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Abstract: Methamphetamine (MA) is a highly addictive central nervous system stimulant.
Drug addiction is not a static condition but rather a chronically relapsing disorder. Hair is
a valuable and stable specimen for chronic toxicological monitoring as it retains toxicants and
metabolites. The primary focus of this study was to discover the metabolic effects encompassing
diverse pathological symptoms of MA addiction. Therefore, metabolic alterations were investigated
in human hair following heavy MA abuse using both targeted and untargeted mass spectrometry
and through integrated network analysis. The statistical analyses (t-test, variable importance
on projection score, and receiver-operator characteristic curve) demonstrated that 32 metabolites
(in targeted metabolomics) as well as 417 and 224 ion features (in positive and negative ionization
modes of untargeted metabolomics, respectively) were critically dysregulated. The network analysis
showed that the biosynthesis or metabolism of lipids, such as glycosphingolipids, sphingolipids,
glycerophospholipids, and ether lipids, as well as the metabolism of amino acids (glycine, serine and
threonine; cysteine and methionine) is affected by heavy MA abuse. These findings reveal crucial
metabolic effects caused by MA addiction, with emphasis on the value of human hair as a diagnostic
specimen for determining drug addiction, and will aid in identifying robust diagnostic markers and
therapeutic targets.
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1. Introduction

Methamphetamine (MA) is a highly addictive central nervous system stimulant whose abuse
is a critical public health issue because of the acute complications associated therewith, particularly
hyperthermia, long-term neurotoxicity, and strong potential for dependence [1,2]. MA remains a
widely used illicit drug in the US according to the 2016 National Survey of Drug Use and Health,
which reported that 6.5% of people aged 26 years and older have used MA [3]. It is also the most
problematic drug of abuse showing an increasing trend among youths in East Asian countries, such as
South Korea, Japan, and China [4].

Drug addiction is not a static condition but a chronically relapsing disorder, which develops
from the repetition of positive and negative effects caused by temporary drug use and withdrawal,
respectively. In this cycle, the brain reward system is highly activated during the transition to
drug dependence and less activated at the addiction stage. During abstinence, it almost returns to
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normal [5,6]. Therefore, clinical laboratory criteria for the diagnosis and treatment of drug addiction
are not fully elucidated and no specific biomarkers are practically available.

Metabolomics is a powerful tool for the discovery of potential diagnostic, prognostic,
and therapeutic biomarkers for diseases, including drug addiction [7,8]. Based on the theory
proposed from the development of methadone maintenance programs, addiction could be considered
a metabolic disease as it initiates from a disruption in metabolism and causes persistent neurochemical
disturbances leading to addiction [8,9]. Several metabolomic studies in animals were recently
conducted to investigate MA use and revealed that MA exposure caused an imbalance in metabolites
related to energy metabolism, amino acid metabolism, phospholipids metabolism, oxidative stress,
and neurotransmitters [10–16] However, the altered metabolites or metabolic pathways were
inconsistent, depending on the doses and durations of MA administration and targeted animal
model samples [17]. Moreover, knowledge gained from the metabolic analysis is often fragmentary
owing to the bottleneck in identifying metabolites in case of untargeted metabolomics and the lack
of further in-depth study based on the biological importance of metabolic alterations caused by MA.
In particular, additional bioinformatic analyses for interpreting metabolomics data have been performed
to a lesser extent than those for interpreting other -omics data. Metabolic pathway-related network
analysis could facilitate in comprehensively understanding the biological functions of metabolic
alterations, and the data obtained could prove useful in using the identified metabolites or metabolic
pathways as potential markers for MA addiction.

Metabolic changes in biofluids, such as blood or urine, collected at specific time points are
highly dynamic. Thus, clarifying conclusive metabolic disturbances in drug addiction caused by
repetitions of the drug dependence cycle using blood or urine analysis is not straightforward. Recently,
hair metabolomics was suggested as a more appropriate tool than conventional ones for the discovery
of robust biomarkers, in particular for chronic diseases [18,19] and pregnancy complications [20–22] or
embryopathy [23] via maternal hair metabolome profiling. Hair is a valuable specimen reflecting the
effects of chronic toxicant exposure because of its extended window of detection, stable and repeatable
measurement of accumulated substances, and easy sample storage [24]. Furthermore, a previous
study on the comparison of the expression of messenger RNA in postmortem human brains and scalp
hair follicles showed that scalp hair follicles could be a beneficial genetic biomarker source for brain
diseases [25].

For the reliable diagnosis and efficient treatment of MA addiction, the understanding of decisive
metabolic perturbations and the discovery of robust biomarkers that are applicable even during
abstinences are necessary. Experimental studies or clinical reports on the effect of drug addiction
on metabolic changes are lacking. In particular, few metabolic studies on human hair in drug
addiction have been conducted. In the present study, metabolic alterations following heavy MA abuse
were investigated via human hair metabolomic analysis using both targeted and untargeted mass
spectrometry (MS) followed by integrative network analysis.

2. Experimental Section

2.1. Materials and Chemicals

Formic acid, 2-aminoantracene, and 2,3,4,5,6-pentafluorobenzoic acid were purchased from
Sigma-Aldrich (St. Louis, MO, USA). AbsoluteIDQ p180 kit for targeted analysis was purchased
from Biocrates Life Sciences AG (Innsbruck, Austria). All solvents were of high-performance liquid
chromatography (HPLC) grade. All other chemicals were of reagent grade.

