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Abstract: An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic
polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed
alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble
amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration
dependent reduction of glioblastoma (U251) cell survival.
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1. Introduction

The isoxazole moiety, a five-membered heterocycle containing oxygen and nitrogen at adjacent
positions, has shown interesting biological properties including anticancer [1], antimicrobial [1],
antibacterial [2], anti-inflammatory [3], antiviral [4], antithrombic [5], antiapoptotic [6] and
antiparasitic activity [7]. For example, NVP-AUY922 (Figure 1A) is an anticancer agent [1] and
thiophen-2-yl isoxazole (Figure 1B) significantly inhibits proliferation of HeLa cells. Isoxazole with
a steroid moiety (Figure 1C) has displayed considerable cytotoxicity towards tumor cell lines
and sulfisoxazole, flucloxacillin, dicloxacillin, oxacillin, sulfamethoxazole and cloxacillin are some
examples of marketed antimicrobial drugs bearing an isoxazole ring [8]. Valdecoxib (Figure 1D) is a
nonsteroidal anti-inflammatory drug (NSAID) that was targeted towards cyclooxygenase enzymes
to hinder prostaglandin biosynthesis and to reduce pain [8]. About thirty patents covering different
isoxazole-based structures have been reported showing a wide array of chemical modifications and
applications of such compounds [8–18]. Macromolecular therapeutics are increasingly proposed as
nanomedicines [19] and new methodologies to prepare highly potent isoxazoles bearing nanocarriers
and nanotherapeutics will likely expand the scope of their applications.
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Figure 1. Selected examples of bioactive isoxazoles: A, B and C, 3,4,5-isoxazole and fused 
isoxazole derivatives with anticancer; and D, 3,4,5-isoxazole derivative with anti-
inflammatory activity. 

A tremendous research effort has been devoted to developing nanocarriers that could deliver 
active pharmaceutical agents to the sites affected by pathological changes to minimize wide body 
distribution and reduce undesirable side effects [20,21]. Amphiphilic linear block copolymers have 
been extensively explored in assembling core-corona type spherical micelle structures for drug 
delivery [22]. It is now well known that the overall macromolecular composition and structure play 
a vital role in modulating important parameters including plasma residence time and drug 
loading/controlled release behavior in these formulations [23]. This has led to expanding the 
macromolecular space from linear-to-branched-to-hyperbranched architectures [24]. Telodendrimers 
that are hybrids of hyperbranched dendrimers and linear polymers have offered an advantageous 
platform in combining individual properties of these components [25–29].  

Considering the biological potency of isoxazoles, we were interested in developing synthetic 
methodologies to water-soluble macromolecular drugs using amphiphilic architectural polymers, in 
which the hydrophobic dendron segment will contain isoxazole heterocyclic rings and a linear 
poly(ethylene glycol) methyl ether (mPEG) tail will impart hydrophilic character. 1,3-Dipolar 
cycloaddition is among some of the most important reactions in organic and medicinal chemistry [30] 
and it has been used for the isoxazoles scaffold synthesis by the cycloaddition of nitrile oxides and 
alkynes [31]. To the best of our knowledge, employing 1,3-dipolar cycloaddition reaction based on 
nitrile oxides in synthesizing dendrons/dendrimers has not been reported. We report herein such a 
synthetic approach to construct an isoxazole-mPEG based architecture polymer, its behavior in an 
aqueous medium and an assessment of its ability to act as a macromolecular agent that can reduce or 
even abolish viability of glioblastoma cells. 

2. Results and Discussion 

2.1. Synthesis 

We first explored the potential of 1,3-dipolar cycloaddition strategy in the synthesis of a 
symmetric generation 0 dendrimer. It was begun by the propargylation of pentaerythritol using 
propargyl bromide with potassium hydroxide in dry DMF (Scheme 1) [32], followed by the 1,3-
dipolar cycloaddition on the tetrapropargylated core (3) using a bromonitrile oxide precursor (4) in 
THF at 45 °C for 3 h, with NaHCO3 as base and ZnCl2 as a catalyst. It afforded 5,5′-(((2,2-bis(((3-
bromoisoxazol-5-yl)methoxy)methyl)propane-1,3-diyl)bis(oxy))bis(methylene))bis(3-
bromoisoxazole) (5) in 44% isolated yield (Scheme 1) [33]. 
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Figure 1. Selected examples of bioactive isoxazoles: A, B and C, 3,4,5-isoxazole and fused isoxazole
derivatives with anticancer; and D, 3,4,5-isoxazole derivative with anti-inflammatory activity.

