries, and real-
time measurements from the physiological sensor wristband.
Notably, the integration of the wristband data has improved the
results of both glucose level prediction and hypo- and hypergly-
cemia detection.

Figure 5 depicts the predicted trajectories and CGM measure-
ments of a participant over a two-day period. We present the
7-day trajectories of four selected participants in Supplementary
Fig. 2 We observe that the daily activities, including meal intake
and insulin bolus delivery, have a significant impact on the
glucose levels. The glycemic homeostasis is affected by these
external factors and internal changes in the T1D subject. Thus, the
accuracy degrades as the prediction horizon increases in Tables 2,
3 and 4.
As a safety-critical system, the reliability of predictions is

essential, especially when glucose levels are approaching the
threshold of hypoglycemia. In clinical settings, the occurrence of
hypoglycemia is more dangerous than that of hyperglycemia,
which may lead to life-threatening complications46. To this end,
we used an evidential deep learning approach41 to train the
models and map model uncertainty. Most previous studies used
mean square error as the loss function and computed a single
prediction value to indicate whether there will be risk of hypo-
and hyperglycemia20,21,26,33,35. However, hypo- and hyperglycemic
events may fail to be detected when the confidence of a
prediction is low. In the experiments, we noted that hypoglycemic
events with short duration were likely to be missed when single
trajectory values are used in detection (Fig. 5). Therefore, we use
lower and upper bounds derived to determine adverse glycemic
events and assist decision support in T1D self-management with
the ARISES app (Supplementary Fig. 1). Displaying these
informative bounds on the app is a preferable feature according
to the requirements of the phase I participants. As highlighted by
the eclipses in Fig. 5, the use of lower bounds successfully

Fig. 3 Ablation analysis on the prediction performance of glucose levels. The model achieved smaller average RMSE for the 12 T1D subjects
when using MAML and wristband input data. The improvement is most significant for the 60-minute prediction horizon. The lower and upper
hinges of boxplots show the first quarter (Q1) and the third quartile (Q3), respectively. The central lines indicate the median, while the
whiskers extend to 1.5 IQR.

Table 2. Results of glucose level prediction (Mean ± SD) evaluated on 12 clinical T1D subjects.

Prediction horizons 15 min 30 min 45 min 60 min 60 min (Baseline34)

RMSE (mg/dL) 10.15 ± 1.67 20.92 ± 3.55 28.99 ± 4.41 35.28 ± 5.77 37.18 ± 6.09**

gRMSE (mg/dL) 12.14 ± 2.06 26.07 ± 4.47 37.20 ± 5.97 46.26 ± 7.73 49.04 ± 8.50**

MAE (mg/dL) 7.21 ± 1.09 15.06 ± 2.36 21.15 ± 3.15 26.11 ± 4.36 27.77 ± 4.89**

MAPE (%) 5.07 ± 0.97 10.62 ± 2.03 14.94 ± 2.77 18.53 ± 3.78 19.23 ± 4.07**

Time lag (min) 1.39 ± 1.06 7.37 ± 5.18 14.00 ± 7.24 17.63 ± 11.39 21.57 ± 11.41

Root mean square error (RMSE), glucose-specific RMSE (gRMSE), mean absolute error (MAE), mean absolute percent error (MAPE), and the time lag are
employed as metrics. The best performance of the baseline methods (CRNN34) is presented.
The significance is indicated as **p < 0.01.
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identified two hypoglycemic events that are likely to be missed
using single prediction values.
The proposed ARISES model has achieved superior performance

and outperformed six considered baseline methods (Supplemen-
tary Tables 2, 5 and 6). It is observed that the machine learning
and deep learning baseline models obtained better RMSE
performance for glucose level prediction, but smaller MCC scores
for hypo- and hyperglycemia prediction, when compared with the
physiological and statistical baseline methods. One possible
explanation is that the machine learning and deep learning
baseline models were optimized in a supervised learning process
with the targets of actual CGM measurements, but the prediction
of adverse glycemic events was not considered. In this regard, the
introduced lower and upper bounds in the ARISES model enabled
a good balance between glucose level prediction and hypo- and
hyperglycemia detection.