2.2. Subjects

Hair samples from heavy MA abusers (males with black hair; n = 10; Table 1) were selected
from those submitted to the National Forensic Service in Seoul, Korea, by the police for the purpose
of illegal drug abuse detection between 2017 and 2018 (total number of cases = 15,415). The police
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investigation informed of only MA use, and not of any other drugs such as cannabis, cocaine, heroin,
and other new psychoactive drugs for the cases selected for this study. The drug consumption
of the subjects was confirmed by both routine urine testing (immunoassay as a preliminary test,
followed by HPLC-MS/MS as a confirmation test) and hair testing (HPLC-MS/MS) for amphetamines,
11-nor-9-carboxy-∆9-tetrahydrocannabinol, cocaine, opiates, and benzodiazepines in the laboratory.
In the present study, only cases that were positive in both the urine and hair samples for MA and its
major metabolite, (AM), were chosen. The chronic heavy use of cigarettes and alcohol was excluded,
based on the police investigative report.

Table 1. Study subjects and hair concentrations of methamphetamine (MA) and amphetamine (AM).

Subjects ID Age (Years)
Concentrations (ng/mg)

MA 1 AM 2

Drug-free controls
(male, n = 12)

Mean (SD)

C1 36

- -

C2 34
C3 40
C4 40
C5 42
C6 44
C7 48
C8 35
C9 40
C10 41
C11 40
C12 37

39.8 (3.9)

Heavy MA abusers
(male, n = 10)

M1 37 65.7 4.6
M2 36 163.4 8.5
M3 36 72.5 0.2
M4 27 28.5 1.9
M5 37 48.7 2.4
M6 46 31.2 2.7
M7 30 75.8 6.3
M8 37 63.74 4.3
M9 38 25.2 3.7

M10 46 25.2 2.0

Mean (SD) 37.0 (5.9) 60.0 (41.5) 3.7 (2.4)
1 Methamphetamine; 2 Amphetamine.

The severity of chronic MA consumption was evaluated based on the drug and/or metabolite
concentrations in the hair. The concentrations of MA and AM in the hair were determined using
a fully validated method reported previously [26]. Statistical evaluations, where the low, medium,
and high ranges for hair drug concentrations were defined using the minimum to the 25th percentile,
25th to 75th percentile, and 75th percentile to the maximum, respectively, were performed based on
previous studies to identify heavy heroin [27], cocaine [28], and MA [29] drug users. Subjects were
considered heavy MA abusers if MA concentrations in hair strands measuring 3 cm from the root were
>24.5 ng/mg [29].

The hair samples from drug-free controls (males, n = 12, black hair, Table 1) were collected based
on the answers of the questions of the Korean version of the National Institution of Drug Abuse
modified Alcohol, Smoking and Substance Involvement Screening Test [30]. The chronic heavy use
of cigarette and alcohol as well as the use of other drugs was excluded. The study was approved by
the Institutional Review Board of Bugok National Hospital (Gyeongsangnam-do, Republic of Korea,
approval number: BNH-2018-03, approval date: 26 April 2018).
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2.3. Targeted Metabolomics

An AbsoluteIDQ p180 kit, which allows the simultaneous quantification of 187 metabolites
(40 acylcarnitines, 42 amino acids and biogenic amines, 90 glycerophospholipids, and 15 sphingolipids)
and a sum of hexoses including glucose, was used for hair sample preparation. Hair strands measuring
3 cm from the root were washed, dried, and finely cut. Hair segments of approximately 20 mg were
incubated for 16 h in 2 mL methanol. The extract was evaporated to dryness and the residue was
reconstituted in 100 µL of methanol. Ten microliters of the methanol extract, with 10 µL of the solution
of internal standards, composed of 46 isotope-labeled and chemically homologous internal standards,
was loaded into the kit, derivatized, and extracted according to the manufacturer’s instructions [31].
After filtering, the filtrate was subjected to both flow injection analysis (FIA)-MS/MS and HPLC-MS/MS.

An AB Sciex 4000 QTrap mass spectrometer (Sciex, Framingham, MA, USA) was used for analysis
in the multiple reaction monitoring detection mode with electrospray ionization (ESI). Forty microliters
of the prepared samples were subjected to MS/MS by FIA for the determination of amino acids and
biogenic amines present, and 10 µL of these samples was introduced by HPLC to MS/MS for the
determination of other groups. For the FIA-MS/MS analysis, the sample was run with the solvent
provided by the manufacturer at the following rates: 0–1.6 min, 0.03 mL/min; 1.6–2.4 min, 0.2 mL/min;
2.4–2.8 min, 0.2 mL/min; and 2.8–3.0 min, 0.03 mL/min. For the HPLC-MS/MS analysis, a Zorbax
Eclipse XDB C18 column (3.0 mm × 100 mm, 3.5 µm; Agilent) was used. The mobile phase comprised
0.2% formic acid in water (A) and 0.2% formic acid in acetonitrile (B), and the gradient conditions
were as follows: 0–0.5 min, 0% (B); 0.5–5.5 min, 0–95% (B); 5.5–6.5 min, 95% (B); 6.5–7 min, 95–0% (B);
and 7–9.5 min, 0% (B). The flow rate was 0.5 mL/min. The kit was validated using MetValTM (Biocrates
Life Sciences AG) software, and the analytical results were processed using AnalystTM (Sciex) and
MetValTM software.

