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Abstract: Using a support vector machine (SVM), three classification models were built to 

predict whether a compound is an active or weakly active inhibitor based on a dataset of 

386 hepatitis C virus (HCV) NS5B polymerase NNIs (non-nucleoside analogue inhibitors) 

fitting into the pocket of the NNI III binding site. For each molecule, global descriptors, 

2D and 3D property autocorrelation descriptors were calculated from the program 

ADRIANA.Code. Three models were developed with the combination of different types of 

descriptors. Model 2 based on 16 global and 2D autocorrelation descriptors gave the 

highest prediction accuracy of 88.24% and MCC (Matthews correlation coefficient) of 

0.789 on test set. Model 1 based on 13 global descriptors showed the highest prediction 

accuracy of 86.25% and MCC of 0.732 on external test set (including 80 compounds). 

Some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX and 

Span), number of rotatable bonds (NRotBond), water solubility (LogS), and hydrogen 

bonding related descriptors performed important roles in the interactions between the 

ligand and NS5B polymerase. 
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1. Introduction  

Hepatitis C virus (HCV) infection constitutes a global health problem, which affects more than  

170 million individuals [1]. According to WHO figures, over 2% of the world population is 

chronically infected with HCV [2]. Hepatitis C virus (HCV) is a (+)-stranded RNA virus belonging to 

the Flaviviridae family of enveloped viruses. Previously, the only approved therapy against HCV was 

pegylated interferon IFNR (IFN), either as monotherapy or in combination with ribavirin. However, 

this therapy is poorly tolerated and of limited efficacy [3]. The new standard of care (SOC) after recent 

protease inhibitor approval involves the combination of a protease inhibitor with pegylated-interferon 

and the oral nucleoside antiviral agent ribavirin [4].  

HCV has six major genotype classes, with genotypes 1 and 2 being most prevalent in the United 

States, Europe, and Japan. Currently combination drug treatment of genotype 2 or 3 is more successful 

than treatment of genotype 1 infection [5]. HCV is an enveloped single strand RNA virus and encodes 

a polyprotein chain of about 3000 amino acids, which is processed into structural and non-structural 

(NS) proteins [6]. Polyprotein processing by viral and cellular host factors results in four structural 

proteins (Core, E1, E2, p7) and six nonstructural (NS2, NS3, NS4A, NS4B, NS5A, NS5B) proteins. 

NS5B is a RNA-dependent RNA polymerase (RdRp) at the core of the HCV replicative complex.  

As an RNA-dependant RNA polymerase, it has no counterpart in mammalian cells and so it is 

expected that inhibition of the enzyme will not cause target-related side effects [7]. Given the essential 

role of this enzyme in viral replication, it is anticipated that agents capable of disrupting its function 

will prove efficacious in the treatment of HCV infections [8]. Due to its necessary role in viral 

replication, NS5B RNA-dependent RNA polymerase (RdRp) has been one of the most studied viral 

protein targets for small molecule HCV therapy [9]. Accordingly, several different structural scaffolds 

of HCV NS5B inhibitors have been identified and many pharmaceutical companies are competing to 

identify new drugs. ANA-598, ABT-072 and ABT-333 (the molecular structures of these compounds 

are not disclosed) have been demonstrated efficacy in phase-II clinical trials [7]. Three specific classes 

of inhibitors that target the polymerase have been reported. These include nucleoside analogue 

inhibitors (NIs), non-nucleoside analogue inhibitors (NNIs) and pyrophosphate (PPi) analogues [10].  

NNIs (non-nucleoside analogue inhibitors) provide an alternative mechanism to target viral 

polymerases. Greater variability is possible with HCV inhibitors as multiple allosteric binding sites are 

present on the HCV polymerase. Up to now, four binding sites of NS5B polymerase have been 

identified: NNI site I and site II are located in the thumb domain, while III and IV are closer to the 

active site in the palm domain [10]. In this work, we will work on NS5B NNI III binding site inhibitors. 

The representative molecules at this binding site are shown in Figure 1. 
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Figure 1. Some representative molecular structures of HCV NS5B NNI III binding  

site inhibitors. 

 

Recently, Support Vector Machine (SVM) method has been used to build classification models for 

separating a series of compounds into inhibitors and non-inhibitors [11–13], or high active and low 

active ligands [14,15] of a protein target to study the structure bioactivity relationship in drug design. 

