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Cardiac sarcoidosis (CS) is an increasingly recognized cause of heart failure and

arrhythmia. Historically challenging to identify, particularly in the absence of extracardiac

sarcoidosis, diagnosis of CS has improved with advancements in cardiac imaging.

Recognition as well as management may require interpretation of multiple imaging

modalities. Echocardiography may serve as an initial screening study for cardiac

involvement in patients with systemic sarcoidosis. Cardiac magnetic resonance imaging

(CMR) provides information on diagnosis as well as risk stratification, particularly for

ventricular arrhythmia in the setting of late gadolinium enhancement. More recently,
18F-fluorodeoxyglucose position emission tomography (FDG-PET) has assumed a

valuable role in the diagnosis and longitudinal management of patients with CS, allowing

for the assessment of response to treatment. Hybrid FDG-PET/CT may also be used in

the evaluation of extracardiac inflammation, permitting the identification of biopsy sites for

diagnostic confirmation. Herein we examine the approach to diagnosis and management

of CS using multimodality imaging via a case-based review.

Keywords: cardiac sarcoidosis, sarcoid cardiomyopathy, multimodality imaging, inflammatory cardiomyopathy,

echocardiography, cardiac PET, cardiac MRI (CMR)

INTRODUCTION

Sarcoidosis is a multiorgan system disease characterized by noncaseating granulomatous
inflammation (1–3). Sarcoidosismost commonly involves the lungs or lymph nodes (2, 4). However
cardiac sarcoidosis (CS) is increasingly recognized and may occur with extracardiac findings
or, rarely, in isolation (4). Clinically, cardiac involvement may manifest with cardiomyopathy,
arrhythmia, or atrioventricular conduction disease, or CS may remain relatively subclinical (2).
While identifying CS has significant therapeutic and prognostic implications (5–7), diagnosis may
be challenging, particularly in the absence of extracardiac disease.

Diagnosis of CS traditionally requires histopathologic evidence of sarcoidosis (i.e., noncaseating
granulomas) either in the heart or another organ in addition to characteristic clinical and imaging
findings. Several diagnostic criteria for CS have been proposed, including the Japanese Ministry
of Health and Welfare (JMHW) criteria (8) and the Heart Rhythm Society (HRS) criteria (9).
The widely used HRS criteria require confirmatory cardiac histopathology to make a “definite CS”
diagnosis. When there is a histologic diagnosis of extracardiac sarcoidosis, a diagnosis of “probable
CS” can be made with the following HRS imaging criteria: reduced left ventricular ejection fraction
(LVEF) <40%, patchy uptake on dedicated 18F-fluorodeoxyglucose position emission tomography
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(FDG-PET) scan, and/or late gadolinium enhancement (LGE)
on cardiac magnetic resonance imaging (CMR) (9). However,
with advancements in cardiac imaging, and the limited diagnostic
yield of biopsy (4, 10, 11), there has been increased reliance
on imaging and clinical presentation for the diagnosis of CS
(12). More recently, the revised Japanese Circulation Society
updated criteria for CS to allow for a diagnosis of possible
or isolated CS based on imaging characteristics, including
cardiac FDG uptake, LGE on CMR, and abnormalities in
ventricular wall anatomy and function (basal thinning of the
interventricular septum, ventricular aneurysm, LVEF < 50%)
(12). Notably, while the updated Japanese criteria still include
abnormal 12-lead electrocardiogram (ECG) findings (ventricular
arrhythmias, bundle branch bock, axis deviation, pathologic Q
waves) as minor criteria for CS diagnosis (12), ECG has low
sensitivity and specificity for CS (7). HRS guidelines include
ECG as a screening tool for cardiac involvement among patients
with known extracardiac sarcoidosis, where it is best used for
screening in conjunction with echocardiography to increase
diagnostic yield (9).

Here we provide a case-based review of multimodality
cardiac imaging, specifically echocardiography, CMR, and FDG-
PET, in CS, with an emphasis on diagnostic and management
strategies (Figure 1). We also highlight the current limitations
and challenges as well as future directions of advanced cardiac
imaging in CS.