2.4. Untargeted Metabolomics

Ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight electrospray
ionization mass spectrometry (UPLC-QTOF-ESI-MS) analyses for hair samples were performed as
previously reported [18] with minor modifications. The hair extract prepared according to the method
described above was evaporated to dryness and the residue was reconstituted in 100 µL of a solution
of methanol and 0.1% formic acid in water (9:1) before filtering through a 0.45-µm polyvinylidene
fluoride microporous membrane. Before methanol incubation, 2-aminoanthracene (100 µg/mL, 50 µL)
and 2,3,4,5,6-pentafluorobenzoic acid (1 mg/mL, 5 µL), used as internal standards for positive and
negative ESI modes, respectively, were added. Finally, 5 µL was injected into the LC-QTOF-ESI-MS
system (Agilent 6530 Accurate-Mass Q-TOF LC/MS System with Agilent 1290 Infinity LC, Agilent
Technologies, Palo Alto, CA, USA). Pooled quality control (QC) samples, in which a 5 µL aliquot of
each sample was mixed together, were analyzed along with authentic hair samples.

The guard column, Zorbax SB-C8 (3.5 µm, 2.1 × 30 mm, Agilent Technologies) and the analytical
column, Zorbax SB-Aq (1.8 µm, 2.1 × 100 mm, Agilent Technologies) were maintained at 40 ◦C.
The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B).
The gradient conditions were as follows: 0–30 min, 1–20% B; 30–40 min, 20–90% B; 40–45 min, 90% B;
45–47 min, 90–1% B; 47–52 min, 1% B, at a flow rate of 400 µL/min.

The MS system was operated using ESI in the positive and the negative ionization modes. The optimized
MS system conditions for both ionization modes were as follows: drying gas temperature, 300 ◦C; drying
gas flow, 10 L/min; nebulization pressure, 45 psi; sheath gas temperature, 350 ◦C; sheath gas flow,
10 L/min; capillary voltage, 3500 V; nozzle voltage, 0 V; fragmentor voltage, 175 V; and skimmer voltage,
65 V. The mass range was 50–1700 m/z and the scan rate was 2.00 spectra/s. Purine (exact mass for
[M + H]+ = 121.050873) and 1,2,3,4,5,6-hexakis(2,2,3,3-tetrafluoropropoxy)-1,3,5,2,4,6-triazatriphosphinane
(exact mass for [M + H]+ = 922.009798) were used for mass calibration.
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2.5. Data Processing and Statistical Analysis

In targeted metabolomics, data cleaning was performed with reference to the criteria used in
previous studies [32,33]. Values greater than the limit of detection (LOD) in the raw data of each group
were chosen for (semi-) quantification. To calculate fold-changes, values below LOD in each group
were replaced with LOD/2 or random values between 0 and LOD.

Data processing was performed using MassHunter Profinder (version B.06.00) and Mass Profiler
Professional (MPP, version B.13.1) software (Agilent Technologies) in untargeted metabolomics.
With regard to UPLC-QTOF-ESI-MS data, potential molecular features were first extracted using
the batch recursive feature extraction algorithm in Profinder using MS raw data. Parameters for
feature extraction were as follows: peak height >400 counts; ion species, [M + H]+ and [M + Na]+

for positive ions, and [M −H]− for negative ions; isotope peak spacing tolerance, 0.0025 m/z and 7.0
ppm; and charge state ≤1. Features were aligned at a retention time window of 0.50 min and a mass
window of 10 ppm + 2 mDa. All extracted peaks based on particular masses and retention times were
inspected to reduce both false negative and false positive features. The assignment of metabolites to
ion features was performed using the in-house database [18].

The online MetaboAnalyst 4.0 software (http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.
xhtml) was used for statistically analyzing the data obtaining from both untargeted and targeted
analyses. The data were normalized by the median, and the unpaired t-test was used to determine
significant differences in metabolites or ion features. The following criteria were applied: 80% frequency
and fold-change >1.2 with p-values <0.05 between groups. The metabolic differences between groups
were evaluated using principal component analysis (PCA). The analytical data were modeled using
partial least squares-discriminant analysis (PLS-DA) to reveal the differences between the two groups,
and the metabolites or ion features contributing to the separation were selected as the variable
importance on projection (VIP) value. Five-component and 10-fold cross-validation algorithms were
used to prevent the over-fitting of the PLS-DA model. R2 and Q2 parameters were used to evaluate the
model, mean fitness, and prediction ability. Receiver-operator characteristic (ROC) curve analysis was
performed to investigate the potential of metabolites and ion features as biomarker candidates.

Network analysis was performed using a web-based analysis tool, Prize-collecting Steiner forest
algorithm, for the integrative analysis of untargeted metabolomics (PIUMet, http://fraenkel-nsf.csbi.
mit.edu/piumet2/). The parameters for the network analysis were as follows: w (a parameter for tuning
the number of trees in the resulting network), 10; mu (a parameter for tuning the number of input
nodes included in the output), 0.0005; beta (a parameter for controlling the bias toward high-degree
nodes), 2.0; R (a parameter for running PIUMet for R times by adding random noise to the interactome
and calculating robustness scores), 1. In addition, metabolic pathway analysis was performed using
Cytoscape software (v3.7.1, https://cytoscape.org/) according to the Kyoto Encyclopedia of Genes and
Genomes (KEGG, Release 93.0, 1 January 2020) pathway database.

