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Genetic link between family socioeconomic status and
children’s educational achievement estimated from
genome-wide SNPs
E Krapohl and R Plomin

One of the best predictors of children’s educational achievement is their family’s socioeconomic status (SES), but the degree to
which this association is genetically mediated remains unclear. For 3000 UK-representative unrelated children we found that
genome-wide single-nucleotide polymorphisms could explain a third of the variance of scores on an age-16 UK national
examination of educational achievement and half of the correlation between their scores and family SES. Moreover, genome-wide
polygenic scores based on a previously published genome-wide association meta-analysis of total number of years in education
accounted for ~ 3.0% variance in educational achievement and ~ 2.5% in family SES. This study provides the first molecular
evidence for substantial genetic influence on differences in children’s educational achievement and its association with family SES.
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INTRODUCTION
After health care, education is society’s largest and most
expensive environmental intervention, consuming 46% of gross
domestic product in OECD (Organization for Economic Co-
operation and Development) countries.1 Understanding the
etiology and correlates of differences between children in what
they take away from their education is important because their
educational achievement directly determines admission to further
education and employability and also predicts a wide range of
health outcomes.1–3 Pedigree-based methods, primarily twin
studies comparing the similarity of identical and nonidentical
twins, have consistently suggested substantial genetic influence
on differences between children in their educational
achievement.4–10 It is now possible to use DNA-based methods
to estimate genetic influence on variance in large samples of
unrelated individuals.11,12 No DNA-based estimates of genetic
influence have as yet been reported for children’s educational
achievement, although evidence has been reported for the rough
proxy of total number of years in education in adults.13–16 This
study used children’s genotypes to estimate genetic influences on
variance in educational achievement and its covariance with
family socioeconomic status (SES).
Here we report the first investigation of genetic influence on

the variance of children’s educational achievement using DNA
alone. The same DNA-based methods can also be used to estimate
genetic influence on the covariance between traits.17 This
enabled us to investigate possible genetic mediation of the best
predictor of children’s educational achievement, their family’s
SES.18,19 This correlation is often interpreted causally as family SES
causing differences in children’s educational achievement.20

However, it remains unclear whether and to what extent the
association between family SES and children’s educational
achievement is genetically mediated, because twin and family

research is limited to studying phenotypes that can vary within a
family. Key aspects of children’s environment such as poverty,
parental education and neighborhood cannot be investigated
using the twin method because it is methodologically impossible
to decompose variance in phenotypes shared within twin pairs.
The DNA-based technique, genome-wide complex trait analysis

(GCTA),11 fits the effects of genome-wide single-nucleotide
polymorphisms (SNPs) as random effects in a mixed linear model
to estimate variance or covariance captured by all SNPs
simultaneously. Contrary to traditional family-based methods that
estimate the genetic contribution to phenotypic variation or
covariation by known kinship coefficients, GCTA relies on empirical
genetic resemblance established from identity by state inferred
from genome-wide SNP similarity of ‘unrelated’ individuals.
Because GCTA is based on unrelated individuals, it enables the

decomposition of variance of phenotypes such as family SES that
are the same for members of a family and therefore cannot be
decomposed in analyses such as the twin method that rely on
within-family differences. Another difference between the two
methods is that, unlike the twin method, GCTA is limited to
estimating additive genetic effects for the SNPs on the genome-
wide DNA array or other DNA variants in linkage disequilibrium
with the measured SNPs, which until recently have been common
SNPs. Thus, GCTA will underestimate genetic influence to the
extent that nonadditive effects or rare variants contribute
importantly to heritability. This limitation of GCTA to additive
effects of common SNPs is the same limitation of genome-wide
association (GWA) studies that attempt to identify specific SNPs
associated with a trait. GCTA is directly comparable to GWA results
because both rely on the same experimental design using the
same genetic signal;21 GCTA provides an upper-limit estimate of
the genetic effects that can be identified by GWA.
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GWA attempts aimed at identifying individually significant SNPs
have generally captured only extremely small fractions of genetic
variance of complex traits, the so-called missing heritability
problem.22 However, evidence has been accumulating that
significant portions of phenotypic variation can be explained
by the ensemble of markers not achieving genome-wide
significance.23 Markers are identified from GWAs using an initial
discovery sample to construct a genome-wide polygenic score
(GPS) in an independent replication sample by calculating the
effect-size-weighted sum of trait-associated alleles for each
individual. An aggregate GPS score can be used to assess genetic
influence on trait variation.
As they are tapping into the same genetic signal, GPS based on