ECHOCARDIOGRAPHY

A 42-year-old male with a history of previously treated, well
controlled pulmonary sarcoidosis presents with 3 months of
progressive dyspnea on exertion, weight gain and fatigue. Physical
exam is notable for elevated jugular venous pressure, bilateral
inspiratory rales and pitting pretibial edema. He is referred for an
echocardiogram, which demonstrates low normal left ventricular
systolic function with an LVEF of 50–55%, moderate concentric
left ventricular (LV) hypertrophy, restrictive diastolic filling pattern
(mitral inflow E/A ratio 2.2) and mild hypokinesis of the right
ventricle. Global longitudinal strain (GLS) is reported at −6%
(normal < −18%). Given concern for restrictive cardiomyopathy,
he is referred for endomyocardial biopsy, which demonstrates
fibrosis without active granulomatous inflammation. Ongoing
suspicion for cardiac involvement of sarcoidosis prompts advanced
cardiac imaging, ultimately confirming a diagnosis of CS. He is
initiated on corticosteroids and mycophenolate mofetil.

Two-dimensional transthoracic echocardiography (TTE)
remains a cornerstone in the investigation of patients
with suspected CS (9). TTE is the only imaging modality
recommended by HRS guidelines for the screening of patients
with extracardiac sarcoidosis for cardiac involvement (9).
Left ventricular systolic or diastolic dysfunction, ventricular
dilatation, abnormal septal wall thickness, wall motion
abnormalities in non-coronary distributions, ventricular
aneurysms, and pericardial effusion are all findings that have
been associated with CS (Figure 2) (2, 5, 7, 13, 14). Left
ventricular hypertrophy and restrictive physiology may also

be noted (2, 11, 15), with associated biatrial enlargement and
restrictive diastolic filling pattern (as evidenced by mitral
inflow pattern with E/A ratio ≥ 2 and findings consistent with
increased left atrial pressure) (16). Several studies have identified
thickening or thinning of the septal wall as a more specific
finding for CS (17, 18). However, many patients with CS do not
manifest any of these echocardiographic abnormalities, limiting
the sensitivity of this modality for identifying CS (7, 19).

More recently, advanced techniques such as speckle tracking
echocardiography (STE) have shown promise in identifying
subclinical myocardial dysfunction in CS. The tracking of
grayscale speckles within the myocardium over the cardiac
cycle allows for assessment of myocardial deformation using
measurements such as strain, or change in length compared to
baseline length (20, 21). STE deformation parameters can assess
mechanics at the level of the cardiomyocytes and are sensitive
to histopathological changes in myocardial tissue (21). Thus,
reductions in strain, globally or over a regional area of interest,
can indicate underlying myocardial disease (20, 21).

CS is characterized by myocardial inflammation, fibrosis, and
edema (22), pathologic changes that affect tissue function and,
consequently, measures of strain before overt changes in LV
functionmight be detected by TTE. Di Stefano and colleagues, for
example, compared 23 patients with definite or probable CS and
normal LV and RV systolic function with no baseline wall motion
abnormalities to 97 healthy controls (23). The authors found
a significant impairment in left ventricular global longitudinal
strain, LVGLS (absolute LVGLS 15.9% ± 2.5 vs. 18.2% ± 2.7, P
= 0.001) and right ventricular global longitudinal strain, RVGLS
(absolute RVGLS 16.9% ± 4.5 vs. 24.1% ± 4.0, P = 0.0001)
among those with CS (23). Notably, among the larger cohort of
83 patients with definite or probable CS in this study (including
those with reduced LVEF), event rates for hospitalization or heart
failure were higher in those patients with absolute LVGLS <

14% (23).
Additionally, multiple observational studies have

demonstrated that reductions in GLS may be identified
by STE in patients with sarcoidosis without known CS or
apparent LV dysfunction, suggestive of early subclinical
myocardial dysfunction (24–27). A recent meta-analysis of
these studies found that LVGLS was significantly impaired
in patients with extracardiac sarcoidosis and normal LV
function compared with controls, and that among patients
with sarcoidosis, LVGLS was significantly reduced in patients
who experienced major cardiac events (28). These studies
suggest a potential role for STE as a more sensitive screening
tool than traditional echocardiography alone to identify
patients with extracardiac sarcoidosis at increased risk for
cardiac involvement.

Among patients with known CS, TTE and STE may
have a role in longitudinal management. Recognition of
LV dysfunction is important for implementing guideline-
directed medical therapy (GDMT) for heart failure, while
serial TTE may be used to monitor response to medications
or potentially identify candidates for advanced heart failure
therapies and devices (5, 10, 29). The role for neurohormonal
blockade to prevent maladaptive LV remodeling is not well
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FIGURE 1 | Proposed algorithm for the multimodal imaging approach to diagnosis and management of CS.