3. Results

3.1. Targeted Metabolomics

Targeted metabolomics analysis was conducted using a commercial analytical tool for the
simultaneous quantification of 188 metabolites; of these, 90 (22 acylcarnitines, 22 amino acids and
biogenic amines, 39 glycerophospholipids, and 7 sphingolipids) were (semi-) quantified following
data cleaning (Table 2). The PCA score plot derived from the targeted metabolomics data indicated
that the drug-free control group and heavy-MA abuse group were separated and described by 24.7%
of the first principal component (PC1) (Figure 1a). Among the 90 metabolites, 11 and 24 metabolites
were significantly up and down-regulated, respectively, following heavy MA abuse (fold-change > 1.2,
p < 0.05, Figure 1b, Table 3). To further identify the metabolites that resulted in significant differences
between the two groups, PLS-DA was performed. Four components were used to construct the model
with R2 and Q2 values of 0.983 and 0.885, respectively. Results revealed that the two groups were

http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
http://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml
http://fraenkel-nsf.csbi.mit.edu/piumet2/
http://fraenkel-nsf.csbi.mit.edu/piumet2/
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clearly separated (Figure 1c). Metabolites with VIP values greater than 1.0 were considered significant,
and 36 metabolites, including 24 glycerophospholipids, were identified (Figure 1d). The results of
the ROC curve analysis demonstrated that the areas under the curve of the 35 metabolites were
greater than 0.8. Thirty-one metabolites were commonly critical as identified by t-test, VIP scores,
and ROC curve (Figure 1e). The results of the ROC analysis and the level of the aforementioned
35 critically altered metabolites are shown in Figure 2. The significance test demonstrated that
valerylcarnitine and octadecanoylcarnitine were significantly downregulated, whereas carnitine and
decadienylcarnitine were significantly up-regulated in the acylcarnitine group. The level of arginine
was significantly increased whereas that of methionine was decreased in the hair samples from the
heavy MA abusers. Most metabolites (semi-)quantified in the current study were lipids. Among
the levels of 39 glycerophospholipids, those of the four lysophosphatidylcholines (lysoPCs) were
increased and those of the 21 PCs were decreased following heavy MA abuse. Among the levels of
seven sphingolipids, those of the three sphingomyelin (SM) increased (Table 3).

Table 2. Number of metabolites investigated in human hair.

Metabolite Group Total Number of
Metabolites

Number of (Semi-)
Quantified Metabolites

Number of Significant
Changed Metabolites

Acylcarnitines 40 22 5
Amino acids and
biogenic amines 42 22 2

Glycerophospholipids 90 39 25
Sphingolipids 15 7 3
Monosaccarids 1 0 0

Total 188 90 35
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Figure 1. Statistical results of targeted metabolomics in hair samples from drug-free controls (n = 12)
and heavy MA abusers (n = 10). (a) Principal component analysis (PCA) score plot. Red circle: drug-free
controls; green circle: heavy MA abusers. (b) Volcano plot; red circle: metabolites with significance
at p < 0.05 and fold change > 1.2 or < −1.2. (c) Partial least squares discriminant analysis (PLS-DA)
score plot. Red circle: drug-free controls; green circle: heavy MA abusers. (d) Variable importance
on projection (VIP) score plot. Colored box: relative concentration in drug-free controls and heavy
MA abusers; (e) Venn diagram integrating results from the t-test, VIP scores, and receiver-operator
characteristic (ROC) curves.

Table 3. Significantly changed metabolites in the hair samples from heavy MA abusers.

Metabolite Group Metabolite Fold Change p Value

Acylcarnitines

Carnitine 1.80 0.0065
Decadienylcarnitine 2.51 0.0119

Octadecadienylcarnitine 2.39 0.0224
Octadecanoylcarnitine −1.45 0.0047

Valerylcarnitine −1.92 0.0062

Amino acids and biogenic amines Arginine 5.61 0.0044
Methionine −1.56 0.0049

Glycerophospholipids

lysoPC a 1 C160 2.14 0.0007
lysoPC a C170 1.73 0.0002
lysoPC a C181 2.74 4.0469 × 10−5

lysoPC a C204 1.33 0.0478
PC aa 2 C341 −1.52 0.0092
PC aa C362 −1.41 0.0185
PC aa C365 −2.78 7.5669 × 10−5

PC aa C366 −2.13 0.0010
PC aa C381 −1.59 0.0382
PC aa C383 −1.37 0.0091
PC aa C385 −2.33 0.0002
PC aa C403 −2.56 0.0043
PC aa C404 −2.22 0.0061

PC ae 3 C340 −1.89 0.0033
PC ae C360 −1.69 0.0015
PC ae C361 −1.61 0.0054
PC ae C365 −3.13 0.0001
PC ae C380 −1.59 0.0020
PC ae C381 −2.04 0.0026
PC ae C382 −2.08 0.0035
PC ae C383 −2.08 0.0078
PC ae C401 −2.78 0.0005
PC ae C402 −2.27 0.0071
PC ae C422 −2.04 0.0150
PC ae C423 −1.92 0.0284