The molecular descriptors used for building models can be fast calculated according to the structure of 

a molecule. So the SVM models could be used for further ligand-based virtual screening from a large 

compound library [13]. Using ligand-based SVM classification models, only a few potential inhibitors 

will be chosen for bioassay test. This methodology could reduce the time and cost for new drug discovery.  

Lv et al. [16] built computational models using several machine learning (ML) methods (support 

vector machine (SVM), k-nearest neighbor (k-NN), and C4.5 decision tree (C4.5 DT)) for predicting 

NS5B polymerase inhibitors on a dataset of 1313 compounds, including 552 inhibitors (IC50 < 400 nM), 

696 non-inhibitors (IC50 > 600 nM) and 65 compounds, whose activities range between inhibitors and 

non-inhibitors (400 nM < IC50 < 600 nM). The prediction accuracy for their best model is up to 91.7% 

for NS5BIs and 78.2% for non-NS5BIs, which was built using a support vector machine (SVM). 

However, in their models, the HCV NS5B polymerase inhibitors which bind to the different binding 

sites were put together and were not distinguished. 

In this study, a dataset containing 386 NNIs (non-nucleoside analogue inhibitors) fitting into the 

NNI III binding site of HCV NS5B polymerase, was complied. Each molecule was represented by 

molecular descriptors calculated from ADRIANA.Code [17]. Using a support vector machine (SVM), 

three classification models were built to predict whether a compound is active or weakly active as an 

inhibitor of NS5B polymerase based on a training set containing 266 compounds. And a test set 

containing 102 compounds was used to validate the models. 
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Table 1. The intercorrelations between the 13 selected global descriptors and the activity a. 

 Activity InertiaZ HAcc NAtoms NViolationsRo5 LogS InertiaX Span HDon HDon_N NRotBond RComplexity Dipole 

InertiaZ 0.540 1            

HAcc 0.492 0.794 1           

NAtoms 0.457 0.812 0.841 1          

NViolationsRo5 0.452 0.770 0.734 0.607 1         

LogS −0.439 −0.735 −0.404 −0.607 −0.475 1        

InertiaX 0.426 0.830 0.720 0.822 0.673 −0.721 1       

Span 0.403 0.824 0.677 0.760 0.501 −0.625 0.667 1      

HDon 0.397 0.629 0.724 0.655 0.515 −0.241 0.569 0.523 1     

HDon_N 0.364 0.653 0.604 0.503 0.553 −0.314 0.460 0.576 0.792 1    

NRotBond 0.323 0.686 0.681 0.759 0.615 −0.431 0.702 0.658 0.461 0.348 1   

RComplexity 0.298 0.280 0.426 0.497 −0.007 −0.246 0.266 0.483 0.366 0.259 0.077 1  

Dipole 0.296 0.303 0.416 0.464 0.067 −0.306 0.322 0.534 0.288 0.237 0.179 0.794 1 

Eccentric 0.168 0.275 0.139 −0.039 0.189 −0.018 −0.241 0.267 0.089 0.374 −0.045 0.009 −0.008 
a InertiaZ represents principal component of the inertia tensor in z-direction; HAcc represents number of hydrogen bonding acceptors derived from the sum of nitrogen and oxygen atoms in 

the molecule; NAtoms represents number of all atoms in the molecule; NViolationsRo5 represents number of violations of the Lipinski's rule of 5 (Weight > 500, XlogP > 5, HDon > 5, 

HAcc > 10); LogS represents solubility of the molecule in water in [log units]; InertiaX represents principal component of the inertia tensor in x-direction; Span represents radius of the 

smallest sphere centered at the center of mass which completely encloses all atoms in the molecule; HDon represents number of hydrogen bonding donors derived from the sum of N-H and 

O-H groups in the molecule; HDon_N represents number of hydrogen bonding donors N-H groups in the molecule; NRotBond represents number of open-chain, single rotatable bonds; 

RComplexity represents ring complexity according to the approach by J. Gasteiger and C. Jochum [18]; Dipole represents dipole moment in [Debye] of the molecule; Eccentric represents 

molecular eccentricity [19]. 
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2. Results and Discussion 

2.1. Model 1 Built with Global Descriptors 

With the descriptor selection method (in Section 3.3), the 27 global descriptors were chosen. From 

them, 13 descriptors were selected. The 13 selected global descriptors and their correlations with the 

activity are shown in Table 1. 