FIGURE 2 | Echocardiographic findings in cardiac sarcoidosis. (a) Left ventricular dilatation; (b) Left and/or right ventricular hypertrophy; (c) Reduced global

longitudinal strain (GLS); (d) Left ventricular wall aneurysm (arrow); (e) Pericardial effusion; (f) Valvular thickening or dysfunction.

understood for patients with impaired GLS without overt LV
dysfunction. The field of cardio-oncology, where preemptive
use of cardioprotective medications in patients receiving
cardiotoxic medications to prevent cancer treatment related
cardiac dysfunction has been more extensively evaluated, may

provide some insight (30, 31). For example, one study of
159 patients receiving potentially cardiotoxic chemotherapy
(anthracyclines, trastuzumab, or both) showed that among
patients with decreased absolute GLS by ≥ 11% relative
to baseline, those who received beta blockers demonstrated
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improvement in GLS on follow-up (32). Additional studies
are needed to explore a similar role for cardioprotective
medications among patients with CS, particularly those in
whom subclinical LV dysfunction is identified early on
cardiac imaging.

CARDIOVASCULAR MAGNETIC
RESONANCE IMAGING

A 63-year-old African American female with a history of
hypertension and dyslipidemia presents to the emergency
department with 1 week of intermittent chest pressure and
palpitations. ECG on arrival shows sinus rhythmwith a nonspecific
intraventricular conduction delay and occasional premature
ventricular contractions. Serum troponin levels are undetectable.
Chest x-ray is notable for an enlarged cardiac silhouette and hilar
lymphadenopathy. Transthoracic echocardiogram reveals global
LV systolic dysfunction with LVEF 40% and thinning of the basal
septal wall. Coronary angiography shows non-obstructive coronary
artery disease. She is referred for CMR, which shows midwall
delayed gadolinium enhancement in the inferolateral basal septal
LV, suspicious for CS. For further diagnostic evaluation, she
undergoes bronchoscopy with endobronchial ultrasound-guided
lymph node biopsy. Histopathology demonstrates macrophages
and noncaseating granulomas. Given histologic confirmation of
sarcoidosis, CMR findings and in context of borderline LV function,
electrophysiology study is performed for further arrhythmic risk
stratification and demonstrates inducible ventricular tachycardia.
She undergoes implantable cardioverted-defibrillator (ICD)
placement and initiation of immunosuppressive therapy for CS.

CMR has established a role as a highly sensitive tool with
both diagnostic and prognostic value in the management of CS.
CMR has wide application in the evaluation of nonischemic
cardiomyopathies, in part owing to the ability to identify
myocardial fibrosis by LGE (33). Midwall and subepicardial LGE,
commonly involving the basal or mid-ventricular septum, are
characteristic of CS, though other patterns have been noted
(Figure 3) (34–39). Lesions detected by LGE-CMR may be too
small to cause conduction disturbances or LV structural or
functional changes that might be identified by ECG or TTE, but
nonetheless may have clinical importance (33–35). LGE-CMR
has demonstrated increased sensitivity for cardiac involvement
among patients with sarcoidosis when compared with JMHW
criteria alone (35). In another cohort of 321 sarcoidosis patients,
among whom 96 (29.9%) met HRS criteria for CS, CMR
demonstrated the highest sensitivity (96.9%), specificity (100%),
and area under the curve (0.984) when compared to ECG, Holter
monitoring, and TTE (40). CMR can also provide comprehensive
assessment of cardiac morphology and function including left
and right ventricular systolic function, ventricular dimensions,
wall thickness, and wall motion abnormalities (41, 42). The
emerging CMR technique of strain imaging may offer another
means to assess the effect of CS on LV mechanics (43). Multiple
authors have investigated the use of CMR strain imaging for
diagnosis and prognostication (44–46). One recent study of 76
patients with CS who underwent CMR with both LGE and

longitudinal strain imaging suggested that regional longitudinal
strain was not well associated with either arrhythmic phenotype
(atrioventricular block vs. ventricular arrhythmia) or future
adverse events compared to LGE (46); however, more data are
needed to understand the potential role of CMR strain imaging
in CS.