GWA results and GCTA can be applied to the same data sets, with
both estimating the polygenic contribution to trait variance or a
shared polygenic covariance between traits captured by the
additive effects of common SNPs. We therefore employ a two-
method approach using GCTA and GPS to explore the genetic
influence on the variance of children’s educational achievement
and on the covariance between family SES and children’s
educational achievement. Our study had four objectives:
(1) To estimate, for the first time using DNA data, genetic influ-

ences on children’s educational achievement on an age-16 UK
national examination of educational achievement using genome-
wide genotypes from 43000 conventionally unrelated children.
Specifically, we conduct GCTA11 to quantify pairwise genomic
similarity between each pair of individuals across millions of SNPs
throughout the genome in order to estimate the proportion of
phenotypic variation in children’s educational achievement
captured by all SNPs simultaneously.
(2) To investigate genetic mediation of the phenotypic correla-

tion between family SES and children’s educational achievement,
we conduct bivariate GCTA to estimate the proportion of pheno-
typic covariation between children’s family SES and children’s
educational achievement captured by children's genotypes.
(3) To create a GPS based on the results of a large GWA study on

adults’ total years of schooling13 and investigate its association
with variance in children’s educational achievement and their
family SES.
(4) To examine the role of general cognitive ability (intelligence)

in the genetic nexus between children’s educational achievement
and their family SES. Molecular evidence as well as twin studies
have shown that cognitive ability is heritable and accounts
for substantial portion of genetic variance in educational
achievement.7,24–26 In addition, recent molecular evidence from
the present sample of unrelated individuals showed high genetic
correlation between family SES and children’s intelligence at
age 7 and 12 years.27 Based on this evidence, it is important to
address the question to what extent the genetic link be-
tween family SES and children’s educational achievement is
mediated by intelligence. For this reason, we perform GCTA
mediation analyses to test for a direct genetic link between family
SES and children’s educational achievement independent of
cognitive ability. Complementarily, we test whether the GPS of
adults’ total years of schooling explains variance in children’s
educational achievement independently of cognitive ability.
Our findings provide the first molecular evidence for substantial

genetic influence on variation in children’s educational achieve-
ment and its association with family SES. We further show
that children’s intelligence accounts for one third of this SNP
link between family SES and children’s educational achievement.
In addition, we demonstrate that a GPS based on years of
education in adulthood discovered in an independent large GWA
meta-analysis13 significantly explains variance in children’s educa-
tional achievement in our sample, even after controlling for
intelligence.

MATERIALS AND METHODS
Sample and genotyping
The sample was drawn from the Twins Early Development Study (TEDS), a
multivariate longitudinal study that recruited over 11 000 twin pairs born
in England and Wales in 1994, 1995 and 1996.28,29 TEDS has been shown to
be representative of the UK population.30 Supplementary Table 2 shows
that the genotyped subsample of TEDS is representative of UK census data
from first contact through age 16 years.
The project received approval from the Institute of Psychiatry ethics

committee (05/Q0706/228) and parental consent was obtained before data
collection.
DNA data were available for 3747 children whose first language was English

