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Abstract: Air pollution and control of gaseous air pollutants are global concerns. Exposure to these
gaseous contaminants causes several health risks, especially exposure to irritant gases such as am-
monia (NH3). Furthermore, the application of smart polymeric nanocomposites in environmental
applications has gained significant interest in recent years. In this study, aniline was polymerized
without and with clay using a carbon dioxide (CO2)-assisted polymerization technique, yielding
PANI and PANC samples, respectively. The samples were characterized using different methods,
such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission elec-
tron microscopy (TEM), scanning electron microscope (SEM), and Brunner Emmett Teller (BET). The
synthesized nanomaterials were utilized as gas adsorbents using a fixed bed reactor to investigate
their adsorption behavior towards NH3. Three inlet NH3 concentrations were tested (35–150 ppm).
The results revealed that the adsorption capacities of PANC nanocomposites were higher than nanos-
tructured PANI for the studied concentrations. The adsorption capacities were 61.34 mgNH3/gm for
PANC and 73.63 mgNH3/gm for PANI at the same inlet concentration (35 ppm). The highest NH3

adsorption capacity recorded was 582.4 mg NH3/gm, for PANC. This study showed the impressive
adsorption behavior of the prepared PANI and PANC nanomaterials towards NH3 gas. Consequently,
nanostructured PANI and PANC can be promising adsorbents that can be utilized to control different
gaseous air pollutants.

Keywords: polyaniline nanocomposites; ammonia adsorption; air pollution control

1. Introduction

Adsorption is an efficient method that is commonly used either in air and/or water
purification. The adsorption process has many advantages and has been widely exper-
imented with because of high efficiency and its low cost, and the process is considered
environment-friendly. Recently, ammonia (NH3) gas has gained a crucial role in industrial
applications. However, it has serious health effects on exposed workers. The threshold
limit value is 25 ppm, and the short-term exposure limit is 35 ppm for 10 min. The acute
exposure to concentrations above these limits may cause irritation to the skin, nose, and
eyes. Exposure to these concentrations for a longer time can cause severe illness. Therefore,
adsorbents that have high NH3 selectivity and capacity are urgently desired [1]. Moreover,
high concentrations of NH3 emissions may cause environmental pollution, affect the air
quality, and intensify the aerosol particles and fog formation over industrial cities [2].

Polyaniline (PANI) and its nanocomposites have been extensively used as an adsorbent
for removing contaminants, especially from aqueous solutions. In previous studies, the ad-
sorption capacity of different PANI adsorbents was assessed towards water and wastewater
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contaminants. It was noticed that the adsorption capacities varied depending on several
factors, mainly the preparation techniques. Recently, PANI and its nanocomposites have
been synthesized through several methods and then used as adsorbents for the adsorption
of aqueous contaminants, such as Mordant Black 11 dye, methyl red dye, sodium salicylate
and metronidazole, and drug contaminants [3–6]. Additionally, its electrical and optical
properties largely contributed to its utilization in gas sensing applications. PANI and its
nanocomposites have been used for nitrogen dioxide (NO2), ammonia (NH3), water vapor
(H2O), toluene (C6H5-CH3), methane (CH4), and carbon dioxide (CO2) gas sensing [7].
Alternatively, there were insufficient studies investigating the use of PANI or its composites
as a gas adsorbent and/or an air filter. In 2019, polyaniline nanotubes have been prepared
and experimented to remove NH3 and C6H5-CH3 from the air using a fixed bed reactor. Al-
though the adsorption parameters were limited, the nanotubular structure of PANI showed
high removal efficiency for the studied gases [8]. Charlotte Park et al. (2020) analyzed
the physical filtration efficiency of PANI hybrid composite filter with graphite oxide for
particulate matter 2.5. the hybrid filter composite showed a remarkable filtration PM2.5
efficiency, reaching 99.7 ± 0.08% [9]. Activated carbon/PANI nanocomposite has been used
for CO2 gas removal using volumetric apparatus. The results indicated that the adsorption
capacity of activated carbon was remarkably enhanced after adding PANI, because of the
stronger affinity between CO2 and amine groups [10,11]. PANI-clay (PANC) composite and
nanocomposite have been synthesized and characterized comprehensively in the literature.
Clays are natural substances with interesting properties due to their geometries, surface
area, and electrostatic charge. Incorporation of guest electroactive polymers like PANI
into host clay particles has attracted great attention because of their better processability,
alongside their colloidal stability, mechanical strength, and novel electrical and catalytic
properties [12]. The main PANC applications were corrosion protection of steel surfaces
and the removal of different aqueous contaminants [13–16]. Various clay-based composites
have been prepared and utilized for gas adsorption. Copper-complexed clay/poly-acrylic
acid composite was tested as NH3 gas adsorbent, and the highest adsorption capacity for
NH3 was achieved by adding 75% of the clay, with capacities of 65.8 mg/g [17]. According
to the best of our knowledge, the PANC nanocomposite was not used for NH3 adsorption.
Various adsorbents were used in the adsorption of NH3. In 2021, the adsorption of NH3,
starring with initial concentration 1700 ppm, by commercial zeolites to below 0.1 ppm have
been examined, and the reported adsorption capacity reached 9.27 wt.% [18]. Huyen Thanh
Vo et al. synthesized mesoporous alumina with controlled pore structure and used it in
NH3 adsorption. It was reported that the adsorption capacity reached 193.57 mg/g [19].
Earlier, activated carbon has been utilized to treat NH3 emissions, and the adsorption
capacity varied from 0.6 to 1.8 mg NH3/g carbon at 40 ◦C for inlet concentration ranged
(600–2400 ppm) [20]. Ordered mesoporous carbon was synthesized by a self-assembly
technique and utilized in NH3 adsorption. The equilibrium capacities at 298 K and 800
Torr was found to be 6.39 mmol/g [21]. A new type of zirconium-based metal organic
framework has been prepared, characterized, and utilized in NH3 adsorption. It was stated
that the adsorption capacity was recorded at 178.3 mg/g [22].