We compared the MCC scores using these bounds against the
results of single curve prediction in Fig. 4, where the classification
based on the bounds exhibited better performance. We noticed
that hypoglycemia is a minority class in the dataset, which
accounts for 2.91 ± 1.93% of total glucose measurements (Table 1).
In general, the classifier is less sensitive to detecting a minority
class. Nevertheless, in this work, the sensitivity can be further
enhanced by reducing the thresholds of lower bounds at a cost of
potential alarm fatigue. This trade-off can be decided by clinicians
on an individual case basis.
We used the MAML approach to train population models and

personalized models, which outperformed the transfer learning
approach with a small amount of available data. This fast adaption
feature of the MAML approach can mitigate the cold-start issues
when we provide the software to new T1D users with limited
personal data. It is a common scenario in actual clinical settings

Table 4. Results of hyperglycemia prediction (Mean ± SD) evaluated on 12 clinical T1D subjects.

Prediction horizons 15 min 30 min 45 min 60 min 60 min (Baseline45)

Accuracy (%) 96.75 ± 0.99 93.22 ± 1.24 90.06 ± 1.05 87.20 ± 1.95 85.54 ± 3.13

Sensitivity (%) 95.32 ± 2.16 91.25 ± 4.75 88.48 ± 7.87 86.62 ± 7.81 91.58 ± 3.52

Specificity (%) 96.95 ± 1.14 92.62 ± 2.89 87.61 ± 5.10 82.59 ± 7.96 77.21 ± 4.74*

Precision (%) 94.62 ± 2.37 90.51 ± 3.20 87.43 ± 4.76 85.11 ± 5.83 79.68 ± 12.49*

MCC score 0.92 ± 0.02 0.84 ± 0.02 0.77 ± 0.03 0.70 ± 0.05 0.68 ± 0.06

MD (mg/dL) 13.00 ± 2.30 28.69 ± 5.16 40.05 ± 8.04 47.62 ± 10.33 61.42 ± 16.26**

MCC Matthews correlation coefficient. MD mean deviation from true glucose levels for missed predicted hyperglycemic events. The best performance of the
baseline methods (PKM45) is presented.
The significance is indicated as *p < 0.05, **p < 0.01.

Fig. 4 Ablation analysis on the prediction of adverse glycemic events, evaluated on the 12 T1D subjects. a MCC scores for hypoglycemia
prediction. b MCC scores for hyperglycemia prediction. The lower bounds significantly improved hypoglycemia prediction, while the use of
wristband data enhanced MCC scores for all the prediction horizons. The lower and upper hinges of boxplots show the Q1 and the Q3,
respectively. The central lines indicate the median, while the whiskers extend to 1.5 IQR.

Table 3. Results of hypoglycemia prediction (Mean ± SD) evaluated on 12 clinical T1D subject.

Prediction horizons 15 min 30 min 45 min 60 min 60 min (Baseline44)

Accuracy (%) 98.03 ± 1.03 94.96 ± 2.92 91.97 ± 4.22 88.58 ± 6.53 91.89 ± 5.23

Sensitivity (%) 84.15 ± 4.20 76.08 ± 5.88 72.07 ± 4.45 70.30 ± 12.84 56.95 ± 19.24**

Specificity (%) 98.72 ± 0.75 96.42 ± 2.48 93.99 ± 4.08 90.09 ± 8.21 94.87 ± 3.67

Precision (%) 78.91 ± 4.31 65.65 ± 5.31 58.23 ± 10.21 56.20 ± 10.43 55.28 ± 17.38