Sphingolipids
SM 4 C241 2.04 0.0184

SM OH C221 1.77 0.0163
SM OH C241 1.51 0.0236

1 Lysophosphatidylcholine acyl; 2 Phosphatidylcholine diacyl; 3 Phosphatidylcholine acyl-alkyl; 4 Sphingomyelin, SM.
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Figure 2. Results of the receiver operating characteristic (ROC) curve analysis of the 37 metabolites
from t-test, variable importance on projection scores, and ROC curves in targeted metabolomics and
metabolite levels. AUC: area under the ROC curve.
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3.2. Untargeted Metabolomics

The statistical results of untargeted metabolomics are shown in Figures 3 and 4. The PCA
score plots derived from all ion features produced by positive and negative ionization modes of
UPLC-QTOF-ESI-MS are displayed in Figures 3a and 4a. The drug-free control group and heavy-MA
abuser group were distinguished and described by 34.7% and 28.3% of the PC1, respectively, and the
QC samples were closely clustered, according to the ion features detected in each analytical mode.
Among the 994 (positive ionization) and 677 (negative ionization) ion features, 496 and 283 were
significantly up- or downregulated, respectively, following heavy MA abuse (fold-change > 1.2, p < 0.05,
Figures 3b and 4b). In the PLS-DA score plots, a remarkable difference in the two groups was observed.
Five components were used to construct the models, with R2 and Q2 values of 0.995 and 0.772 in
the positive ionization mode and of 0.997 and 0.803 in the negative ionization mode, respectively
(Figures 3c and 4c). On this basis, the variables differing between the groups were filtered using VIP
values greater than 1.0, and 508 (positive ionization) and 287 (negative ionization) ion features were
identified. The lists of ion features with the top 10% of the VIP values are detailed in Figures 3d and 4d.
Many of the ion features that satisfied the significant criteria were identified to be at the area under the
curve of the ROC curve higher than 0.8 (Supplementary material 1). The number of metabolites that
were commonly critical as identified using t-test, VIP score, and ROC curve were 417 and 223 for positive
and negative ionization mode for each (Figures 3e and 4e). Table 4 shows the metabolites analyzed using
UPLC-QTOF-ESI-MS and identified using our in-house library, with retention times and mass spectra.
Significance tests indicated that the levels of 4-guanidinobutanoate and 4-hydroxybenzaldehyde
significantly increased, while those of sphinganine, urate, and petroselinic acid significantly decreased.
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green circle: heavy MA abusers. (b) Volcano plot. Red circle: metabolites with significance at p < 0.05 
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scores, and receiver-operator characteristic (ROC) curve. 
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Figure 3. Statistical results of untargeted metabolomics by the positive ionization mode of
ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight electrospray
ionization mass spectrometry (UPLC-QTOF-ESI-MS) in hair samples from drug-free controls (n = 12)
and heavy MA abusers (n = 10). (a) Principal component analysis (PCA) score plot. Red circle: drug-free
controls; green circle: heavy MA abusers. (b) Volcano plot. Red circle: metabolites with significance at
p < 0.05 and fold change > 1.2 or < −1.2: +ND: increased from the value of not detected. (c) Partial
least squares discriminant analysis (PLS-DA) score plot. Red circle: drug-free controls; green circle:
heavy MA abusers. (d) Variable importance on projection (VIP) score plot. Colored box: relative
concentration in drug-free controls and heavy MA abusers; (e) Venn diagram integrating results from
the t-test, VIP scores, and receiver-operator characteristic (ROC) curve.
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Figure 4. Statistical results of untargeted metabolomics using the negative ionization mode of
quadrupole time-of-flight electrospray ionization mass spectrometry (UPLC-QTOF-ESI-MS) in hair
samples from drug-free controls (n = 12) and heavy MA abusers (n = 10). (a) Principal component
analysis (PCA) score plot. Red circle: drug-free controls; green circle: heavy MA abusers. (b) Volcano
plot. Red circle: metabolites with significance at p < 0.05 and fold change > 1.2 or < −1.2. (c) Partial
least squares discriminant analysis (PLS-DA) score plot. Red circle: drug-free controls; green circle:
heavy MA abusers. (d) Variable importance on projection (VIP) score plot. Colored box: relative
concentrations in drug-free controls and heavy MA abusers. (e) Venn diagram integrating results from
the t-test, VIP scores, and receiver-operator characteristic (ROC) curves.

3.3. Network Analysis

To understand the alteration of the metabolites found in our data, we performed integrated
network analysis of critical metabolites (34) and ion features (417 and 223 for positive and negative
ionization modes, respectively) from targeted and untargeted metabolomics, and the results of these
are shown in Figure 5 and Table 5. The number of input terminals of the network was as follows:
metabolites from targeted metabolomics, 21 and ion features from untargeted metabolomics, 198.
The 198 ion features were matched with 664 metabolites in the Human Metabolome Database and Recon
database (Supplementary material 2). Among these, 58 ion features were matched with 226 metabolites
in the PIUMet database (Figure 5). The resulting network consisted of 224 nodes, 262 edges, 19 targeted
metabolites, and 47 ion features. The biosynthesis or metabolism of lipids, such as glycosphingolipids,
sphingolipids, glycerophospholipids, and ether lipids, as well as the metabolism of amino acids
(glycine, serine and threonine; cysteine and methionine) was significantly affected by heavy MA
abuse (p < 0.00001, Table 2). The node genes for each metabolic pathway are listed in Table 5 and
Supplementary material 3.
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Table 4. Metabolites identified in the hair via LC-QTOF-ESI-MS analysis using in-house database.