In this study, PANI and PANC were synthesized using the CO2-assisted polymeriza-
tion technique. The prepared adsorbents were characterized using several characterization
techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD),
transmission electron microscopy (TEM), scanning electron microscope (SEM), and Brunner
Emmett Teller (BET). The synthesized nanostructured materials were tested as adsorbents
to remove both NH3 from simulated polluted air streams.

2. Materials and Methods
2.1. PANI and PANC Synthesis

Aniline, potassium persulphate (KPS), hydrochloric acid (HCl), methanol, clay, and
toluene solution were purchased from Sigma-Aldrich (Darmstadt, Germany) and used
as received. NH3 and CO2 gas cylinders with a purity of 99% were used as feed gas and
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mixed with nitrogen (N2) for preparing the required NH3 gas concentrations and used
in CO2-assisted polymerization, respectively. Gas cylinders were purchased from Air
supply (Alexandria, Egypt). All chemicals were of analytical grade, and solutions were
prepared with freshly distilled water. Gas sensor (Drager Polytrone 5000) was purchased
from Drägerwerk AG & Co. KGaA (Lübeck, Germany).

Nanostructured PANI was synthesized using the same technique described in our
previous works [8,23,24]. The reactants were mixed inside a high-pressure vessel that is
connected to a CO2 pump. CO2 was pressurized into the reactor at 10 MPa operating
pressures and 40◦C temperature for 3 h. After termination of the polymerization process,
the produced precipitate was washed several times using hydrochloric acid, methanol, and
distilled water, and then filtered by centrifugation and vacuum dried at 60 ◦C for 24 h.
PANI was characterized using the following characterization techniques: Fourier transform
infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy
(TEM), scanning electron microscope (SEM), and Brunner Emmett Teller (BET).

For the PANC nanocomposite, the yield of the PANI samples was calculated, and 10%
of its weight was equal to the added clay weight. The calculated clay weight was added
before the polymerization, and the nanocomposite samples were then prepared using the
same aforementioned PANI polymerization technique.

