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Abstract
Background: To date, the reconstruction of gene regulatory networks from gene expression data
has primarily relied on the correlation between the expression of transcription regulators and that
of target genes.

Results: We developed a network reconstruction method based on quantities that are closely
related to the biophysical properties of TF-TF interaction, TF-DNA binding and transcriptional
activation and repression. The Network-Identifier method utilized a thermodynamic model for
gene regulation to infer regulatory relationships from multiple time course gene expression
datasets. Applied to five datasets of differentiating embryonic stem cells, Network-Identifier
identified a gene regulatory network among 87 transcription regulator genes. This network
suggests that Oct4, Sox2 and Klf4 indirectly repress lineage specific differentiation genes by
activating transcriptional repressors of Ctbp2, Rest and Mtf2.

Background
Transcriptional control is a key regulatory mechanism for
cells to direct their destinies. A large number of transcrip-
tion factors (TFs) could simultaneously bind to a regula-
tory sequence. With the constellation of TFs bound, the
expression level of a target gene is usually determined by
the combinatorial control of a number of TFs. The interac-
tions among regulatory proteins and their regulatory
sequences collectively form a regulatory network. A major
challenge in the study of gene regulation is to identify the
interaction relationships within a regulatory network.

A number of analytical methods have been proposed to
reconstruct gene regulatory networks from gene expres-
sion and protein-DNA binding data. Association rule
mining [1], Boolean Network [2], temporal models [3,4],
ARACNE [5] and Bayesian networks [6-8] are among the
most popular routes. For example, the Module Networks
approach built a probabilistic model for the gene expres-
sion correlations between regulators and target genes and
iteratively searched for the most compatible partition of
targets genes to their respective regulators [9]. The correla-
tion of gene expression patterns of regulators and the tar-
get genes is often the essential piece of information
utilized by the current procedures. It is widely recognized

from IEEE 7th International Conference on Bioinformatics and Bioengineering at Harvard Medical School
Boston, MA, USA. 14–17 October 2007

Published: 16 September 2008

BMC Genomics 2008, 9(Suppl 2):S19 doi:10.1186/1471-2164-9-S2-S19

<supplement> <title> <p>IEEE 7<sup>th </sup>International Conference on Bioinformatics and Bioengineering at Harvard Medical School</p> </title> <editor>Mary Qu Yang, Jack Y Yang, Hamid R Arabnia and Youping Deng</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2164-9-S2-info.pdf</url> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2164/9/S2/S19

© 2008 Chen and Zhong; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2164/9/S2/S19
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2008, 9(Suppl 2):S19 http://www.biomedcentral.com/1471-2164/9/S2/S19
that the statistical correlation of the regulators and the tar-
gets is often an inaccurate representation of the regulator-
target relationship [10,11]. This is because the quantity of
a TF's mRNA does not necessarily correlate to its active
protein concentration, and even the active protein con-
centration does not necessarily correlate to its transcrip-
tional efficiency on every target gene. Using correlation, or
some transformed version of correlation measure as the
basis for reconstructing regulatory networks is an approx-
imation made for convenience of modeling and analysis,
with a sacrifice of making spurious findings (see examples
in [9]). A network reconstruction method based on quan-
tities that closely represent the biophysical properties of
TF-DNA binding, transcription activation and repression
is still missing.

Thermodynamic models of TF-DNA and TF-RNA
polymerase (RNAP) interactions were pioneered by Buch-
ler et al. [12] in prokaryotes. These models brought the
stochastic interactions of TFs, regulatory sequences and
RNAP into a statistical mechanics framework, and ena-
bled a quantitative model for the transcription rate.
Recently, Segal et al. [13] and our team [14] attempted to
employ thermodynamic models in the study of eukaryotic
gene regulation. Under a fix time point in drosophila
development, Segal et al. demonstrated a thermodynamic
model could predict the spatial expression patterns of seg-
mentation genes in Drosophila [11]. In differentiating
embryonic stem cells (ESCs), we showed that the interac-
tion types of the TFs could be predicted from the temporal
response of the target gene [14]. These successes made it
tempting to experiment novel methods for reconstructing
regulatory networks based on more biophysically appro-
priate metrics than correlation.