MCC score 0.80 ± 0.04 0.68 ± 0.05 0.60 ± 0.06 0.56 ± 0.07 0.51 ± 0.12

MD (mg/dL) 10.28 ± 3.80 19.18 ± 7.00 26.30 ± 9.28 28.63 ± 11.00 41.92 ± 14.60**

MCC Matthews correlation coefficient, MD mean deviation from true glucose levels for missed predicted hypoglycemic events. The best performance of the
baseline methods (ARMA44) is presented.
The significance is indicated as **p < 0.01.
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since data collection is expensive and time-consuming. Moreover,
the MAML also improved the final average RMSE results in the
ablation analysis (Fig. 3).
The chronological partition of training, validation and testing

set in this work was carefully selected. Random cross-validation
can be found in previous work, which trained and validated
machine learning models on the same dataset24,39. However,
during the experiments, we noticed that there were temporal
dependencies between the data points from nearby locations,
especially in adjacent ones. The features were derived with the
small resolution of CGM, so the difference between consecutive
time steps is sometimes negligible. In this regard, the use of
random or stratified splitting methods would introduce under-
lying temporal correlation into training and testing sets, which
could result in serious overestimation of model accuracy47.
The ARISES app (Supplementary Fig. 1) is based on the iOS

operating system and integrates with Dexcom CGM (G5 or G6)
and Empatica E4 wristband. The source code of the app is not
publicly available. We analyzed the performance of the app on an
iPhone XS Max over 50 runs. The whole app has an initial storage
size of 39.9 MB and consumed an average of 50.5 MB and 39.3 MB
memory while running in foreground and background, respec-
tively. The trained deep learning models were converted to
mobile compatible format via TensorFlow Lite, which has a
storage size of 1.2 MB. When the app received a new CGM
measurement, it took 5.7 ms and 1.8 MB memory to compute real-
time glucose prediction through model inference on the edge,
which require one-hour historical data of CGM measurements,
sensor wristband measurements, and daily entries (if any). Model
fine-tuning is performed by Amazon S3 buckets and SageMaker in
the Amazon Web Services (AWS) cloud (Fig. 1) and requires at
least one-week historical data.
Our results suggest that measurements obtained from wearable

physiological wristband data sensors could be integrated along-
side CGM data to improve the prediction of glucose levels and
adverse glycemic events. Interestingly, the IBI measured by the
sensor wristband is the only predictor that has significant effect on

both hypoglycemia and hyperglycemia prediction (Fig. 2), which
was also selected as the input of the deep learning model with the
best validation performance. It indicates IBI or other heart rate
variability (HRV) could be useful biomarkers in T1D decision
support, which accords with the findings of previous studies48–50.
However, the sensors in Empatica E4 are quite sensitive to motion
artifacts, so it is difficult to obtain accurate measurements with too
many hand movements51. In future work, an algorithm to detect
exercise and reduce measurement error for the wristband will be
developed. Meanwhile, data extracted from manually recorded
daily events have the potential to be used for the analysis of the
drivers and patterns of the changes in plasma or interstitial
glucose concentrations. During feature pre-processing, we calcu-
lated insulin on board and the carbohydrate on board with fixed
duration (i.e., time of decay) and constant absorption rate of
carbohydrates, respectively. Nonlinear insulin on board and
carbohydrate on board based on physiological models with
personalized parameters., such as the variable appearance rate of
glucose and plasma insulin estimation52, will be considered in the
future, aiming to improve quality of input features and further
enhance prediction accuracy. We collected the dietary data from
the T1D participants under free-living conditions, so the dietary
reporting is variable in quality but reflects the real-world use of
carbohydrate counting and self-management. Although we
manually checked the carbohydrate amount for each meal record
to confirmed that there are no unrealistic values, such as negative
or larger than 500 g, it would be interesting to investigate how the
accuracy of dietary reporting affects prediction performance,
which could be done by analyzing the results obtained from
datasets collected in inpatient trials with standardized meals. It is
noted that the percentages of time spent below range (Table 1)
are small, and there is a modest carbohydrate intake of 160
(102–220) grams per day (Supplementary Table 2). Although these
values are not unusual for people living with T1D, especially for
those who use CGM to visualize post-prandial glucose peaks, it is a
potential limitation in the development of the algorithm to predict
hypoglycemic events. Future work will include validating the