and had no major medical or psychiatric problems. From that sample, 3665
DNA samples were successfully hybridized to Affymetrix GeneChip 6.0 SNP
genotyping arrays (Affymetrix, Santa Clara, CA, USA) using standard
experimental protocols as part of the WTCCC2 project (for details see
Trzaskowski et al.).31 In addition to nearly 700 000 genotyped SNPs, more than
one million other SNPs were imputed from HapMap 2, 3 and WTCCC controls
using IMPUTE v.2 software.32 A total of 3152 DNA samples (1446 males and
1706 females) survived quality control criteria for ancestry, heterozygosity,
relatedness and hybridization intensity outliers. To control for ancestral
stratification, we performed principal component analyses on a subset of
100 000 quality-controlled SNPs after removing SNPs in linkage disequilibrium
(r240.2).33 Using the Tracy–Widom test,34 we identified 8 axes with Po0.05
that were used as covariates in GCTA and polygenic score analyses.

Measures
Educational achievement. Educational achievement was operationalized as
performance on the standardized UK-wide examination, the General
Certificate of Secondary Education (GCSE), taken by almost all (499%)
pupils at the end of compulsory education at typically at the age of 16 years.
English, mathematics and science are compulsory subjects. Five or more
GCSEs with grades A*–C are required for further education, including
GCSE English and GCSE mathematics. The joint performance on these three
compulsory subjects determines admission to further education and
employability.
The data for the present study were collected by questionnaires sent by

mail and by telephone interview of parents and twins themselves. After
completed forms were received from the families, the grades were coded
from 11 (the highest grade: A*) to 4 (the lowest pass grade: G); no
information about failed results was available. For 1729 individuals, self-
and parent-reported GCSE results were verified using data obtained from
the UK National Pupil Database,35 yielding correlations of 0.99 for
mathematics, 0.98 for English and 0.96 for science.
The GCSE measure for the present analyses was the mean grade of the

three compulsory core subjects, mathematics, English (mean grade of
‘English Language’ and ‘English Literature’), and science (mean of any
science subjects taken), requiring at least two measures to be nonmissing.
Scores on the three compulsory core subjects were highly correlated
(0.65–0.81).

Intelligence (IQ). Individuals were assessed at the ages of 2, 3, 4, 7, 9, 10,
12, 14, and 16 years on general cognitive ability using a battery of parent-
administered and phone- and web-based tests. At ages 2, 3, and 4, tests
were parent-administered and validated against standard tests adminis-
tered by a trained tester. At age 7, tests were administered over the phone;
at age 9, parents administered the tests; and at the ages 10 – 16, tests were
web based. At each testing age, individuals completed at least two ability
tests that assessed verbal and nonverbal intelligence. Psychometric
properties of the tests have been described in detail elsewhere,36 with
the exception of the measurements used at age 16 years, where subjects
completed a web-based adaptation of Raven’s Standard and Advanced
Progressive Matrices and the Mill-Hill Vocabulary Scale.37–39

For each composite measure at each of the nine ages, scores were
regressed on sex and age, outliers above or below 3 s.d. from the mean
were excluded and the standardized residuals were quantile normalized.
Subsequently, a mean composite scale was created as the mean across
the nine ages, performing mean-imputation for missing measurement
occasions to avoid list-wise deletion.

Family SES. Converging evidence suggests that a composite of vari-
ables including parental education and occupation represents SES better
than any single indicator.18 To index family SES, we combined parental
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education and occupation assessed when children were aged 2, 7 and
16 years. At age 2 years, SES was constructed as the mean of mother’s
and father’s highest education level, mother’s and father’s occupation
assessed by the Standard Occupational Classification 2000,40,41 and
maternal age at birth of eldest child. The SES composite when children
were age 7 years was created similarly but without the variable of age of
mother at birth of eldest child. At age 16 years, SES was composed as the
mean of household income, maternal and paternal education level and
maternal and paternal occupation. Mean composites were standardized
and quantile normalized. The correlations between these three SES
estimates ranged from 0.70 to 0.77. To increase reliability and maximize
sample size, the final measure of family SES for this study was created
as the mean composite score of parental SES reported when children
were aged 2, 7, and 16 years, performing mean-imputation for missing
data points.