We describe here a computational framework, called Net-
work-Identifier, for inferring regulatory networks from
time course gene expression data. The gene expression val-
ues at each time point are supposed to be at an equilib-
rium state, which is a general setting for most of time
course data available. Applying to the analysis of five data-
sets of differentiation of murine ESCs, we identified a

transcription network composed of 34 TF-TF interactions
and 185 TF-target relationships. Data from RNAi [15] and
chromatin immunoprecipitation coupled with microar-
ray (ChIP-chip) data [16,17] independently validated a
statistically highly significant fraction of these regulatory
relationships.

Results
Gene regulatory network in mouse ESCs
ESCs are derived from early mammalian embryos. ESCs
possess two important characteristics that distinguish
their importance in scientific and medical fields. First,
they are capable of self-renewal through apparently
unlimited, undifferentiated proliferation in cultured cell
lines [18-20]; second, they have remarkable pluripotency
potentials [21] to give rise to many different cell types in
the body, which may contribute to the study of body
development and regenerative medicine.

We employed five time series microarray datasets of
mouse ESCs in this study, including a dataset for retinoid
acid induced differentiation [15] and four datasets for
spontaneous differentiation of four ESC lines (three lines
from [22]; one unpublished, S.Z. and W.H.W, manuscript
in preparation). We restricted the analysis to the regula-
tory relationships among 747 genes that are annotated by
Gene Ontology term Transcription Regulator Activity, and
are present on the Affymetrix U72av2 array. We desig-
nated six known TFs, Oct4, Sox2, Nanog, Klf4, Esrrb and
Tcl1 as regulators of this system, due to their previously
characterized role in ESCs. Interaction-Identifier [14] was
applied to each time course microarray dataset. A list of
common TF Interaction forms across datasets was then
generated by Evidence merger. Genes were then grouped
by their predicted regulators as well as their roles of regu-
lation, i.e. activator and repressor. Twelve gene groups
were formed. ChIP-chip data are available for Oct4, Sox2,
Nanog and Klf4. Five out of eight regulatory-target rela-
tionships involving these four regulators were signifi-
cantly enriched with ChIP-chip verified relationships
(Table 1). RNA knock-out experiments were performed
for all the six regulators [15,17]. Nine out of twelve target

Table 1: Validation by ChIP-chip data

Role TF # of target genes # of genes verified in ChIP Chi-Square P-value

Activation Nanog 39 12 10.46986 0.00121
Sox2 121 21 12.437 0.00042
Oct4 67 8 2.436113 0.11857
Klf4 49 18 13.90787 0.00019

Repression Nanog 47 11 4.190152 0.04066
Sox2 132 19 5.778738 0.01622
Oct4 103 11 2.121288 0.145264
Klf4 62 14 1.335151 0.247891
Page 2 of 7
(page number not for citation purposes)



BMC Genomics 2008, 9(Suppl 2):S19 http://www.biomedcentral.com/1471-2164/9/S2/S19
gene groups involving these six regulators were enriched
with RNAi verified regulatory relationships (Table 2).
Note that when using RNAi data for testing the predicted
regulatory role of a TF, we only counted the target genes
whose changes of expression were in the consistent direc-
tion to the predicted role of its TF, but not counting all tar-
gets genes with any changes to both directions. These tests
demonstrated that the predicted regulatory relationships
were in general consistent to those derived from inde-
pendent experiments.

Finally, Network-Identifier identified the regulatory rela-
tionships that were predicted by expression data and had
consistent evidence from either RNAi or ChIP-chip data.
We used Cytoscape [23] to display the final reported reg-
ulatory relationships (Figure 1).

87 regulators and target genes were reported in the ESC
transcription network (Figure 1). In particular, the mutual
regulation of Klf2 and Klf4 were recently shown to be an
important module for maintaining the undifferentiated
state of ESCs [17]. Utf1 and Myc are known to be key ESC
transcription factors. The result that they are under the
control of Oct4 and Klf4 underscores the importance of
Klf4 in promoting self-renewal. Mtf2 has only recently
been implied to inhibit differentiation by recruiting the
polycomb group of transcription repressors [24]. This
analysis indicates that Klf4 and Sox2 could synergistically
activate Mtf2 in ESCs. The regulatory relationships for a
number of genes involved in lineage specific differentia-
tion were also identified. These include Gata6, Gata3,
Sox17 and FoxA2. Inhibiting these lineage specific differ-
entiation genes in ESCs is critical to maintain an undiffer-
entiated state. Among the predicted network, there were a
number of transcription repressors, including Ctpb2 and
Rest. Ctpb2 was predicted to be activated by Oct4. Rest
was predicted to be jointly regulated by Oct4 and Sox2.
These results suggest that Oct4 and Sox2 could indirectly

inhibit differentiation genes by activating transcription
repressors such as Ctpb2 and Rest.