Fig. 5 Two-day period CGM and prediction trajectories of a T1D adult over a 30-minute prediction horizon. The ellipses indicate the
hypoglycemic events that are missed by prediction values but detected by the lower bounds.
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proposed system on a T1D cohort with greater variance in
carbohydrate intake and glycemic variability. Currently, there are
no publicly available T1D datasets containing all the data fields
that we need in the ARISES model, but it is important to further
test the generalization of the proposed algorithm using an
independent validation dataset with a larger cohort size. In this
case, we also recommend to analyze covariates in the T1D
population, such as age and insulin delivery mode. In addition,
there is a lack of system testing of the whole ARISES in real-world
settings. It might be challenging to simultaneously administer the
multiple wearable devices, smartphone app, and cloud services
with reliable wireless connectivity. A deep learning model with
only CGM input and daily entries needs to be implemented as a
sub-optimal solution when the wristband data is not available,
e.g., when the wristband is taken off for battery charging.

METHODS
Phase I prospective study
This was a six-week longitudinal prospective study (NCT ID: NCT03643692)
using a clinically validated real-time physiological data acquisition sensor
(Empatica E4) and CGM (Dexcom G6) to identify correlations between
measurable physiological parameters and glycemia. Under free-living
conditions, twelve adults (18 years old and older) with a median age (IQR)
of 40 years (30–50) were equally stratified by gender and mode of insulin
delivery (MDI and CSII). Participants were recruited from the Imperial College
Healthcare NHS trust T1D outpatient clinics, registered research databases,
and interested participants who contact us. Throughout the duration of the
study, participants wore the Empatica E4 and Dexcom G6 devices with alarm
thresholds of glucose levels set at <4mmol/L and >11mmol/L. Participants
were asked to log daily events such as, insulin doses in units, meal
macronutrient composition in grams, alcohol intake in units, stress, illness,
and exercise in the mySugr smartphone app, which are used to develop the
input features of glucose prediction models. The study was conducted
under a trial protocol (18/LO/1096) approved by London - Fulham Research
Ethics Committee, and each participant was informed and signed consent.

Analysis of sensor wristband data
Different from most of the previous studies using CGM and daily manual
logs20–24,26, an objective of this work is to better understand the effect of
the non-invasive physiological data on the prediction of glycemic events.
Using the package lme4 in R, a mixed effects logistic regression was
applied calculate the logarithm of ORs to interpret the relationship
between physiological measurements and the binary outcome of adverse
glycemic events (i.e., hypoglycemia (<70mg/dL) or hyperglycemia (>
180mg/dL) in Fig. 253. The measured physiological variables applied to the
regression analysis include the mean values, standard deviation, range,
and maximum and minimum differential values of EDA, IBI, acceleration,
and skin temperature signals.

Multi-modal feature engineering
As a clinically validated, commercially available, and non-invasive device,
the Empatica E4 wristband uses a photoplethysmography sensor to
measure blood volume pulse (BVP), two electrodes to obtain EDA, a pair of
accelerometers and a gyroscope to detect the level of physical activity, and
a peripheral temperature sensor to monitor skin temperature. In previous
clinical studies, BVP and ECG signals are the primary sources to identify IBIs
for HRV analysis54. In particular, we applied a band-pass Butterworth filter
to remove noise in BVP signals and employed a slope sum function55 to
detect the local maxima. Then we used a sliding window with decision
rules55 to search peaks, as the systoles in cardiac cycles. The IBIs were
computed by the difference of consecutive peaks.
We extracted short-term HRV features with a 5-minute window to

indicate early HRV changes48 in temporal and frequency domains56. To
obtain skin conductance levels (SCLs) and skin conductance responses
(SCRs), we continuously decomposed EDA data into tonic and phasic
components via a high-pass filter57. There are two open-source software
tools involved in EDA and BVP processing58,59. Together with physical
activity levels and skin temperature, the outcomes of these features in the
past five minutes were averaged and aligned with the time steps of CGM
readings. HRV is an established indicator that reflects cardiac autonomic

activities, while EDA is related to the status of the nervous system. These
biomarkers have been used in previous studies to predict and detect
hypoglycemia for T1D48,50,60.
The daily entries were converted to insulin on board and carbohydrate

on board via physiological models. We assumed insulin bolus lasts for four
hours in the human body with different slopes, as a common setting used
by many commercialized pumps24,61. Similarly, the carbohydrate was
assumed to be absorbed at a rate of 2.5 g/min 15min after the time of
meal ingestion24.