Statistical analyses
GCTA. The GCTA model decomposes the trait variance into an additive
genetic component (G) captured by the available SNPs (and correlated
markers in linkage disequilibrium with the genotyped SNPs) and a residual
component containing all nonadditive genetic variance, interaction effects,
environmental factors, error variance and additive genetic variance that is
not tagged by the sampled SNPs. Hence, the GCTA model estimates lower-
bound additive genetic variance for both phenotypes (VG

GCSE, VG
SES); and

the correlation between the additive genetic components (ρG). The ρG is
not biased in the same way VG is. This is because the estimate of genetic
correlation is a function of the ratio between SNP-tagged covariance and
SNP-tagged variance that are biased to the same extent (that is, the
estimates are subject to the same imperfect linkage disequilibrium
between causal variants and genotyped SNPs) and hence cancel each
other out.42

Using genome-wide SNP data, we estimate genetic variation and
covariation from a representative sample of 3000 unrelated children. Our
estimates were obtained by restricted maximum likelihood using the
published algorithm for GCTA.11 GCTA estimates the proportion of
phenotypic variance of a trait tagged by sampled SNPs by fitting the
polygenic effects of all SNPs simultaneously as random effects in a mixed
linear model using a restricted maximum likelihood function. The so-called
genetic relatedness matrix holds the mean pairwise genomic similarity
(weighted by allele frequency) between all pairs of individuals in
the sample across all SNPs. The variance tagged by all SNPs is estimated
to be 40 when genetically more similar individuals are phenotypically
more similar. The bivariate extension of the model relates the pairwise
genetic similarity matrix to a phenotypic covariance matrix between traits
(here family SES and educational achievement).17 To prevent confounding
of the SNP estimate by shared environment effects and the effects of
causal variants that are not tagged by the SNPs, cryptic relatedness was
removed from the analyses. This default procedure eliminates one
individual from a pair whose genetic similarity is 0.025 or greater; a
coefficient that approximates at least fifth-degree relatives. The removal of
close relatives ensures that estimates reflect the tagging of causal variants
through population linkage disequilibrium. This criterion removed seven
individuals from the analyses. Analyses were executed using GCTA11 and R
software.43

The present sample size of ~ 3000 yields 80% power to detect a GCTA
heritability estimate of 30% (α=0.05) and genetic correlation estimate of
0.6 (α= 0.05; VG

1 = 0.20; VG
2: 0.30; rPh = 0.50).

Polygenic scores. We created polygenic scores from genome-wide data
of over 3000 unrelated children using GWA results for total years of
schooling from an independent discovery sample.13 The same quality
control criteria as for the GCTA analyses were applied to the data.
Polygenic risk scores were constructed using the P-values and β-weights
from the recent large (N=126 559) GWA based on years of education.6

Quality-controlled SNPs were pruned for linkage disequilibrium based
on P-value informed clumping in PLINK,44 using R2 = 0.25 cutoff within
a 200-kb window. We removed the major histocompatibility complex
region of the genome because of its complex linkage disequilibrium
structure. 144 890 SNPs survived linkage disequilibrium pruning. For
each individual, multiple polygenic scores were generated using the
PLINK score option based on the top SNPs from the GWA analysis of
educational attainment for varying significance thresholds (from 0.01 to
0.50). Numbers of SNPs per threshold are summarized in Supple-
mentary Table 3. The scores were calculated as the sum across SNPs of

the number of reference alleles for each SNP multiplied by the
effect size (β-coefficient) derived from the GWA analysis of years of
education.
Polygenic scores were tested for association with the same quantitative

measures used in the GCTA analyses (family SES, educational achievement
(GCSE), intelligence and educational achievement controlled for intelli-
gence) in linear regressions. These analyses were corrected for the first
eight ancestry-informative principal components by entering them as
covariates into the regression models. Analyses were performed in
PLINK and R.

RESULTS
Phenotypically, children’s educational achievement correlated
0.50 (0.02 s.e.) with their family SES. Both variables also correlated
with intelligence: 0.55 (0.02 s.e.) for educational achievement and
0.38 (0.02 s.e.) for family SES (Supplementary Table 1).