A tremendous research effort has been devoted to developing nanocarriers that could deliver
active pharmaceutical agents to the sites affected by pathological changes to minimize wide body
distribution and reduce undesirable side effects [20,21]. Amphiphilic linear block copolymers have been
extensively explored in assembling core-corona type spherical micelle structures for drug delivery [22].
It is now well known that the overall macromolecular composition and structure play a vital role
in modulating important parameters including plasma residence time and drug loading/controlled
release behavior in these formulations [23]. This has led to expanding the macromolecular space
from linear-to-branched-to-hyperbranched architectures [24]. Telodendrimers that are hybrids of
hyperbranched dendrimers and linear polymers have offered an advantageous platform in combining
individual properties of these components [25–29].

Considering the biological potency of isoxazoles, we were interested in developing synthetic
methodologies to water-soluble macromolecular drugs using amphiphilic architectural polymers,
in which the hydrophobic dendron segment will contain isoxazole heterocyclic rings and a linear
poly(ethylene glycol) methyl ether (mPEG) tail will impart hydrophilic character. 1,3-Dipolar
cycloaddition is among some of the most important reactions in organic and medicinal chemistry [30]
and it has been used for the isoxazoles scaffold synthesis by the cycloaddition of nitrile oxides and
alkynes [31]. To the best of our knowledge, employing 1,3-dipolar cycloaddition reaction based on
nitrile oxides in synthesizing dendrons/dendrimers has not been reported. We report herein such a
synthetic approach to construct an isoxazole-mPEG based architecture polymer, its behavior in an
aqueous medium and an assessment of its ability to act as a macromolecular agent that can reduce or
even abolish viability of glioblastoma cells.

2. Results and Discussion

2.1. Synthesis

We first explored the potential of 1,3-dipolar cycloaddition strategy in the synthesis of a symmetric
generation 0 dendrimer. It was begun by the propargylation of pentaerythritol using propargyl bromide
with potassium hydroxide in dry DMF (Scheme 1) [32], followed by the 1,3-dipolar cycloaddition
on the tetrapropargylated core (3) using a bromonitrile oxide precursor (4) in THF at 45 ◦C for
3 h, with NaHCO3 as base and ZnCl2 as a catalyst. It afforded 5,5′-(((2,2-bis(((3-bromoisoxazol-
5-yl)methoxy)methyl)propane-1,3-diyl)bis(oxy))bis(methylene))bis(3-bromoisoxazole) (5) in 44%
isolated yield (Scheme 1) [33].
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diyl)bis(oxy))bis(methylene))bis(3-bromoisoxazole). 

Isoxazole bearing dendrimer 5 was not soluble in common organic solvents and it prevented us 
from expanding the scope of dendrimer build-up or its surface functionalization to enhance its 
solubility and examine its biological activity. We subsequently considered designing an architectural 
polymer by replacing one of the isoxazole based arm with PEG. For this proposal, we first synthesized 
a tripropargylated pentaerythritol core by reacting pentaerythritol with 3 equivalents of propargyl 
bromide [28], which leaves a free OH group at the core (6, Scheme 2). mPEG-COOH (9) was 
synthesized by reacting mPEG2000 with succinic anhydride in the presence of triethylamine (Et3N) in 
CHCl3 at 70 °C for 24 h. The esterification reaction of mPEG-COOH (9) with the tripropargylated 
pentaerythritol core (6) was subsequently carried out using 1,4-dimethylpyridinium p-
toluenesulfonate (DPTS) and diisopropylcarbodiimide (DIPC) in dry CH2Cl2. The desired 
telodendrimer with isoxazole rings was subsequently synthesized using a 1,3-dipolar cycloaddition 
reaction on 10, using a bromonitrile oxide precursor (Scheme 2). 
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Scheme 1. Synthesis of 5,5′-(((2,2-bis(((3-bromoisoxazol-5-yl)methoxy)methyl)propane-1,3-
diyl)bis(oxy))bis(methylene))bis(3-bromoisoxazole).