Ionization
Polarity m/z tR (min) ∆tR (min) Formula Mass ∆Mass (ppm) Metabolites

(Fold Change) Species Score

Positive

130.0507 1.14 −0.31 C5H7NO3 129.0434 −6.49 5-Oxo-proline (M + H)+ 83.5
132.1022 1.32 0.03 C6H13NO2 131.0949 −2.11 (L-)Isoleucine (M + H)+ 99.4
139.0523 1.42 0.00 C6H6N2O2 138.0452 −16.54 Urocanate (M + H)+ 70.6
146.0926 1.27 0.14 C5H11N3O2 145.0852 −0.41 * 4-Guanidinobutanoate (2.8) (M + H)+ 83.6
195.0873 14.64 −0.04 C8H10N4O2 194.0800 1.84 Caffeine (M + H)+ 99.1
302.3051 35.96 0.01 C18H39NO2 301.2978 0.88 * Sphinganine (−1.8) (M + H)+ 99.6

Negative

151.0258 2.64 0.01 C5H4N4O2 152.0330 2.63 Xanthine (M − H)− 98.1
167.0207 1.75 −0.07 C5H4N4O3 168.0280 1.87 * Urate (−2.0) (M − H)− 86.6
117.0193 1.51 0.03 C4H6O4 118.0266 0.18 Succinate (M − H)− 87.7
281.2484 39.56 −0.04 C18H34O2 282.2556 0.92 * Petroselinic acid (−3.3) (M − H)− 99.4
105.0199 0.90 −0.02 C3H6O4 106.0272 −5.39 Glycerate (M − H)− 85.5
89.0250 1.04 0.19 C3H6O3 90.0323 −6.46 Glyceraldehyde (M − H)− 85.4

131.0824 0.85 0.13 C5H12N2O2 132.0896 2.13 (L-)Ornithine (M − H)− 85.1
174.0882 0.85 0.09 C6H13N3O3 175.0955 0.97 Citrulline (M − H)− 87.1
128.0354 1.48 0.03 C5H7NO3 129.0427 −0.49 5-Oxo-proline (M − H)− 87.7
121.0294 9.68 0.14 C7H6O2 122.0367 0.84 * 4-Hydroxybenzaldehyde (2.9) (M − H)− 87.8

* p < 0.05. Fold changes are parenthesized. Underlined metabolites were additionally confirmed using MS/MS analysis.
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Figure 5. Altered metabolic pathways identified by PIUMet.

Table 5. Altered metabolism pathways identified in the hair from heavy MA abusers.

Module Metabolism Pathway Number of
Hidden Proteins p-Value FDR 1 Hidden Protein

1 Peroxisome 4 9.99 × 10−8 1.40 × 10−6 ACOT8,PEX5,HACL1,PAOX

2
Glycosphingolipid

biosynthesis—lacto and
neolacto series

3 2.71 × 10−7 1.38 × 10−5 B3GALT5,B3GNT3,A4GALT

3 Glycine, serine and
threonine metabolism 4 5.44 × 10−9 1.09 × 10−7 SHMT2,SHMT1,GNMT,SARDH

4 Sphingolipid metabolism 3 1.42 × 10−6 3.42 × 10−5 SMPD3,SMPD2,SMPD4

5 Cysteine and
methionine metabolism 3 2.48 × 10−6 1.74 × 10−5 BHMT2,MTR,BHMT

6 Glycerophospholipid metabolism 4 2.69 × 10−8 5.38 × 10−7 LYPLA2,LYPLA1,PLA2G2C,PLA2G15

7

Pentose and
glucuronate interconversions 3 1.09 × 10−7 2.05 × 10−6 UGT2B4,GUSB,UGT2B7

Drug metabolism—other enzymes 3 1.36 × 10−6 8.15 × 10−6 UGT2B4,GUSB,UGT2B7

8 Ether lipid metabolism 4 2.99 × 10−10 4.18 × 10−9 PLA2G12B,PLA2G7,PAFAH1B3,PAFAH2

1 False discovery rate.
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4. Discussion

The main advantage of this study is the well-characterized human hair metabolic investigation
method, using metabolomics combined with network analysis, through which detailed metabolic
examination was achieved for heavy MA abuse. Human hair, as a metabolomics sample, enables us to
better understand the metabolic consequences encompassing the diverse conditions of MA addiction.
Only limited information is available regarding the effect of drug abuse or addiction on endogenous
metabolites in the human hair. Xie et al. previously reported that sorbitol and cortisol were upregulated
while arachidonic acid, glutathione, linoleic acid and myristic acid were downregulated, based on
metabonomic study in heroin abusers’ hair using LC-ion trap-TOF MS [34]. However, the metabolite
coverage was restricted to fully understand the perturbation of metabolism related to drug addiction.
To the best of our knowledge, this is the first report to investigate metabolic alterations extensively in
human hair from heavy drug abusers using metabolomics combined with network analysis.