Bivariate GCTA
Bivariate GCTA showed that the estimated proportion of variance
tagged by the sampled SNPs was 0.31 (0.12 s.e.) in educational
achievement, and 0.20 (0.11 s.e.) in family SES (Figure 1). The
genetic correlation, indicating the extent to which the same SNPs
are associated with family SES and children’s educational
achievement, was near unity (rG = 1.02 (0.25 s.e.)).
Based on the genetic correlation between the two traits and the

genetic contribution to variance of each trait respectively, GCTA
estimates the genetic contribution to the phenotypic correlation
between the two traits: C(G) = r1,2 (G) √ (V1 (G) × V2 (G)), applied to
the data: 0.25 = 1.02 ×√ (0.31 × 0.20). Hence, GCTA estimated the
genetic contribution to the phenotypic correlation between family
SES and children’s educational achievement as 0.25 (0.09 s.e.),
indicating that the proportion of the observed correlation tagged
by the additive effects of available SNPs was 50% (that is,
0.25/0.50; Figure 1). This suggests approximately half of the
phenotypic correlation between children’s family SES and their
educational achievement was mediated genetically.

Mediation analyses. To test whether intelligence mediates the
observed association between family SES and children’s educa-
tional achievement, we statistically controlled for intelligence by
regressing GCSE on intelligence and entering the resulting
standardized residuals into the bivariate GCTA model with family
SES. When controlling for variance explained by children’s
intelligence, which yielded a univariate GCTA estimate of 0.38
(0.11 s.e.) (data not shown), the phenotypic correlation between
family SES and children’s educational achievement was reduced
from 0.50 to 0.37 (0.02 s.e.). The GCTA estimate of the genetic
covariation between family SES and children’s educational
achievement dropped from 0.25 (0.09 s.e.) to 0.17 (0.09 s.e.).
Mirroring the mediation observed at the phenotypic level, this
suggests that one-third of the SNPs tagging variation in family SES
and children’s educational achievement also captured individual
differences in intelligence, implying two-thirds of the SNPs linking
family SES and children’s educational achievement were indepen-
dent of intelligence.

Polygenic score analyses
Polygenic score analysis is designed to test whether SNPs that do
not reach genome-wide significance in a discovery GWA are
nonetheless significantly associated in aggregate with a trait in an
independent sample. In the same sample of 3152 unrelated
individuals, we created polygenic scores with varying numbers of
SNPs (see Materials and methods) based on a large meta-analytic
GWA study (N= 126 599) of years of education.13 Figure 2 displays
the results of multiple linear regression analyses showing that the
polygenic scores accounted for ~ 3.0% variance in educational
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achievement (GCSE), ~ 2.5% in family SES and ~ 1.0% in
intelligence. All P-values were ≤ 3.79− 07. Notably, the effect size
for GCSE remained substantial (~2.0%) and significant
(Pr2.27�06) when statistically controlling for intelligence.

DISCUSSION
This study provides the first molecular evidence for substantial
genetic influence on differences in children’s educational achieve-
ment at the end of compulsory education in the United Kingdom
and its association with family SES. Our GCTA results show that
SNPs that are associated with both family SES and GCSE scores
account for about half of the phenotypic correlation between SES
and GCSE. Mediation analysis suggests that about one-third of this
genetic effect also extends to children’s intelligence, but two-thirds
of the genetic association between family SES and GCSE scores is
independent of intelligence. In GPS analysis, we show that SNPs
associated with total years of education in adulthood discovered
by an independent large GWA meta-analysis13 explain up to 3% of
the variance in children’s educational achievement in our sample,
and up to 2% of the variance after controlling for intelligence.
The GCTA heritability estimate of 31% for children’s perfor-

mance on a UK national examination at the end of compulsory
education corroborates the vast literature of traditional family-
based methods, mostly the twin method, showing that variation
in children’s educational achievement is under substantial
genetic influence,4,5,7–9,45,46 with heritability estimates converging
at ~ 50%. This commonly observed discrepancy in phenotypic

variance explained by pedigree-based methods (that is, twin and
family) and population-based methods (that is, GCTA) occurs
because GCTA only captures genetic variance contributed by
additive effects of common SNPs that are in sufficient linkage
disequilibrium with the causal DNA variants.47