Isoxazole bearing dendrimer 5 was not soluble in common organic solvents and it prevented
us from expanding the scope of dendrimer build-up or its surface functionalization to enhance its
solubility and examine its biological activity. We subsequently considered designing an architectural
polymer by replacing one of the isoxazole based arm with PEG. For this proposal, we first synthesized
a tripropargylated pentaerythritol core by reacting pentaerythritol with 3 equivalents of propargyl
bromide [28], which leaves a free OH group at the core (6, Scheme 2). mPEG-COOH (9) was synthesized
by reacting mPEG2000 with succinic anhydride in the presence of triethylamine (Et3N) in CHCl3 at
70 ◦C for 24 h. The esterification reaction of mPEG-COOH (9) with the tripropargylated pentaerythritol
core (6) was subsequently carried out using 1,4-dimethylpyridinium p-toluenesulfonate (DPTS) and
diisopropylcarbodiimide (DIPC) in dry CH2Cl2. The desired telodendrimer with isoxazole rings was
subsequently synthesized using a 1,3-dipolar cycloaddition reaction on 10, using a bromonitrile oxide
precursor (Scheme 2).

Telodendrimer 11 was soluble in common organic solvents and it was characterized using a
combination of techniques including nuclear magnetic resonance (NMR) and mass spectrometry.
Its aqueous behavior was first examined using 1H NMR in D2O (Figure 2). As expected, dendron peaks
become broad while those related to polyethylene glycol retained their original peak configurations.
This suggests that the telodendrimer assumes a hydrophobic core/hydrophilic corona type structure
in D2O.
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Scheme 2. Synthesis of isoxazole-mPEG architectural polymer (11).
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Figure 2. 1H nuclear magnetic resonance (NMR) (500 MHz) spectrum of isoxazole telodendrimer in
D2O (A) and CDCl3 (B).

We examined similar self-assembly of the telodendrimer using an acetone/water co-solvent
evaporation method [34–36]. The resulting assemblies were characterized using dynamic light
scattering (DLS) and transmission electron microscopy (TEM) (Figure 3). These suggested that
spherical structures were formed with a size distribution of 200 and ~60 nm, as measured by DLS and
TEM respectively. As is common with solution based DLS measurements, hydrodynamic sizes of these
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assemblies were found to be higher as compared to TEM [37]. We were unable to obtain a critical
micelle concentration of the assembled structures using pyrene encapsulation. This may suggest that
pyrene does not get incorporated into the hydrophobic core due to inability of the self-assembled
structures from these telodendrimers to solubilize pyrene [38]. However, using the DLS intensity
method, an inflection point was measured to be at 0.35 mg/mL. This value is high and suggests
that at dilutions encountered during circulation, the particles observed through DLS and TEM will
be disassembled.
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Figure 3. (A) Dynamic light scattering (DLS) size distribution and (B) transmission electron microscopy
(TEM) image for the aqueous assemblies of isoxazole telodenderimer. The concentration of the
polymeric micelle solution was 2 mg/mL for TEM study.

2.2. Isoxazole Telodendrimer Reduces Glioblastoma Cell Viability

We explored the concentration-dependent cytotoxicity of the telodendrimer using cell viability
assay. Brain tumor cells (U251N) were treated with increasing concentrations of the telodendrimer,
ranging from 1 nM to 100 µM and cell nuclei were counted after 24 h and 72 h. As an additional
control, cells were treated with 15% milli-q (MQ) water, since the telodendrimer was diluted in milli-q
water to make stock concentrations. The presence of MQ water did not affect cell viability. None of
the concentrations below 10 µM caused significant cell death after 24 h and 72 h (Figure 4). However,
100 µM concentration of the telodendrimer significantly reduced the number of viable cells to 9.89%
and 1.35% after 24 h and 72 h, respectively (Figure 4). Results from this study demonstrate that
isoxazole-based telodendrimer acts as a macromolecular drug and exhibits good cytotoxicity towards
U251N cells. Isoxazole based compounds, such as NVP-AUY922 [39], as well as Leflunomide [40]
exhibit anti-tumor activity. Certain 3,5-diaryl isoxazole linked 2,3-dihydroquinazolinones are cytotoxic
towards U251N cells. These compounds kill cells by disrupting microtubules and fragmenting
cell nuclei [41]. Morphological abnormalities seen in U251 glioblastoma cells exposed to the
telodendrimer included pyknotic nuclei, suggesting a small contribution of apoptotic cell death.
Analysis of mitochondrial functions in these cells (using tetrazolium salt, an indicator of mitochondrial
metabolic activity) showed reduced function of these organelles upon telodendrimer treatment.
Mitochondrial functional impairment was also concentration dependent; it was most profound in
> 10 µM telodendrimer concentrations and it correlated with the decline in glioblastoma cell number.
We are currently investigating several modes of cell death caused by isoxazole-based telodendrimers
including ferroptosis [42–50]. Our further aim in this direction is to explore cell death mechanism,
to identify the implicated signal transduction pathways.
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3-(3-(prop-2-yn-1-yloxy)-2,2-bis((prop-2-yn-1-yloxy)methyl)propoxy)prop-1-yne 