The main limitation of this study is the relatively small sample size; however, this was compensated
by the strict selection of samples only for MA use, by the results of qualitative urine drug testing
and quantitative hair drug testing as well as the police investigative reports in a total of 15, 415 cases.
The hair samples were all black proximal hair of 3 cm in length, to exclude the effect of the MA use
period and melanin contents on the levels of hair metabolomes. The hair strands, measuring 3 cm
from the root, represent a MA use history of three months prior to sampling, based on a rate of hair
growth of approximately 1 cm/month [35]. Moreover, the previous study on the relationships between
MA dose, frequency of use, and MA concentrations in hair [36] reported high correlations between
the cumulative doses of MA use calculated from self-reported daily dose and frequency with the
concentrations of MA (r = 0.87) and AP (r = 0.78). Based on the high MA concentrations in the hair
determined, subjects in the present study were considered heavy MA abusers. Another limitation of
this study, potentially shared by all untargeted metabolomics approaches, is the difficulty in identifying
metabolites for numerous ion features. However, we were able to focus on the 19-targeted metabolites
and 47-ion features included in the metabolic network to elucidate biological meaning through PIUMet.
Currently, human metabolomics data concerning drug addiction are limited, compared with data for
other metabolic diseases. Drug addiction-related potential biomarkers proposed in animal studies need
to be validated in clinical settings. Therefore, our findings merit confirmation in larger human studies.

The drug-free control and heavy MA abuser groups were clearly separated by PCA and PLS-DA
conducted on the data from the targeted and untargeted analyses. The authors of previous studies
observed an inconsistent group separation in MA-induced conditioned place preference (2 mg/kg for
10-day conditioning) and acute MA intoxication (10 mg/kg/h for 4 h), based on metabolic changes
observed in animal studies. The control and treated groups in the latter study were well separated
based on their urine metabolomes while they were not in the former. The authors proposed that this
may be attributed to the different actions on the brain reward circuitry and the resulting adaptation
to chronic MA use [12,15]. In another previous study, metabolic alterations in urine and hair
from self-administration of MA in rats were observed using untargeted metabolomics. Notably,
large numbers of ion features (1484 and 526 in the positive and the negative ESI mode, respectively)
were extracted in rat hair, with a significant difference between the hair samples collected before and
after MA self-administration was observed in the PCA score plot. In addition, the levels of more ion
features were significantly altered in hair (103 and 18 in the positive and the negative ionization mode
of untargeted MS, respectively) than in urine after MA self-administration, suggesting that hair may
be a more suitable diagnostic specimen for evaluation of drug addiction [18]. Limited clinical studies
have been performed to study the effect of MA exposure by analyzing specific target metabolites,
such as glutamate [37] and n-acetyl-aspartate [38], in the brain.

The lipophilicity and basicity of compounds are known to influence their incorporation into the
hair from the bloodstream. Lipophilic and uncharged molecules can easily cross membranes and exist
in matrix cells [35,39]. However, amino acids, organic acids, and fatty acids were most often identified
in previous human hair metabolic studies [20–23]. In our study, 22 acylcarnitines, 22 amino acids and
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biogenic amines, 39 glycerophospholipids, and 7 sphingolipids were (semi-)quantified in human hair,
and their distribution was investigated on the basis of heavy MA abuse in the targeted analysis.

Acylcarnitines belong to a group of markers for mitochondrial function, in particular,
the β-oxidation of fatty acids. Elevated acylcarnitines cause lipotoxicity in the heart, liver, skeletal
muscle, and brain, and induce mitochondrial dysfunction [40,41]. The alteration of the levels of some
acylcarnitines, including carnitine, decadienylcarnitine, octadecadienylcarnitine, octadecanoylcarnitine,
varerylcarnitine, in the current study may imply a dysregulation of β-oxidation following chronic
MA abuse. However, few studies assessing the effects of addictive drugs on β-oxidation have been
performed. A previous study reported accumulation of acylcarnitines in serum from cocaine-treated
mice (30 mg/kg/day, intraperitoneal administrations for three consecutive days) and the inhibition of
fatty acid oxidation is known to play an important role in cocaine-induced liver injury [42].

Amino acids are small-molecule metabolites that not only participate in building peptides and
proteins but also perform important functions in gene expression in cells, synthesis and secretion of
neurotransmitters and hormones, nutrient metabolism, oxidative defense, intracellular protein turnover,
immune function, reproduction, obesity, diabetes, and metabolic syndrome [43]. Amino acid profiling
has been used for the diagnosis of a variety of diseases such as hepatic fibrosis and cancer in clinical
studies [44,45]. Moreover, the levels of neuroactive amino acids, including glutamate, glutamine,
gamma-aminobutyric acid, glycine, tryptophan, and D-serine, associated with brain functions, as well
as other amino acids were significantly altered in brain diseases such as Alzheimer’s disease in brain
specimens [46] and autism spectrum disorders in body fluids (plasma, serum, urine etc.) [47]. Only a
few studies on amino acid profiling related to MA exposure have been conducted. In a previous
study, dynamic changes were observed in the biosynthesis/metabolism of amino acids, including
the phenylalanine, tyrosine, and tryptophan biosynthesis and the valine, leucine, and isoleucine
biosynthesis, during 24 h of short-term abstinence in plasma from MA self-administering rats [48].
In another previous study, administration of a single dose (10 mg/kg) or escalating doses (10–30 mg/kg)
of MA for five consecutive days in rats was followed by withdrawal for two days, after which 20 amino
acids were profiled in the rat serum. Most amino acids including alanine, glycine, and three branched
chain amino acids (valine, leucine, and isoleucine) were significantly depleted while levels of glutamate
and lysine were elevated with the administration of MA. After two days of withdrawal, most of these
levels were restored. The authors suggested that the decrease in branched chain amino acid levels
was probably due to elevated energy metabolism, and alterations in levels of other amino acids were
related to the activation of the nervous system [10]. On the other hand, in the plasma from MA-induced
conditioned place preference model rats (2 mg/kg for 10-day conditioning), no significant changes
were observed for most amino acid levels [12]. Our results demonstrate that only two amino acids,
arginine and methionine, were dysregulated in the long term. The levels of amino acids in plasma or
serum after MA exposure were inconclusive and provided only a snapshot depending on the severity
of MA exposure and different abstinence times, whereas changes in amino acids in hair might reflect a
more steady change and have the potential for deciding possible biomarkers.