Then Model 1 was built with the 13 selected global descriptors using SVM. The training set 

including 266 compounds was used to generate the model, and the test set including 102 compounds 

was used to test the model. The two parameters of the SVM (c, g) were selected using the  

auto-searching program “grid.py” through a fivefold cross-validation in Libsvm. Afterwards, manual 

selection was done, and the optimum parameters of c = 0.00097656, g = 8 were selected to build an 

SVM model. Model 1 had a prediction accuracy of 87.97% on training set, a prediction accuracy of 

78.43% and MCC value of 0.625 on test set.  

2.2. Model 2 with Global Descriptors and 2D Autocorrelation Descriptors 

With the descriptor selection method (in Section 3.3), the 27 global descriptors and 88 2D 

autocorrelation descriptors were chosen. From them, 16 descriptors were selected. The 16 selected 

global and 2D autocorrelation descriptors and their correlations with the activity are shown in Table 2. 

Table 2. The correlation coefficients between the 16 selected global and 2D autocorrelation 

descriptors and the activity. 

 Activity Description of Selected Descriptors 

Span 0.403 
Radius of the smallest sphere centered at the center of mass 
which completely encloses all atoms in the molecule 

NRotBond 0.323 Number of open-chain, single rotatable bonds 
LogS −0.439 Solubility of the molecule in water in [log units] 
InertiaZ 0.540 Principal component of the inertia tensor in z-direction 
InertiaX 0.426 Principal component of the inertia tensor in x-direction 

2DACorr_TotChg_11 −0.277 
The eleventh component of 2D autocorrelation coefficients for 
σ and π charges, where the distance d = 10 

2DACorr_TotChg_1 0.523 
The first component of 2D autocorrelation coefficients for σ 
and π charges, where the distance d = 0 

2DACorr_SigChg_4 −0.452 
The fourth component of 2D autocorrelation coefficients for σ 
charge, where the distance d = 3 

2DACorr_SigChg_3 0.272 
The third component of 2D autocorrelation coefficients for σ 
charge, where the distance d = 2 

2DACorr_SigChg_2 −0.249 
The second component of 2D autocorrelation coefficients for σ 
charge, where the distance d = 1 

2DACorr_PiChg_10 0.326 
The tenth component of 2D autocorrelation coefficients for π 
charges, where the distance d = 9 

2DACorr_LpEN_8 0.305 
The eighth component of 2D autocorrelation coefficient for 
lone pair electronegativities, where the distance d = 7 
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Table 2. Cont. 

 Activity Description of Selected Descriptors 

2DACorr_LpEN_6 0.582 
The sixth component of 2D autocorrelation coefficient for lone 
pair electronegativities, where the distance d = 5 

2DACorr_LpEN_4 0.198 
The fourth component of 2D autocorrelation coefficient for 
lone pair electronegativities, where the distance d = 3 

2DACorr_LpEN_10 0.166 
The tenth component of 2D autocorrelation coefficient for lone 
pair electronegativities, where the distance d = 9 

2DACorr_Ident_11 0.421 
The eleventh component of 2D autocorrelation coefficient for 
identity, where the distance d = 10 

Then Model 2 was built with the 16 selected global and 2D autocorrelation descriptors using SVM. 

The optimum parameters of c = 0.00097656, g = 16 were selected to build an SVM model. Model 2 

had a prediction accuracy of 95.49% on training set, a prediction accuracy of 88.24% and MCC value 

of 0.789 on test set.  

2.3. Model 3 with Global Descriptors and 3D Autocorrelation Descriptors 

With the descriptor selection method (in Section 3.3), the 27 global descriptors and 96 3D 

autocorrelation descriptors were chosen. From them, 19 descriptors were selected. The 19 selected 

global and 3D autocorrelation descriptors and their correlations with the activity are shown in Table 3. 

Table 3. The correlation coefficients between the selected 19 global and 3D autocorrelation 

descriptors and the activity. 