Our GCTA heritability estimate of 20% for family SES tagged
by children’s genotypes is very similar to GCTA heritability
estimates of years of education in adulthood and socioeconomic
measures tagged by adults’ genotypes themselves in previous
studies.13–15 This is remarkable as children’s genotypes are only a
proxy for their parents’ genotypes. In other words, GCTA effects
on family SES estimated from children’s DNA only reflect the
extent to which children inherit parental characteristics associ-
ated with the family SES created by the parents. One such factor is
intelligence, and we find that children’s intelligence accounts
for about one-third of the GCTA association between family SES
and children’s educational achievement. However, it is interest-
ing that two-thirds of the GCTA association is not accounted
for by children’s intelligence. This finding of intelligence-
independent shared genetic variance between family SES and
children’s educational achievement suggests that differences
in educational achievement at the end of compulsory education
and the level of education and occupation attained in adult-
hood are not merely the manifestation of differences in
intelligence. This is in line with twin research that suggests that
the heritability of educational achievement reflects many geneti-
cally influenced traits such as personality and self-efficacy, not just
intelligence.48

Figure 1. Bivariate genome-wide complex trait analysis (GCTA) of family socioeconomic status (SES) and children’s educational achievement
(General Certificate of Secondary Education (GCSE)). (a) Proportion of phenotypic trait variance tagged by the sampled SNPs in GCSE and
family SES, respectively. (b) Covariance between family SES and GCSE captured by SNPs, without controlling for intelligence (left bar) and
when controlling for intelligence (GCSE.IQ) (right bar). The length of the bar indicates the total phenotypic correlation between SES and GCSE.
Solid black lines indicate standard errors.
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The polygenic nature of behavioral traits poses a statistical
challenge as enormous sample sizes are needed to identify
genome-wide significant single DNA variants.23 Therefore,
genome-wide methods, such as GCTA and GPS analysis, that
aggregate genetic effects across a multitude of markers have the
assumption of polygenicity at their core and provide powerful
approaches for exploring genetic influences on traits and shared
between traits.
A GPS based on markers associated with years of education in

adulthood in an independent discovery sample was significantly
associated with children’s educational achievement in our sample.
Replicating results from polygenic score analyses of a recent
Dutch study,49 this shows that the shared polygenic link between
children’s educational achievement and adult measures of
education even holds when limited to education-associated SNPs
identified in an independent sample of adults. We further
demonstrate that this polygenic link persists independently of
children’s cognitive ability, and that the educational attainment
GPS of children's genotypes explains variance in their parents'
socioeconomic status. The predictive power of GPS analysis in our
independent sample illustrates that adequately powered GWA
studies can identify replicable genetic associations with behavioral
traits. Although the current GPS accounts for only a small amount
of phenotypic variance, as prediction improves, GPS can identify
profiles of genetic risk and protective factors for unrelated
individuals, which will enable more powerful prediction models
that combine genetic and nongenetic factors. Polygenic

predictors might also facilitate research on the causal pathways
underlying these genetic predictors.21,22,50