Notably, in the present study, the detected phosphatidylcholines tended to be present at lower
levels in the hair of heavy MA abusers than in those of drug-free controls. Alternatively, all detected
lysophosphatidylcholines were significantly elevated in heavy MA abusers. Additionally, all three
among the seven SM were upregulated, and sphinganine, a precursor of ceramide, which is converted
into a variety of sphingolipids, was down-regulated as shown in the results from the untargeted
metabolomics. The dysregulation of membrane lipids, such as glycerophospholipids and sphingolipids,
due to psychostimulants, such as MA and cocaine, have been previously demonstrated in human
and animal studies [48–52]. However, the changes in these studies varied depending on the chemical
nature of these lipids, sampling sites such as subparts of the brain [49,50], and sampling time [48].
In particular, the levels of some of lysoPC, PC and SM fluctuated during 24 h of abstinence following
MA self-administration in rat plasma [48]. In a previous study, a significant increase in ceramide
contents was noted, whereas no difference was observed in the levels of PCs and SMs in the brains
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of rats following MA self-administration (0.1 mg/kg, FR1, 15-hour sessions for eight days). Thus,
the study concluded that MA is involved in cell cycle control and inflammation via the stimulation of
the production of the sphingolipid messenger ceramide [53]. Nevertheless, rat blood phospholipid
levels were significantly differentiable between cocaine-treated and control groups based on PCA [50].
Furthermore, a reduction of calcium-stimulated phospholipase A2 level was reported in the postmortem
putamen tissue of chronic MA or cocaine users [49]. The current study observed elevated levels of
lysoPCs and reduced levels of PCs in hair of heavy MA abusers, implying that phospholipase A2 is
ultimately activated owing to heavy MA abuse and could serve an important role in MA addiction.

Pathway-based analysis is routinely performed to discover the biological roles of changed
metabolites; however, it is not straightforward to divulge the metabolic effects, due to limited
numbers of identified metabolites and difficulty in elucidating functional linking to those metabolites.
To overcome this challenge, we applied PIUMet to the significantly altered metabolites from the
targeted metabolomics as well as ion features from untargeted metabolomics. Our results indicate that
lipid metabolism was affected by heavy MA abuse. The perturbation in peroxisome metabolism and
biogenesis was detected as shown in Module 1. Peroxisomes are known to play an essential role in ether
phospholipid biosynthesis [54]. The genes of galactosyltransferase, sphingomyelin phosphodiesterase,
and phospholipase A2 families were detected as critical node genes in Modules 2, 4, 6, and 8 of lipid
metabolism. A functional disorder of lipid metabolism is found, conspicuously, in neuropathologies
and brain injuries, and the important role of lipids in cell signaling and tissue physiology was proved
in numerous neurological disorders [55]. In particular, the activation of phospholipase A2 was clearly
demonstrated by the results of the targeted metabolomics.

Metabolic changes in biofluids such as the blood and urine can reflect dynamic changes and
facilitate the understanding of mechanistic processes through which pathological or physiological
effects develop [56,57]. On the other hand, metabolic changes in the hair could provide insight into
important holistic metabolic effects. Therefore, the further investigation of the altered metabolites in
the current study for the time of abstinence, possibly to the time of recovering MA addicts, is necessary
to discover practical biomarkers.

5. Conclusions

The present study demonstrated that hair has great advantages as a diagnostic specimen for
determining drug addiction as the endogenous compounds that accumulate in hair are retained.
Considering the data from the targeted and untargeted metabolomics, the biosynthesis or metabolism
of lipids, such as glycosphingolipids, sphingolipids, glycerophospholipids, and ether lipids, as well as
the metabolism of amino acids (glycine, serine and threonine; cysteine and methionine) is affected by
heavy MA abuse. In particular, the genes of the key regulating enzymes, including phospholipase A2,
for heavy MA abuse are proposed as potential targets for future therapies. These findings highlight the
crucial metabolic perturbations caused by MA addiction and will aid in identifying robust diagnostic
markers and therapeutic targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/17/6041/s1,
Supplementary material 1: results of ROC curve analysis, Supplementary material 2: metabolites identified in the
hair via LC-QTOF-ESI-MS analysis using PIUMet, Supplementary material 3: list of node genes in the altered
metabolic pathways identified using PIUMet.
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