In addition to its diagnostic utility, CMR has also
demonstrated prognostic power (35, 47–50). In an early
study by Patel and colleagues noted above, patients with LGE on
CMR had higher rates of the composite endpoint of all-cause
mortality or symptomatic arrhythmia as well as higher rates of
cardiac death (35). Likewise, in a larger cohort of 155 patients
with systemic sarcoidosis undergoing CMR for suspected cardiac
involvement, LGE was associated with an increased risk of death,
aborted sudden cardiac death, or appropriate ICD firing (HR
31.6, P = 0.0014) on multivariate analysis (48). The presence of
LGE was found to be a better independent predictor of cardiac
death than LVEF, which has previously been identified as a
predictor of mortality among patients with CS (48, 51, 52).
A recent meta-analysis including these and similar studies,
including 694 subjects in total, found an increased risk of
cardiovascular death (relative risk 10.7, 95% confidence interval
[CI] 1.34–86.3, P = 0.03) and ventricular arrhythmia (relative
risk 19.5, 95% CI 2.68–143, P = 0.003) in LGE-positive patients
compared to LGE-negative patients (49). Notably, LGE-negative
patients (495/694) had low rates of cardiovascular mortality and
ventricular arrhythmias, suggesting that LGE-CMR also confers
a high negative predictive value and that LGE-negative patients
have a favorable prognosis (49). Similarly, it has been noted that
inflammation on FDG-PET in the absence of LGE on CMR
identifies lower risk group for ventricular arrhythmias compared
to FDG positive patients with LGE (53).

LGE-CMR has a particularly nuanced role in the decision
for ICD placement among patients with CS. Persistent LVEF ≤

35% despite optimal medical therapy and immunosuppression
(if indicated), sustained ventricular tachycardia, and aborted
sudden cardiac arrest remain class I indications for an ICD
by the most recent HRS guidelines (9, 54), while class IIa
indications include patients with LVEF ≥ 35% and syncope,
evidence of myocardial scar by CMR or FDG-PET, an indication
for permanent pacing, or inducible sustained ventricular
arrhythmia on electrophysiological study (54). LGE-CMR may
identify additional patients at increased risk of sudden cardiac
death in the absence of significantly reduced LV function
(9). Interestingly, several studies have identified LGE regional
variations in risk of ventricular arrhythmias and sudden cardiac
death (46, 55). One study of 290 patients with biopsy-proven
sarcoidosis undergoing CMR for suspected cardiac involvement
found that LGE in the right ventricle was independently
associated with the combined endpoint of sudden cardiac
death or significant ventricular arrhythmia (HR 5.43, 95%
CI 1.25–23.47, P = 0.024) (55). Thus, CMR may prompt
referral for ICD for patients with higher risk LGE features.
Conversely, the 2014 HRS consensus statement indicates that
absence of LGE in patients without other class I indications
identifies patients who should not receive ICD therapy (class
III) (9).
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FIGURE 3 | Long axis (a) and short axis (b) CMR images demonstrating late gadolinium enhancement (LGE) having a patchy non-vascular midmyocardial and

sub-epicardial pattern mainly involving the basal and apical septal wall, basal-mid lateral and anterior wall, and right ventricular wall; (c) Black blood T-2 weighted CMR

images demonstrate patchy areas of predominantly midmyocardial increased signal intensity in the left and right ventricular myocardium denoting myocardial

inflammation.

LGE-CMR is not without limitations. While sensitive to
even small regions of fibrosis (34, 35), midwall enhancement
is not specific to CS and can be seen in other nonischemic
cardiomyopathies, including arrhythmogenic right ventricular
cardiomyopathy (56). Though less common, transmural
distribution or subepicardial and subendocardial distribution
of LGE (with midwall sparing), as well as multifocal LGE
may also indicate CS (5, 36). Additionally, LGE-CMR may
be less sensitive in patients in earlier stages of CS, who have
acute inflammation but have not yet developed myocardial
fibrosis (33, 43). T2-weighted imaging may increase detection
of acute inflammation, though more data are needed to
understand the role of T2 mapping in CS (44, 57). CMR
may be technically challenging in patients with permanent
pacemakers or cardiac defibrillators (43, 58). Importantly,
recent studies have demonstrated the safety of MRI in patients
with non-MRI-conditional devices using safety protocols,
which may mitigate this concern (59, 60). Finally, gadolinium
is relatively contraindicated in patients with severe renal
disease due to the risk of nephrogenic systemic fibrosis
(43, 58).

18F-FLUORODEOXYGLUCOSE POSITION
EMISSION TOMOGRAPHY

A 49-year-old male with a history of biopsy-proven pulmonary
sarcoidosis and recent complete heart block status post permanent
pacemaker presents in clinic for further evaluation of possible
cardiac involvement of sarcoidosis. ECG demonstrates sinus
rhythm with right ventricular pacing. TTE shows normal
biventricular size and function. CMR reveals LGE localized
to the basal septum. He is referred for cardiac FDG-PET,
which demonstrates patchy FDG uptake involving the basal
septal and inferolateral LV wall with co-localized perfusion
defects, concerning for active CS. A course of prednisone
and methotrexate are initiated and 4 months later FDG-
PET scan is repeated showing near resolution of cardiac

FDG uptake. Pacemaker interrogation reveals recovery of AV
node conduction.