2.2. Gas Adsorption Experimental Setup

Standard NH3 concentration was prepared by mixing it with nitrogen (N2) gas. Both
gases were passed through a mass flow controller and mixed homogeneously using several
Y-connection consecutively, and then passed through long tubing to be measured using
an NH3 (Drager Polytrone 5000) sensor [25]. Different NH3/N2 concentrations were
prepared in the range of 35–150 ppm, as seen in Figure 1. The adsorption experiments were
performed by entering the feed gas mixtures into a PANI and PANC nanocomposite fixed
bed reactor. The bed consists of a glass tube with a dimension of 8 cm in length and 0.7 cm
internal diameter. The gas adsorption experiments were attained until C/C0 = 0.90. The
adsorption capacity of PANI and PANC nanocomposite towards NH3 was assessed by
integrating the area under the breakthrough curve, as seen in Figure 1 [26].
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3. Results
3.1. PANI/PANC Synthesis and Characterization
3.1.1. Morphology Characterization

Harmonized nanorod PANI structure was prepared by using the SCCO2-assisted
polymerization technique, as shown in Figure 2A,B. The use of SCCO2 facilitates the
dissolving of reaction solutes together, owing to its high solvation power, besides producing
a high-purity product. The high solvation power of SCCO2 enhances rapid polymerization
reaction and prevents agglomeration of the produced nanostructure [27]. The mechanism
of PANI nanorod formation, using different synthesis methods, was discussed by Haibing
et al. [28]. They claimed that, at the initial stage, nanoparticles of PANI were created; these
particles were then attached by a hydrogen bond, forming a rod-like structure. In our
case, the presence of SCCO2 improved the linear growth of the nanostructure, resulting in
fabricating uniform PANI-NR with an average diameter of approximately 80 nm.
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Figure 2. SEM and TEM images for PANI (A,B) and PANC (C,D), respectively.

The morphology of the synthesized PANC is shown in Figure 2C,D. Basically, in previ-
ous work, there are three types of composites that can be produced from the combination
of PANI and clay. The immiscible structure of this nanocomposite includes the dispersion
of clay aggregates within the polyaniline nanostructures. The polymer does not come in the
clay layers; this type was obtained by different synthesis techniques. The second composite
type is the intercalated structure that includes the formation of polyaniline chains between
the clay layers. The change in the clay layers’ geometry, due to intercalation, involves
modification in interlayer spacing, variation in the layers stacking mode, and diminishing
of electrostatic forces between clay layers, resulting in great enhancement of the mechanical
and thermal properties. The full separation of clay gallery due to polyaniline chains is
called exfoliated structure, which is the third type of PANC nanocomposite [4,6]. As noted
in the figures, separation of clay layers and formation of PANI inside the clay gallery were
achieved. The characteristics of SCCO2, such as its ability to swell and zero surface tension,
selectivity facilitated the penetration of monomers inside the clay layers, to be oxidized
by KPS to form PANI chains on and within clay layers [5]. The TEM image (Figure 2D)
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clarifies that the PANI formed within the clay layer using SCCO2 (10 MPa) was a nanorod
structure, with an average diameter about 60 nm.

3.1.2. Adsorbents BET Surface Area

Table 1 shows the BET surface area, total pore volume, and average pore size of
prepared nanostructured PANI and PANC nanocomposite. It was noticed that both the
average pore size and surface area of PANI were greater than the synthesized PANC
nanocomposites. The decline in surface area may be referred to, as clay may block the
active sites of PANI.

Table 1. Surface area of the PANI and PANC.

Nanomaterials Surface Area
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Size
(nm)

PANI 24.61 0.1336 35

PANC 22.9 0.1753 30

In previous studies, PANI-specific surface area was varied, depending on the synthesis
technique or even the treatment of polyaniline after preparation. It was reported that the
BET surface area ranged from 20.2 m2/g to 80 m2/g [6]. Hailing Xu et al. stated that the
total pore volume and the average pore size varied dramatically after PANI treatment with
chloroform, alongside the mean pore diameter increasing from 2.8 to 8.3 nm and the pore
volume improving from 0.2 to 0.6 cm3/g, respectively [4]. In the current study, however,
the pore volume is about 1.336 cm3/g, but the samples have a greater average pore size
(35 nm), which may enhance the gas adsorption characteristics of the synthesized PANIs.
Regarding the PANI nanocomposite surface area, it differed considerably when changing
the material used in the nanocomposite’s preparation. Despite the high surface area of the
PANI nanocomposites prepared in previous work, the total pore volume is nearly the same
as the synthesized PANC. It was noticed that the prepared PANC had a higher average
pore diameter (30 nm) than the previously prepared PANI nanocomposites [5].