 Activity Description of Selected Descriptors 

HDon 0.397 
Number of hydrogen bonding donors derived from the sum of 
N-H and O-H groups in the molecule 

HAcc_N 0.431 
Number of hydrogen bonding acceptors derived from the 
nitrogen atoms in the molecule 

HAcc_O 0.417 
Number of hydrogen bonding acceptors derived from the 
oxygen atoms in the molecule 

LogS −0.439 Solubility of the molecule in water in [log units]  
NRotBond 0.323 Number of open-chain, single rotatable bonds 
InertiaX 0.426 Principal component of the inertia tensor in x-direction 
InertiaZ 0.540 Principal component of the inertia tensor in z-direction 

Span 0.403 
Radius of the smallest sphere centered at the center of mass 
which completely encloses all atoms in the molecule 

Eccentric 0.168 Molecular eccentricity [19] 

3DACorr_SigChg_2 −0.210 
3D autocorrelation weighted by σ atom charges,  
where d is in the range of 2–3 Å 

3DACorr_SigChg_6 −0.364 
3D autocorrelation weighted by σ atom charges,  
where d is in the range of 6–7 Å 

3DACorr_SigChg_7 0.345 
3D autocorrelation weighted by σ atom charges,  
where d is in the range of 7–8 Å 
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Table 3. Cont. 

 Activity Description of Selected Descriptors 

3DACorr_PiChg_4 −0.165 
3D autocorrelation weighted by π atom charges,  
where d is in the range of 4–5 Å 

3DACorr_PiChg_10 0.166 
3D autocorrelation weighted by π atom charges,  
where d is in the range of 10–11 Å 

3DACorr_TotChg_1 −0.514 
3D autocorrelation weighted by total atom charges  
(sum of σ, π charges) , where d is in the range of 1–2 Å 

3DACorr_TotChg_7 0.348 
3D autocorrelation weighted by total atom charges  
(sum of σ, π charges) , where d is in the range of 7–8 Å 

3DACorr_PiEN_7 0.436 
3D autocorrelation weighted by π atom electronegativities, 
where d is in the range of 7–8 Å 

3DACorr_LpEN_5 0.413 
3D autocorrelation weighted by lone pair electronegativities, 
where d is in the range of 5–6 Å 

3DACorr_LpEN_12 0.350 
3D autocorrelation weighted by lone pair electronegativities, 
where d is in the range of 12–13 Å 

Then Model 3 was built with the 19 selected global and 3D autocorrelation descriptors using SVM. 

The optimum parameters of c = 0.00097656, g = 8 were selected to build an SVM model. Model 3 had 

a prediction accuracy of 95.11% on training set, a prediction accuracy of 81.37% and MCC value of 

0.681 on test set. The results for Model 1,2 and 3 are shown in Table 4. 

Table 4. Prediction performance of the three SVM models a. 

Model 
Number of 
Descriptors 

Number of Compounds Training Set Test Set 

Training Set/Test Set Accuracy SE b SP c Accuracy MCC d 

Model 1 13 266/102 87.97% 97.92% 61.11% 78.43% 0.625 
Model 2 16 266/102 95.49% 100% 77.78% 88.24% 0.789 
Model 3 19 266/102 95.11% 100% 64.81% 81.37% 0.681 

a Model 1 represents the model built with 13 selected global descriptors as shown in Table 1. Model 
2 represents the model built with 16 selected global and 2D autocorrelation descriptors as shown in 
Table 2. Model 3 represents the model built with 19 selected global and 3D autocorrelation 
descriptors as shown in Table 3; b SE (sensitivity) represents the prediction accuracy of the active 
inhibitors; c SP (specificity) represents the prediction accuracy of the weakly active inhibitors;  
d MCC represents Matthews Correlation Coefficient. 

2.4. Relationship between the Selected Molecular Descriptors and Activity 

It was found that some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX 

and Span), number of rotatable bonds (NRotBond) and water solubility (LogS) played significance 

roles in predicting models, which occurred in each of the three models. Rotatable bonds (NRotBond) 

can represent the flexibility of a molecule. It can make a difference in the interaction between the 

ligand and protein. Principal component of the inertia tensor (InertiaX and InertiaZ) of a molecule 

performed high relevant with the activity. 

Moreover, hydrogen bonding donor descriptor HDon (representing number of hydrogen bonding 

donors derived from the sum of N-H and O-H groups in the molecule.) occurred in both the Model 1 
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and Model 3, hydrogen bonding acceptor descriptor HAcc (representing number of hydrogen bonding 

acceptors derived from the sum of nitrogen and oxygen atoms in the molecule.) appeared in Model 1, 

HAcc_N (Number of hydrogen bonding acceptors derived from the nitrogen atoms in the molecule) 

and HAcc_O (Number of hydrogen bonding acceptors derived from the oxygen atoms in the molecule) 

appeared in Model 3. It indicated that the hydrogen-bonding interactions were important for stabilizing 

the ligand in the HCV NS5B polymerase active centre.  