Feature pre-processing and selection
We obtained a total of 20 features from the pre-processed multi-modal
data (Supplementary Table 3). There are some inevitable errors in the
sensor data, e.g., compression artifacts, signal loss, and sensor calibration.
To this end, we performed feature selection in the following steps. First, we
analyzed the missing fraction of CGM and wristband measurements to
identify the quality of features. The median value of the missing
percentages of CGM and wristband data are 3.02% and 23.05%,
respectively, which are reasonable since the wristband needs to be
charged for around 4–5 hours every day. We linearly interpolated the gaps
that occurred in the middle of input sequences and extrapolated the gaps
at the tail to guarantee that future information is not involved in current
predictions. Then, min-max normalization was adopted to scale the
selected features to [0, 1]. Finally, we performed collinearity analysis,
considering correlated bias is prone to degrade the stability and
interpretability of machine learning models62. We noted that features
derived from the same measurement exhibited strong a correlation with
each other. Hence, each time we retained one feature in IBI or EDA feature
group (Supplementary Table 3) and selected the best combination
according to the error scores that summed up RMSE results for the four
prediction horizons in model validation.

Model training, validation, and testing
Considering the personalized models are provided to the T1D subjects at a
midterm clinical visit (Fig. 1), we divided the data of each subject into a
training set and a testing set that include the first 50% data and the
remaining 50% data, respectively. The last 20% data of each training set
were used as a hold-out personalized validation set. To simulate a clinical
scheme with two phases (Fig. 1), we employed a population set containing
the training sets of 11 subjects and a personalized set with the data of the
remaining subject, assuming it is a new subject (e.g., a participant in phase
II). Data of each subject in the population set were used to optimize the
population model. The population models were validated with leave-one-
subject-out cross validation. Then we used the training data of the
personalized set to fine-tune the population model to develop a
personalized model, and used the testing data of the personalized set
for evaluation. The Hyperband algorithm63 of Keras tuner was used to
select the best hyperparameters of the deep learning models (Supple-
mentary Table 7). Besides, we used early stopping to mitigate overfitting
and improve generalization.

Developing population and personalized models
With the population and personalized data sets, we applied a well-
established MAML framework to develop population models42. Each
subject is regarded as a learning task in the inner loop of MAML. Then, the
learned parameters for each task guided the population model to achieve
meta-optimization via stochastic gradient descent in the outer loop. The
first-order approximation was performed to accelerate the training
process64. In the personalization phase, we fine-tuned the meta-model
with a small learning rate65.
We performed an experiment to compare the MAML population model

with the pre-trained model by classic transfer learning36. For each subject,
the data collected on the fist day of the trial, i.e., the first 288 data samples
(5-minute CGM resolution) in a personalized training set, were used to fine-
tune both models. Then, we evaluated the performance of the fine-tuned
models using the testing data of the personalized set.

Attention-based RNN architecture
The recurrent structure is well-suited to learn short and long-term
temporal dependencies in sequence processing. Thus, RNN-based models
are emerging in the literature of diabetes management and have been
shown to exhibit superior performance in glucose prediction26,33,36,66.
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However, the vanilla RNNs face the challenge of gradient exploding and
vanishing, which largely limits the learning performance on long-term
temporal dependencies. Fortunately, long short-term memory (LSTM)67

and gated recurrent units (GRUs)68 were proposed to solve this problem.
The GRU uses reset and update gate functions with less parameters than
LSTM (Fig. 6)36.
After pre-processing the features, we developed an attention-based RNN