Discussion
Network-Identifier is proposed to reconstruct transcrip-
tion network based on biophysical models of transcrip-
tion regulation. Multiple temporal gene expression
datasets are used as inputs to Network-Identifier. ChIP-
chip and RNAi data can also be utilized by Network-Iden-
tifier as independent validation datasets to further
improve the predicted networks. Moreover, Network-
Identifier has great flexibility in incorporating independ-
ent datasets other than ChIP-chip or RNAi data to rein-
force the strength of validation.

It should be recognized that there are still a number of
simplifications made in the modeling of the biophysical
properties of gene regulation. A number of molecular
events are not included in the model. These include: 1)
the interactions of more than two TFs, 2) long range inter-
action of enhancer binding TFs and RNAP, 3) DNA meth-
ylation and 4) chromatin structure and state. Future work
that takes these molecular features and events into
account will potentially improve the accuracy of network
reconstruction.

Methods
Revisiting the Interaction-Identifier method
We previously described the Interaction-Identifier
method for identification of the candidate form of inter-
action among TFs and RNAP on the promoter of a target
gene [14]. Interaction-Identifier models how a given TF
interaction form affects the transcript concentrations of a
target gene at steady states. Searching the space of TF inter-
action forms, it identifies the form that minimizes the dif-
ference between model-derived target concentrations and
the observed expression data. The method is composed of
three components: (1) a thermodynamic model for trans-

Table 2: Validation by RNA interference data

Role TF # of target genes # of genes verified in RNAi Chi-Square P-value

Activation Nanog 39 9 9.710604 0.00183
Sox2 121 20 16.22083 5.6E-05
Oct4 67 13 25.26604 5E-07
Esrrb 95 6 2.966206 0.085021
Tcl1 21 2 4.650429 0.03105
Klf4 49 16 25.21262 5.1E-07

Repression Nanog 47 2 0.018713 0.891192
Sox2 132 12 9.035917 0.00265
Oct4 103 7 3.909397 0.04802
Esrrb 73 6 5.407721 0.02005
Tcl1 27 2 4.663594 0.03081
Klf4 62 10 0.537394 0.463515
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lating a TF interaction form and TF concentrations into
the equilibrium probability of RNAP binding to the pro-
moter of the target gene; (2) a kinetic model for derivation
of steady state transcript concentrations of the target gene;
and (3) matching gene expression data to model-derived
steady state concentrations and identifying the underlin-
ing TF interaction form (Figure 2).

Thermodynamic models for RNAP binding
Thermodynamic models are based on the assumption
that the level of gene expression is proportional to the
equilibrium probability that RNAP binds to the promoter
of interest; and these probabilities can be computed in a
statistical mechanics framework. The Interaction-Identi-

fier method follows recent efforts [12,25,26] to translate
TF concentrations into the equilibrium probability of
RNAP binding using thermodynamic models.

Considering the transcription of the target gene is regu-
lated by only one TF on its promoter, a promoter can then
take one of the four possible states: (1) both the TF and
the RNAP bind with the promoter; (2) Only the RNAP
binds to the promoter; (3) Only the TF binds to the pro-
moter; (4) neither the TF nor the RNAP binds with the
promoter, where let the weight of promoter with no RNAP
or TF be 1 and the weights qp, qTF and wTFpqpqTF denote the
ratios between the probabilities of states 2, 3, 4, respec-

The gene regulatory network identified by Network-IdentifierFigure 1
The gene regulatory network identified by Network-Identifier. Yellow nodes represent regulators. Green nodes rep-
resent genes promoting self-renewal and pluripotency. Red nodes represent genes used for differentiation. Sharp and blunt 
arrows represent activation and repression effects, respectively. Red and green lines represent activation and repression activ-
ities with RNAi evidence, respectively. Blue and black lines denote regulatory relationships with ChIP-chip evidence.
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tively. The probability of the promoter of the target gene
being bound with an RNAP is:

A TF can serve as either an activator or a repressor, or sim-
ply it does not interact with the RNAP, represented by dif-
ferent wTFp. These effects can be simulated by choosing
appropriate wTFp. If w is set to 1, it represents that RNAP
and the TF independently bind to the promoter. If w is set
to 10~100, it represents that the TF helps to recruit RNAP
to the promoter. The larger w is the higher the synergism
is. If w is set to 0 or close to 0, it represents that the TF
blocks the RNAP binding, and thus the TF is a repressor.

Under the statistical mechanics framework, similar
expressions can be derived for genes with two regulatory
TFs capable of binding to a promoter together with RNAP.
By adjusting the interaction factors w, we can obtain an
analytical form for the probability of RNAP binding under
different forms of interactions among RNAP and the two
TFs.

A kinetic model for equilibrium transcript concentration
The equilibrium concentration of the transcripts of a tar-
get gene is governed by its synthesis and degradation rates.
Empirical data show that mRNA synthesis rate is propor-
tional to the equilibrium probability of RNAP binding to
promoters [12,25,26]. Interaction-Identifier further
assumes that mRNA degradation rate is proportional to its
concentration, which seems to be a reasonable assump-
tion based on recent studies [27,28]. However the authors
can always relax this assumption into more general forms
at the model evaluation and model improvement stages.
Empirical data on eukaryotic mRNA synthesis and degra-
dation are available to estimate these rates [27-29]. Ordi-
nary equations are used to implement this kinetic model.

Inferring gene regulatory network
A computational framework for inferring gene regulatory
networks (Network-Identifier) was developed based on
thermodynamic modeling of transcription regulation.
Network-Identifier requires more than one time course
microarray experiments for the same biological process as
input datasets. The method has three components: 1)
Interaction-Identifier [14], 2) Evidence merger and 3) Ver-
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Flowchart of the Interaction-Identifier methodFigure 2
Flowchart of the Interaction-Identifier method.
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ification component (Figure 3). For each time course data-
set, Network-Identifier enumerates all possible regulatory
forms on each target gene. These interaction forms
include the activation or repression by a single TF, and the
five interaction forms between any two TFs. Network-
Identifier evaluates the fitness of each interaction form
with Interaction-Identifier and ranks them according to
their fitness. The 10 most likely interaction forms of TFs
on a target gene are recorded as the Top-10 List. A built-in
cutoff (default = 0.8) for Interaction-Identifier eliminates
any interaction that is not well supported by data. It is
therefore possible for a target gene to have less than 10
candidate TF interaction forms in its Top-10 List. The Top-
10 Lists from every dataset are passed onto Evidence
merger, which searches for the most frequently appeared
interaction form in the Top-10 Lists of a target gene. This
most frequently identified interaction form is passed onto

the verification component. The verification component
groups target genes according to their TF interaction
forms. For each regulator-target relationship, for example
TF-1 represses gene a, the target genes grouped into this
relationship are subject to statistical tests. Chi-square tests
are used to test whether the identified TF-target relation-
ships are enriched with regulatory relationships identified
from independent experimental data, such as ChIP-chip
and RNAi data. Finally, if the tests are all insignificant,
Network-Identifier will fail to report any regulatory net-
work. If some of these tests are significant, suggesting
there is consistency between the expression-derived regu-
latory relationships and those found by independent
methods, Network-Identifier will invoke a compromise
algorithm to report the regulatory relationships that are
confirmed by at least two independent data sources. Cur-
rently the implemented compromise algorithm is to

Flowchart of inferring a gene regulatory networkFigure 3
Flowchart of inferring a gene regulatory network. Input microarray datasets are shown in yellow and independent 
experimental data for validation are marked in orange. Intermediate results are shown in blue. Computational components are 
shown in green.
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require the regulatory relationship identified by expres-
sion data to be reproduced in at least one of the two other
experiments: ChIP-chip and RNAi. It is easy to substitute
this algorithm with more sophisticated algorithms [30] or
when some of the independent data are not available.
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