In addition, the 2D autocorrelation for atom charges (σ-, π- and total charge) and atom 

electronegativities (lone pair electronegativities) appeared in Model 2 (as shown in Table 2); while, the 

3D autocorrelation for atom charges (σ-, π- and total charge) and atom electronegativities (lone pair 

electronegativities) existed in Model 3 (as shown in Table 3). They indicated that the atom charge and 

electronegativity related descriptors were also important for the interaction between the ligand and 

NS5B polymerase. 

2.5. External Test Set 

A dataset containing 80 newly synthesized compounds (which also bind to the NNI III binding site 

of HCV NS5B polymerase) was collected from recent literatures [8,20,21], which were not included in 

the training and test set. The dataset was used as an external test set, which contains 38 active 

inhibitors and 42 weakly active inhibitors of NS5B polymerase. The molecular structures can be 

obtained in the external.sdf in Supporting Information. Prediction performances of the three SVM 

models are shown in Table 5. Model 1 with 13 selected global descriptors, which gave the best 

prediction performance on the external test set, had the highest prediction accuracy (Q) of 86.25% and 

Matthews correlation coefficient (MCC) of 0.732. Both the Model 1 and 2 have SE 92.11%, but their 

SP are low, which means more weakly inhibitors were wrongly predicted to be active ones by these 

models. Although Model 2 had higher prediction accuracy on test set, Model 1 showed better 

prediction accuracy and MCC on external test set than those of Model 2. The reason might be that the 

molecular structures in the external test set are very different with those in the training set. The training 

set contains benzothiadiazine analogues, acyl pyrrolidine, benzylidene and proline sulfonamide. The 

external test set contains benzothiadiazine analogues and acrylic acid derivatives.  

Table 5. Prediction accuracy on the external test set with three models a. The external test 

set contains 38 active inhibitors and 42 weakly active inhibitors of NS5B polymerase. 

Model 
Number of 
Descriptors 

Number of 
Compounds 

SE b SP c Accuracy MCC d 

Model 1 13 80 92.11% 80.95% 86.25% 0.732 
Model 2 16 80 92.11% 69.05% 80.00% 0.623 
Model 3 19 80 65.79% 54.76% 60.00% 0.206 

a Model 1 represents the model built with 13 selected global descriptors as shown in Table 1. Model 2 

represents the model built with 16 selected global and 2D Autocorrelation descriptors as shown in  

Table 2. Model 3 represents the model built with 19 selected global and 3D Autocorrelation descriptors 

as shown in Table 3; b SE (sensitivity) represents the prediction accuracy of the active inhibitors;  
c SP (specificity) represents the prediction accuracy of the weakly active inhibitors; d MCC represents 

Matthews Correlation Coefficient. 
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One can see that Model 3 showed similar prediction ability with that of Model 1 for the test set. 

However, compared with Model 1 and Model 2, Model 3 performed poorly on external test set. It was 

supposed that the molecular structures in external test set are very different with those in the training 

set. It was observed that acrylic acid derivatives in the external test set were not contained in the 

training set. It seemed that the 3D descriptors (for building Model 3) were more sensitive than global 

descriptors (for building Model 1) and 2D descriptors (for building Model 2). As for predicting the 

activity of the unknown molecules, Model 1 and Model 2 might be of preferred use.  

3. Experimental Section 

3.1. Dataset 

All compounds used in this work were taken from references [2,22–31]. (All the compounds with 

their experimental IC50 values were contained in our datasets. The molecular structures of the 

compounds are shown in the Supporting Information). The IC50 values of the compounds are those for 

HCV genotype 1. 

The dataset includes 386 HCV NS5B NNI III binding site inhibitors. The activity values of the 

inhibitors cover a broad range from 2 to 30,000 nM. We considered the compounds with  

IC50 < 400 nM as active and IC50 > 600 nM as weakly active [16]. The compounds whose activity  

(400 nm < IC50 < 600 nM) are modest [16], were removed (18 compounds). Accordingly, 217 

compounds are active and 151 compounds are weakly active ones. Herein “1” was assigned for active 

inhibitors and “0” was assigned for weakly active inhibitors. A completed listed of the compounds 

structures and their corresponding IC50 are shown in the file of supporting.sdf in Supporting Information. 