Figure 4. Glioblastoma cell viability studies: U251N cells were treated with aqueous formulations
of the telodendrimer (1 nM, 1 µM, 10 µM, 25 µM, 50 µM and 100 µM) for up to 72 h. Cells were
fixed and stained with Hoechst 33342. Vehicle indicates 15% milli-q water. More than 130 images
were analyzed for each condition. Number of cells were quantified by imaging them using Leica
Fluorescent Microscope.

3. Materials and Methods

3.1. General

The NMR spectra were recorded on AV 400 and 500 MHz (Bruker, Beerlika, MA, USA)
spectrometers both equipped with BBFO+ smart probes. Mass spectra analyses (HRMS, ESI) were
performed on an Exactive Plus Orbitrap-API (Thermo Scientific, Waltham, MA, USA) high resolution
mass spectrometer. Chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA), ChemImpex
International (Wood Dale, IL, USA), Alfa Aesar (Ward Hill, MA, USA), Fisher scientific (Hampton, NH,
USA) and ACP Chemicals (Saint-Leonard, QC, Canada), and were used without further purification.
Dry solvents were obtained from a solvent purification system. TEM samples for imaging were
prepared by placing a 10 µL drop of the polymeric micelle solution (2 mg/mL) onto a carbon-coated
copper grid. Excess solution was removed after 2 min using a Whatman filter paper. 10 µL of 2%
uranyl acetate was then dropped onto the grid, left for 2 min and excess removed by a Whatman filter
paper as before. The grid was then left to dry for an additional 20 min before imaging.
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added to the mixture and the compound extracted with diethyl ether (3 × 5 mL) and washed with 
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under vacuum. Purification of the crude material was done by column chromatography 
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mPEG2000-COOH 

A mixture of pentaerythritol (1.00 g, 7.35 mmol) and potassium hydroxide (6.25 g, 0.112 mol) in
dry DMF (25 mL) was stirred at 0 ◦C under nitrogen. After 5 min a solution of propargyl bromide
(7.8 mL, 0.084 mol) in toluene (80%) was added drop wise and the reaction mixture was left to stir for
24 h. After completion of the reaction, water was added, and the compound was extracted with diethyl
ether (3 × 5 mL) and washed with brine. The organic layer was isolated and dried over anhydrous
Na2SO4. The solvent was removed under vacuum and the desired product was purified by column
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7.5:2.5) to afford the desired product (Yield: 1.1 g, 60%). 1H NMR (500 MHz, CDCl3): δH (ppm) 2.43
(3H, t, 4JHH = 2.5 Hz, C≡CH), 3.56 (6H, s, C-CH2-O), 3.68 (2H, s, CH2-OH), 4.12 (6H, d,4JHH = 2.5 Hz,
O-CH2-C≡C). 13C{1H} NMR (75 MHz, CDCl3): δC (ppm) 44.6, 58.7, 64.9, 70.1, 74.5, 79.6.
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(2 × 10 mL) with dichloromethane. The mixture was then washed with NaHCO3 (5%) and extracted
with CH2Cl2. After that, the organic layer was washed with brine and then dried over anhydrous
Na2SO4. The solvent was removed under reduced pressure. Purification of the crude material was
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A mixture of mPEG-tripropargylpentaerythritol (0.5 g, 0.00021 mol), ZnCl2 (30 mol%) and NaHCO3

(0.1 g, 0.00126 mol) in THF (5 mL) was stirred at 45 ◦C under nitrogen overnight. After completion of
the reaction, the solvent was removed under reduced pressure. The crude was extracted three times
with CH2Cl2. After that the organic layer was washed with brine and then dried over anhydrous
Na2SO4. The solid residue after removing solvent in vacuo was purified using a mixture of CHCl3/Ether
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(1:5) to afford the desired pure product with a yield of 0.3 g, 52%. 1H NMR (500 MHz, CDCl3): δH