3.1.3. FTIR and XRD

The FTIR spectra of the synthesized PANI and PANC nanocomposite are shown
in Figure 3. The samples were run in the wavelength range of 4000–400 cm−1. The
characteristic PANI absorption bands occur at 1576.6, 1479.3, 1305.7, 1136.4, 3462.1, and
808.3 cm−1. These peaks are due to the Quinoid, Benzenoid rings, C–N stretching, C–H
in-plane bending vibrations, N-H stretching vibrations, and C–H out-of-plane bending
vibrations [29]. The synthesized PANI peaks are 1647.1, 1475.4, 1299, 1124.4, 3465.8, and
804.2, respectively. It was observed that there are minor differences between FTIR spectra
of the prepared PANI and the PANI nanorods synthesized by Haibing et al., but they
were close, with minimal difference due to the changes in preparation technique. There
is noticeable shifting in 1589.2 cm−1 band down to 1576.6 cm−1, assigned to high doping
level of the prepared PANI [26]. While comparing the PANI and PANC characteristic peaks,
it was noticed that the FTIR spectrum of PANC showed no specific change or shift in the
PANI peaks in the spectrum, except for decreasing the intensity of the N-H stretching
vibrations, indicating that the incorporation of clay does not affect the chemical structure
of PANI. This agreed with the research paper published by Yanrong Zhu et al. in 2022.
However, Claudia María reported that adding clay altered the polyaniline’s FTIR spectrum
of the resulted composite.
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Figure 3. FTIR spectra for the PANI and PANC nanocomposite.

Figure 4 shows the XRD patterns of the synthesized PANI and PANC. The XRD
spectra of the PANI and PANC show two characteristic peaks at 2θ: 20.1◦, 26.2◦, and 20.9◦,
25.22◦ respectively. Moreover, there is a weak signal around 6.44◦, which is related to pure
clay interlayer spacing. It was observed that the peak intensity in the case of PANI was
more intense than the PANC peaks, indicating that the prepared PANI sample is highly
doped when compared to the PANC [3]. These results are consistent with the observations
reported by Yoshimoto et al. and Ragupathy et al. [30,31].
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The FTIR and XRD of PANI and PANC were obtained after adsorption, but the patterns
were not significantly different from that obtained before adsorption, indicating that the
chemical and the crystalline structure of PANI or PANC are not significantly changed by
NH3 adsorption of the dye. This may be because the adsorption of ammonia on polyaniline
was mainly physical adsorption, and the exposure of adsorbents samples to air after
adsorption may release the adsorbed NH3 molecules [31].
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3.2. Gas Adsorption Experiments

PANI and PANC were tested in relation to NH3 adsorption. For NH3 adsorption
experiments, different inlet NH3 concentrations were prepared at a range of 35–150 ppm
and then entered the fixed bed filter at a flow rate of 1 L/min and a fixed bed weight
of 0.5 g adsorbent. Figure 5 illustrates the breakthrough curve for NH3 adsorption at
different inlet concentrations. The removal of NH3 was at its maximum, at the start of
the adsorption experiment. Then, after the breakthrough phenomena occurred, the outlet
adsorbate concentration was elevated gradually with the increased time, until Co/Ci
reached 0.9. The bed became saturated after around 35 min for the three studied inlet
concentrations in the case of PANI; for PANC, the adsorption time increased and was
reached at about 1 h. Figure 5. and 5. B show breakthrough curves for NH3 removal
at different inlet gas concentrations (35–350 ppm) over PANI and PANC, respectively.
Regarding the adsorption capacity values, there were significant rises in adsorption capacity
as the inlet NH3 concentration increased (Table 2).
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Figure 5. Breakthrough curves for NH3 removal over PANI and PANC at different inlet gas concen-
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Table 2. Adsorption capacity of NH3 over PANI and PANC at different inlet gas concentrations.