We separated the dataset into a training set and a test set. The training/test set selection was done by 

clustering the compounds based on the fingerprint MACCS [32]. Compounds of similar structural and 

chemical features were evenly assigned into separate sets using Kohonen’s self-organizing map 

(calculated with the SONNIA software) [33]. For those compounds without enough structurally and 

chemically similar counterparts, they were put into the training set. Training set included 266 

compounds, which consisted of 169 active compounds and 97 weakly active compounds. Test set 

included 102 compounds, which consisted of 48 active compounds and 54 weakly active compounds.  

Molecular structure building and energy minimization were carried out using the software MOE 

(Molecular Operation Environment) [32]. The need for computer-generated 3D molecular structures 

has been recognized in drug design and many other areas. In this work, the optimization of 3D 

molecular structure was generated by the software CORINA [34]. 

3.2. Molecular Descriptors 

A total of 211 descriptors were calculated using ADRIANA.Code [10], including 27 global 

molecular descriptors (including 8 size and shape descriptors), 88 2D property autocorrelation 

descriptors and 96 3D property autocorrelation descriptors. 

A global molecular descriptor represents each chemical structure by a structural, chemical or 

physicochemical feature or property of the molecule expressed by a single value. A size and shape 
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descriptor represents a molecule by its 3D structure, and hydrogen atoms are taken into account.  

For example, the descriptor NRotBond can stand for number of open-chain, single rotatable bonds [35]. 

The 2D property autocorrelation uses the 2D molecular structure and atom pair properties as a basis 

to obtain vectorial molecular descriptors. And the atom pair properties are summed up for certain 

topological distances which count the number of bonds on the shortest path between two atoms. The 

2D molecular autocorrelation vectors are calculated by the following equation (Equation (1)): 

,

1
( ) ( )

2 i j ij ij
i j
i j

A d p p d d


   
(1)

A(d) is the topological autocorrelation coefficient referring to atom pairs i, j which are separated by 

d bonds. pi, pj is an atomic property such as partial atomic charge on atom i or j, respectively. Thus, for 

each compound, a series of coefficients for different topological distances d, a so-called autocorrelation 

vector is obtained. The 2D molecular autocorrelation vectors were calculated based on the following 

eight atomic properties: σ charge (SigChg), π charge (PiChg), total charges (TotChg), σ electronegativity 

(SigEN), π electronegativity (PiEN), lone-pair electronegativity (LpEN), atomic polarizability (Apolariz) 

and identity (Ident). For each molecule, all the hydrogen atoms were excluded. For each property, the 

autocorrelation values for eleven distances (0–10 bonds) were calculated. Thus, for each molecule, 88 

2D property autocorrelations can be obtained. 

Molecules are spatial objects in 3D space. Autocorrelation can also be applied to the 3D structure of 

a molecule. Thus, the resulting autocorrelation vectors do not only code for the spatial arrangement of 

the atoms but also for spatial distribution of physicochemical properties in a molecule. Since the 

distances d and dij (in Equation (1)) are continuous distances in 3D space between the atoms i and j  

(in [Å]), an additional binning of d into certain distance intervals (e.g., in steps of 1 Å) is necessary to 

transform the function A(d) into a vector A(dn) of size n. 

,

1
( )

2n i j
i jn
i j

A d p p
L



   (2)

In Equation (2), Ln is the number of distances occurring in a certain distance interval and pi and pj 

are the atom properties of the atoms i and j. The sampling of all distances in n equidistant intervals 

(e.g., in distance bins of 1–2 Å, 2–3 Å, 3–4 Å, ...) results in an n-dimensional vector of autocorrelation 

coefficients. The atom property p used for the calculation of the 3D autocorrelation coefficients can 

either be simply the identity (Identity: pi = pj = 1) or any physicochemical atom property, such as 

charge distributions or polarizability effects. (Here, eight atom properties as above were computed). 

For each molecule, all the hydrogen atoms were excluded. For each of the eight properties, a series of 

12 vectors were computed, where Ln correspond to the 12 3D distance intervals from 1–2 Å, 2–3 Å, … 

to 12–13 Å. Thus for each molecule, 96 3D properties autocorrelations can be obtained. 