(ppm)2.60 (2H, t, 3JHH = 5 Hz, O=C-CH2-CH2-C=O), 2.67 (2H, t, 3JHH = 5 Hz, O=C-CH2-CH2-C=O),
3.40 (3H, s, OCH3), 3.48-4.25 (PEG and 8H C-CH2-O, m), 4.57 (6H, s, O-CH2-isoxazole ring), 6.36 (3H,
s, HC=C). 13C{1H} NMR (100 MHz, CDCl3): δC (ppm) 28.9, 44.6, 59.0, 62.5, 63.91, 63.94, 69.0, 70.1,
70.3, 70.4, 71.8, 77.2, 106.6, 140.4, 170.8, 171.9, 172.3. 1H NMR (500 MHz, D2O): δH (ppm) 2.56 (4H,
broad, O=C-CH2-CH2-C=O), 3.30 (3H, s, OCH3), 3.20-4.14 (PEG and 8H C-CH2-O, m), 4.50 (6H, broad,
O-CH2-isoxazole ring), 6.43 (3H, broad, HC=C). ESI-HRMS: m/z = 2710 [M + Na+].

3.3. Methods

Telodendrimer stock solutions were prepared in MilliQ water (500 µM) and polymer itself was
dissolved in DMSO. Different concentrations (1 nM, 1 µM, 10 µM, 15 µM, 25 µM, 50 µM and 100 µM)
were prepared by serial dilutions and used to treat cells as described below.

3.4. Cell Culture

Human U251N GBM cells were originally obtained from the American Type Culture Collection
(ATCC; Rockville, MD, USA). They were cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Gibco, Life Technologies Inc. Burlington, ON, Canada) with 5% (v/v) fetal bovine serum (FBS; Gibco)
and 1% penicillin-streptomycin (P/S; Gibco). Cells were incubated at 37 ◦C with 5% CO2 and 95%
relative humidity.

3.5. Cell Viability Assay

U251N GBM cells were seeded in 96 well plates (5000 cells/well) for 24 h. They were then exposed
to different concentrations of the telodendrimer (1 nM, 1 µM, 10 µM, 15 µM, 25 µM, 50 µM and 100 µM)
for 24 h or 72 h before being fixed with 4% paraformaldehyde (PFA). The fixed cells were then washed
with phosphate buffered saline (PBS) and incubated with 10 µM Hoechst 33342 (Invitrogen, Eugene,
OR, USA) for 10 min. This solution was aspirated and replaced with PBS. The cells were then imaged
using Leica Fluorescence Microscope (DMI4000B). Images for each condition were analyzed using
ImageJ. Cell viability was measured by cell counting. At least one hundred cells were analyzed in
9 random fields per cover slip per condition. Three independent experiments were performed. The cell
loss was expressed as % relative to untreated or vehicle (DMSO) treated controls.

3.6. Statistics

All data are expressed as mean ± SEM (Standard Error of Mean). Student’s t-tests were used
for statistical analyses. P-values less than 0.05 were considered significant. Microsoft Excel’s inbuilt
statistical functions were used for all calculations.

4. Conclusions

A simple synthetic methodology based on the 1,3-dipolar cycloaddition reaction between an
alkyne based core and a bromonitrile oxide, followed by esterification for a stitching hydrophilic
polyethylene glycol tail to the core, provides a novel route to architectural polymers containing an
isoxazole-based dendron. The addition of a polyethylene glycol tail to the telodendrimer confers
solubility in a variety of solvents including aqueous medium, as well as steric stability to the
telodendrimer structure [51,52]. These architectural polymers are candidate macromolecular agents
exerting marked loss of notoriously resistant glioblastoma cells to therapeutic interventions and our
results show that U251N glioblastoma cells are almost completely eliminated when exposed to the
telodendrimer. Considering that combination therapy has been proven to be superior to monotherapy
for cancer treatment [53], different anti-cancer drugs together with this telodendrimer [25,28] merit
further investigations. Certain nanotherapeutics such as liposomal doxorubicin [54] and PTX-loaded
human serum albumin nanoaggregates [55] are Food and Drug Administration (FDA)-approved cancer
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nanotherapeutics. However, their relatively large size (130 nm diameter) restricts tissue penetration
and retention. In contrast, telodendrimer based nanoformulations have a smaller size and could
potentially be alternative combination anticancer nanotherapeutics. The new methodology presented
here provides a versatile platform to expand the scope of isoxazole based systems in nanomedicine.
The dendron-linear polymer space in these architectural polymers could be tuned for desired core-corona
type assemblies with low critical micelle concentrations. Their potential for combination therapies
needs to be further explored by covalent and non-covalent linking of anti-tumor agents, as well as the
incorporation of cell surface binding molecular probes for an improved cell-type specificity.
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