with GRUs for glucose prediction and hypo- and hyperglycemia detection.
The multivariate input data for the RNN model were selected according to
validation performance, which include CGM, carbohydrate amount, insulin
bolus, time index, IBIs, and SCRs.
At each time step t with a CGM measurement Gt, the target of the

algorithm is to predict a glucose level at t+ w, where w is calculated as
the prediction horizon divided by the CGM resolution. Here, we define
the normalization function as m and the prediction targets as
yt=m(Gt+w− Gt), using glucose change to minimize the bias35,36. The
model input consists of a multidimensional vector Xt ¼ ½xt ; xt�1; ¼ ;
xtþ1�l �T 2 Rl ´ c , where l is the length of the input sequence; c is the
feature dimension.
Leveraging the previous and future information in a sequence, we

modeled a bidirectional structure to simultaneously compute two states in
forward direction ( h

!
t) and backward direction ( h

 
t) and merged them into

an output vector hb
t ¼ ht

 
; ht
!h i

32,69. Fig. 6 correspondingly illustrates the
unfolded block diagrams. The output of the bidirectional RNN is sent to
another GRU-based RNN layer to obtain high-level hidden representations,
of which the cell output is denoted as ht.
We employed the attention mechanism, as one of the latest advances

in deep learning, to extract temporal dependencies regardless of
distance. Introducing attention in deep neural networks has shown
success in a variety of tasks, especially in natural language processing70.
Instead of only using the output of the final state, the attention
mechanism assigns attention weights to the hidden state ht on each time
step and then combines them to compute the final representation vector.
In particular, we modified the general form of Luong’s multiplicative
attention40 and implemented the many-to-one attention weight at at
time step t as:

at ¼ expðh>T WahtÞP
t0 expðh>T Waht0 Þ

(1)

where h>T is the final cell state. The attention output vector v is computed
with hidden weights Wv and tanh activation, which is defined as follows

v ¼ tanhðWv ½
X
t

atht;hT �Þ; (2)

Lower and upper bounds of predictions
To determine the reliability and confidence of the predictions, model
uncertainty is estimated by a higher-order evidential distribution41.
Assuming the predictions are drawn from a Gaussian distribution with
unknown mean μ and variance σ2, i.e., μ � Nðγ; σ2=λÞ, σ2 ~ Γ−1(α, β), we
fed the attention output vector into an evidential layer to map the normal-
inverse-gamma distribution as (μ, σ2) ~ N− Γ−1(γ, λ, α, β). In this case, the
final model output comprises four parameters (γt, λt, αt, βt), which are
computed by a dense layer with four neurons, where ŷt ¼ γt . The output of
the evidential layer (evid) and epistemic uncertainty (i.e., model
uncertainty) ut are defined as

ŷt ; λt; αt ; βt ¼ evidðvÞ; ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βt
λtðαt � 1Þ

s
: (3)

Thus, the corresponding glucose prediction Ĝtþw , lower bound Bltþw , and
upper bound Butþw can be denoted as

Ĝtþw ¼ Gt þm�1ðŷtÞ;
Bltþw ¼ Ĝtþw � klm�1ðutÞ;
Butþw ¼ Ĝtþw þ kum�1ðutÞ;

(4)

where m−1 is the inverse function of the normalization; kl and ku are the
thresholds of the uncertainty. Clinicians are allowed to adjust the
thresholds to obtain specific clinical efficacy. For instance, increasing the
value of k can enhance the sensitivity of the classifier to avoid missing the
warnings of adverse glycemic events. During the model training, the
negative log-likelihood loss function to optimize the parameters with
maximum likelihood estimation can be solved by a Student-t distribution
according to Bayesian probability theory41.

Performance evaluation
The glucose predictions were estimated by the mean values of the
evidential distribution of the model output. The regression performance

t-2th 

σ σ tanh

t*th hht

RNN

GRU GRU GRU GRU

GRU GRU GRU GRU...

...

tth tth t-1th t-1th t-2th t-3th t-3th 

..