3.3. Descriptors Selection 

Pearson correlation analysis [36] can reduce descriptors that are not significantly correlated with 

activity and highly correlated with each other. In this work, descriptors whose Pearson correlation 

coefficient with activity was less than 0.15 were deleted. If the pairwise correlation coefficient between 
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any two descriptors was higher than 0.85, the descriptor that had a lower correlation coefficient with 

the activity was removed. Then a stepwise variable selection method was carried out. All the 

descriptors selected by correlation analysis were sorted in a descending order according to their 

correlation coefficient with activity. Simple linear regression of activity and the first descriptor was 

done to obtain an initial equation. Other descriptors were then added to the regression equation one by 

one. A significance test was carried out for each new regression equation and every descriptor in the 

equation. If the new regression equation was not “statistically significant” because of the addition of a 

new descriptor, that the new descriptor was removed. Descriptors that are not “statistically significant” 

in the equation were also removed, followed by construction of a new regression equation. The process 

was continued until no descriptor can be added or removed by this approach. Before training, the input 

data (selected descriptors) were scaled to a [0.1, 0.9] range via the Equation (3). 

1.08.0
minmax

min* 





xx
xxx i

i

 
(3)

where Xi was the original value, and Xi
* was the scaled value. Xmin and Xmax were the corresponding 

minimum and maximum values of the descriptor variable, respectively. 

3.4. Support Vector Machine 

The SVM [37] technique was applied to build the classification models of NS5B polymerase 

inhibitors. SVM is a useful tool for classification. It is based on the Vapnik Chervonenkis  

dimension and Vapnik’s Structural Risk Minimization principle. Its main idea is to map data into a 

high-dimensional space in which a constrained quadratic programming problem will be solved and a 

separating hyperplane with the maximal margin will be found. 

In this study, the Libsvm [38] program was utilized to build SVM models. Libsvm software is 

developed by Chang and Lin for SVM analysis. This software is based on the function of classification. 

There are four basic kernels in Libsvm software. The commonly used kernel, the Radial Basis 

Function (RBF) kernel (Equation (4)), was used. It is used to convert the data into a higher-

dimensional space. The parameters c (Equation (5)) and g were chosen by the auto-searching program 

‘‘grid.py’’ through a cross-validation method. 

k(x, y) = exp(−g||x − y||2) (4)
1

, , 1

1

2

( ( ) ) 1

0

min T
i

w b i

T
i i i
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W W C
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3.5. Evaluation of Models 

Several methods were employed to evaluate the performance of the classification models, such as 

sensitivity (SE), specificity (SP), the overall prediction accuracy (Q) and Matthews correlation 

coefficient (MCC), which are listed by Equations (6–9). True positives (TP) stands for the number of 

active inhibitors which were predicted as active inhibitors, true negatives (TN) stands for the number 

of weakly active inhibitors which were predicted as weakly active inhibitors, false positives (FP) 
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stands for the number of weakly active inhibitors which were predicted as active inhibitors and false 

negatives (FN) stands for the number of active inhibitors which were predicted as weakly active 

inhibitors. SE stands for the prediction accuracy for active inhibitors and SP stands for the prediction 

accuracy for weakly active inhibitors, respectively. 

( /( )) 100%SE TP TP FN    (6)

( /( )) 100%SP TN TN FP    (7)

(( ) /( )) 100%Q TP TN TP TN FP FN       (8)

( )( )( )( )

TP TN FN FP
MCC

TP FN TP FP TN FN TN FP

  


   
 (9)

According to Equation (9), a higher MCC value means a better prediction performance. 

4. Conclusions 

In this study, three SVM models for classifying hepatitis C virus (HCV) NS5B NNI III binding site 

inhibitors were developed. All the three models showed good prediction ability for the test set.  

As for predicting the activity of the unknown molecular structures, Model 1 and Model 2 might be of 

preferred use. 

It was found that some molecular properties such as molecular shape descriptors (InertiaZ, InertiaX 

and Span), number of rotatable bonds (NRotBond), water solubility (LogS), and hydrogen bonding 

related descriptors performed important roles in the interactions between the ligand and NS5B 

polymerase. In addition, the atom charges and atom electronegativities related descriptors were  

also important. 
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