The results need to be interpreted in the context of three main
important methodological limitations. First, a specific limitation of
this study is its modest statistical power in the GCTA analyses (see
Materials and methods). The GPS analyses were sufficiently
powered to identify trait-associated variance at high statistical
significance, but were limited by the power of the discovery GWAS
to detect the small effect sizes of single variants across the
genome.21,23 A second, general limitation is the allelic spectrum
covered by the current DNA microarrays, such as the Affymetrix
6.0 GeneChip used in our study, that is restricted to common
variants. Research has begun exploring the relative contribution of
common and rare variants to variation of psychiatric traits (see, for
example, Gaugler et al.51 and Yang et al.52). Future studies with
greater statistical power may explore the relative contribution of
common and rare variants to trait variation of educational
achievement and associated phenotypes. Third, both GCTA and
GWAS, on which GPS analysis relies, are limited to detecting
additive genetic variation that is captured by the sampled SNPs,
which are typically common SNPs with minor allele frequencies
40.05. Hence, GCTA heritability provides a lower-bound narrow-
sense heritability estimate and represents the upper limit for
detection of SNP associations in GWA studies and thus for GPS
analysis. Generally, these limitations imply a substantial under-
estimation of ‘true heritability’ in the present analyses.
The present analyses demonstrate the ability of DNA-based

methods to explore the genetic architecture of extended

Polygenic scores for education predict GCSE, family SES, and intelligence
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Figure 2. Genome-wide polygenic scores (GPS) for years of schooling in adults (Rietveld et al.13) predict variance (R2) in children’s educational
achievement (General Certificate of Secondary Education (GCSE)), family socioeconomic status (SES), intelligence and educational
achievement after controlling for intelligence (GCSE.IQ). GPS were created using different significance thresholds for inclusion of variants for
years of education, ranging from P= 0.01 to 0.50, indicated by heat colors. The uncorrected P-values above each bar indicate the statistical
significance of the observed association between the GPS and the respective trait.
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phenotypes such as family SES that cannot be detected by
traditional variance/covariance estimation methods that rely on
known kinship relatedness. Quantitative DNA-based methods,
which rely on empirically established pairwise genomic similarity
among traditionally unrelated individuals, can supplement and
extend family-based methods and thereby facilitate the move
from behavioral genetics to behavioral genomics.
Importantly, no directionality or causality can be inferred from

the present results. Heritability indexes the proportion of trait
variance attributable to genetic effects in a particular population
at a particular time.53 Finding evidence for heritability of a trait or
co-heritability of two traits does not imply resistance to
environmental factors as genetic effects are dynamic and subject
to developmental and environmental change.54 Research on how
the heritability of educational achievement differs across devel-
opment and across context suggests that genetic influences
on these phenotypes are maximized by environmental
opportunity.54–56 Differences in individuals’ exposure to environ-
ments are not random. Genotype–environment correlation refers
to the empirical observation that individuals experience different
environments as a systematic function of their genotypes.56–61

Genetic effects on phenotypes may be mediated through
developmental or socio-contextual processes.
Our results also contribute to the extensive debate about

meritocracy and social mobility62 that has largely ignored the fact
that parents and their offspring are genetically related.
Usually a lower correlation between parental and offspring SES
is seen as an index of social mobility.63 However, considering
genetics, we know that removing environmental sources of
variation will not remove genetically driven resemblance between
parents and offspring. To the contrary, as environmental
differences diminish, individual differences that remain will to a
larger proportion be due to genetic differences; that is, heritability
would increase, which has also been demonstrated empirically.55

That way, heritability could be seen as an index of social mobility.
No necessary policy implications arise from finding heritability

of educational achievement and its link with family SES.
However, consideration of empirical evidence will lead to
better-informed policy decisions. Specifically, analogous to the
long-established model of evidence-based medicine, we believe
that evidence-based education facilitated by a dialog between
scientists and policy makers will be beneficial to education of
all children and can also benefit schools, teachers, and society
at large.64

In summary, our GCTA results show a substantial contribution
of common SNPs to variation in children’s educational achieve-
ment and its association with family SES. This is further
substantiated by the GPS analyses, revealing significant sharing
of genetic variants between children’s educational achievement
and total years of education in adulthood. Together, these
findings provide converging evidence for substantial genetic
influence on differences in children’s educational achievement
and genetic links with family SES. Our findings add weight to the
view that genetic variation plays an important, but not exclusive,
role in educational inequalities and social mobility, which is at
variance with views, that still prevail in some quarters, that these
are solely the product of social forces and environmental
inequalities.
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