GRU unit

Attention n  Evidential
output

 

Bi-RNN
  

Predictions with 
upper and lower boundspp
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Level

Time

Bidirectional RNN (unrolled in time)

Input 
 

Now

1-

+

xx t

hthtt
~

w PHs

Hypoglycemia

Hyperglycemia
Pre-processed 

multivariate features

Fig. 6 Architecture of the deep learning model. A stack of bidirectional RNN (Bi-RNN) and RNN with GRU cells is used to extract hidden
representations from the input multivariate time series. With the weighted state vector by attention layer, the evidential output computes
glucose predictions along with model uncertainty.
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was evaluated by the RMSE, gRMSE, MAE, MAPE, and the time lag. In
particular, gRMSE penalizes the prediction errors that could lead to harmful
events, such as overestimation in hypoglycemia and underestimation in
hyperglycemia, to demonstrate clinical impact 71, which is defined as
follows:

gRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
t¼1

PðGtþw;ĜtþwÞðGtþw � ĜtþwÞ2
s

;

PðGtþw ; ĜtþwÞ
� ¼ 1þ αLσGtþw�TL ;βL ðGtþwÞσĜtþw�Gtþw ;γL

ðĜtþw ;GtþwÞ
þ αHσGtþw�TH ;βH ðGtþwÞσĜtþw�Gtþw ;γH

ðĜtþw ;GtþwÞ;
(5)

where PðGtþw;ĜtþwÞ � 1, and values of αL, βL, γL, TL, αH, βH, γH, TH equal to
1.5, 30, 10, 85, 1, 100, 20, 155, respectively. The time lag is derived by the
cross-correlation of predicted glucose levels and actual CGM measure-
ments34,35, which denotes the time-shift between two time series. A
smaller time lag indicates a faster response of the prediction method to
the changes in CGM trends and thus better prediction performance.
The thresholds of lower and upper bounds were selected in model

validation according to MCC scores, which are respectively used to detect
hypoglycemia and hyperglycemia. In particular, a hypoglycemic or
hyperglycemic event is defined as three consecutive CGM measurements
(i.e., at least 15 min) below 70mg/dL or above 180mg/dL, as recom-
mended by previous studies72. A true positive means that an adverse
glycemic event is correctly identified, while a false negative indicates a
missed prediction. We evaluated the classification performance of hypo-
and hyperglycemia prediction using a set of standard metrics, including
accuracy, sensitivity, specificity, precision, and MCC22–24. Good MCC scores
can be obtained only if the classifier performs well in all confusion matrix
categories, which is a more reliable and informative score than accuracy
and the F1 score in binary classification73. In addition, we introduced MD
scores calculated by the MAE for the glucose sequences in missed
predicted hypoglycemic or hyperglycemic events.
We used the results for the 60-minute prediction horizon as the primary

outcomes, since predicting glucose over such a long prediction horizon is
challenging. The converted TensorFlow Lite models were evaluated to
simulate on-device inference in the ARISES app. To compare the proposed
model with existing approaches, we employed a set of classic machine
learning and deep learning baseline methods (Supplementary Tables 2, 5
and 6), including support vector regression (SVR) with the RBF kernel21,
artificial neural networks (ANNs) with three fully-connected layers20,
bidirectional long short-term memory (Bi-LSTM)32, and CRNNs34. Besides,
we also used a statistical model, the ARMA with exogenous inputs44, and a
physiological model, the PKM, which is based on the composite minimal
model of plasma glucose and insulin kinetics with personalized insulin
sensitivity, time to maximum glucose rate of appearance, and time to
maximum insulin absorption45,74. The PKM has been validated on both the
in silico data from the UVA/Padova T1D simulator75 and real data from
clinical trials76 in terms of glucose prediction45. The input features of
baseline models were identical to those of the proposed model, except
that the PKM only used the information of CGM measurements,
carbohydrate intake and insulin bolus. To calculate the statistical
significance with respect to the considered baseline results, we performed
paired t tests after evaluating the normality by Shapiro–Wilk tests.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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