Concentration, (ppm) Adsorption Capacity
(mg/g PANI)

Adsorption Capacity
(mg/g PANC)

35 61.34 73.63
80 333.2 400.16

150 485.3 582.4

The interaction between PANI or PANC with NH3 is clear in the schematic diagram
(Figure 6). Emeraldine salt (PANI or PANC) were deprotonated in the presence of NH3.
As the gas concentration increased, the protonation level increased and formed energet-
ically more favorable ammonium ion (NH4

+). In addition, the emeraldine salt turned
into the emeraldine base form [32]. Moreover, the high surface area and interconnected
nanostructure of PANI- based adsorbent enhanced the diffusion of NH3 to react with more
active sites of adsorbents molecules between the adsorbent and adsorbate [33]. The reason
that PANC had better adsorption performance than PANI may be due to the complex
structure of PANC and the increased contact time between the adsorbent and target gas.
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This is as a result of intercalation and exfoliation of PANC structure, which forces the gas
to diffuse and come into contact with more PANC active sites. This led to the enhancement
of NH3 adsorption.
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Reviewing the adsorption capacities of different adsorbents toward NH3, PANI and
PANC have higher adsorption capacities compared with other adsorbents tested in previous
work. Yu Zhou et al. reported that α-MnO2 has the best adsorption capacity, reaching
17.76 mg NH3/g [34]. Xiaoxin Tian et al. stated that the adsorption performance was
26.5 mmol g−1, obtained at 25 ◦C and 1 bar [35]. The adsorption capacity of activated carbon
towards NH3 gas reached 1.8 mg NH3/g carbon, according to Christiano C. Rodrigues
et al. [20]. Other carbon-based materials have been extensively studied in the literature,
but their adsorption capacities were lower that the adsorbents synthesized in this study.
Bamboo charcoal, coconut shell activated carbon and coal-based activated carbon recorded
0.47 mg NH3/g, 0.35 mg NH3/g and 0.66 mg NH3/g adsorbent, respectively [34]. PANI and
its nanocomposites were intensively examined in the literature as a gas sensor. While the
studies investigated the use of PANI and its nanocomposite in gas adsorption, applications
were limited. Jinwei Zhu used polyaniline/TiO2 composite in formaldehyde adsorption,
and it showed an adsorption capacity of 0.67 mg g−1 [36]. Another study stated that PANI-
derived carbon has been utilized in CO2 adsorption under low pressure, with an adsorption
capacity of 1.0 mmol/g (at 0.15 atm) [37]. P. Tamilarasan et al. tested PANI/magnetite
nanocapsules in CO2 capture at high pressures, and the adsorption capacity reached
47.5 mmol/g with 12 bar pressure at 28 ◦C [38]. Yuanzhen Chen et al. prepared a porous
carbon from ferrocene-loaded polyaniline and utilized it in hydrogen adsorption; the
hydrogen adsorption increased from 5.3 to 6.2 wt% at 77 K/5 MPa and 0.6 wt% to 0.85 wt%
at 293 K/8 MPa [39]. Cristina Della Pina et al. synthesized PANI-based sorbents, which used
the substitution of the toxic CS2 with the less hazardous CH3OH as the VOCs extraction
solvent [40].

4. Conclusions

In this study, PANI and PANC were synthesized using the SC-CO2 assisted poly-
merization technique. The morphology of the prepared nanostructured materials was
characterized using SEM and TEM techniques, yielding nanorod-like structures with an av-
erage diameter of about 80 nm in the case of PANI. TEM images revealed full separation of
clay gallery within polyaniline chains, with an average diameter of about 60 nm. Moreover,
both the surface area and mean pore diameter was decreased as a result of preparing the
nanocomposite for PANI (24.6 m2/g, 35 nm) and PANC (22.9 m2/g, 30 nm) respectively,
while the total pore volume increased as a result of adding clay. The synthesized nanos-
tructured materials were tested for their ability to remove gaseous pollutants from the air
(NH3). The obtained adsorption capacities were impressive at the studied concentration.
The results revealed that the adsorption capacities of PANC nanocomposites were higher
than nanostructured PANI. The adsorption capacities were 61.34 mgNH3/gm for PANC
and 73.63 mgNH3/gm for PANI at the same inlet concentration (35 ppm). Therefore, PANI
and PANC are capable of removing harmful pollutants from polluted air streams.
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