FDG-PET with myocardial perfusion imaging has emerged
as an important imaging modality in CS, combining assessment
of active cardiac inflammation with evaluation of perfusion
(Figures 4, 5) (61, 62). 18F-FDG is a glucose analog that is readily
utilized by activated macrophages (61, 63). Accumulation of
FDG by these highly metabolic inflammatory cells within active
granulomas allows for visualization of active inflammation in
CS (22, 64, 65). Patterns of FDG uptake associated with CS
have been described as focal, focal on diffuse, or less commonly,
diffuse, though diffuse FDG uptake may be difficult to interpret
(9, 62). Hybrid PET/CT imaging facilitates identification of
alternate sources of abnormal FDG uptake, such as malignant
lesions or infections (62). Additionally, metrics to quantify FDG
uptake, such as standardized uptake values (SUVs), may aid in
interpretation and comparison of studies (62, 66, 67).

Importantly, whole-body PET can identify extracardiac
inflammation and accessible biopsy sites to confirm
histopathologic diagnosis of sarcoidosis (22, 67, 68). FDG-
PET guidance can improve the diagnostic yield of noncardiac
biopsy targets such as thoracic lymph nodes, which typically
have higher yield than endomyocardial biopsy, especially when
significantly FDG avid (67). Furthermore, assessment of the
extent and activity of extracardiac involvement may have
implications for treatment decisions (68).

It is recommended to combine 18F-FDG metabolic imaging
with myocardial perfusion imaging (MPI) using rubidium-82 or
N-13-ammonia (62, 67). Perfusion defects, related to changes in
coronary microcirculation caused by CS, typically occur in non-
coronary distributions and may represent areas of inflammation
or fibrosis (62, 69). Pairing FDG and MPI patterns can provide
information regarding the activity and chronicity of cardiac
involvement (62, 67, 70). Active inflammation may result in FDG
uptake in an area of abnormal perfusion (mismatched segment),
whereas fibrosis may cause a perfusion defect in the absence of
FDG uptake (11, 67, 68).

The sensitivity of FDG-PET for the diagnosis of CS has
been reported as 85–100% in various studies, with a specificity
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FIGURE 4 | Whole-body FDG PET (a) and axial PET and PET/CT images (c,e) following appropriate pre-test preparation demonstrating abnormal patchy increase in

FDG avidity within the right and left ventricular myocardium with subtle increase in right atrial FDG uptake. (b,d,f) Show post-treatment FDG PET/CT images in the

same patient demonstrating interval resolution of the previously seen abnormal myocardial FDG uptake. Note interval ICD placement.

FIGURE 5 | Splash images demonstrating moderate to severe transmural perfusion abnormality mainly involving the mid-base septal and inferoseptal wall (upper

row), corresponding to areas of increased FDG uptake (middle row), denoting significant inflammation causing decreased perfusion (“mismatch” pattern). Note

additional sites of increased FDG uptake without corresponding decreased perfusion such as in the mid-apical anterolateral wall.
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ranging from 39 to 100% (62, 67). One meta-analysis of
7 studies yielded a pooled sensitivity of 89% (95% CI 79–
96%) and specificity of 78% (95% CI 68–86%) (61). However,
multiple authors note that estimations of specificity may be
limited by the use of JMHW criteria as the standard in
multiple studies, which have lower sensitivity for CS than
FDG-PET (62, 67). Other diagnoses to consider in the
setting of positive FDG uptake include myocardial ischemia
with hibernating myocardium, other forms of myocarditis or
systemic rheumatologic diseases associated with myocardial
inflammation, or some arrhythmogenic cardiomyopathies (67,
71, 72).

Important for ensuring high diagnostic accuracy of FDG-PET
is effective suppression of physiologic myocardial glucose uptake
by shifting cardiomyocytes preferentially to fatty acidmetabolism
(67). Suboptimal patient preparation may lead to diffuse FDG
uptake, limiting visualization of active sarcoid lesions or leading
to false positive results (61, 62, 73). The most recent joint
SNMMI/ASNC expert consensus statement recommendations
include two high-fat (>35 g), low carbohydrate (<3 g) meals the
day prior to the study followed by a 4–12 period of fasting;
an 18 hour fast is an alternative option (67). The adjunctive
use of unfractionated heparin immediately prior to the scan has
been described (74) but was not specifically recommended in the
SNMMI/ASNC document (67). A recent study investigating the
use of a structured preparation protocol adhering to the new
SNMMI/ASNC guidelines compared to a former less-rigorous
protocol showed that a strict high-fat, low-carbohydrate diet
with prolonged fasting, compliance reinforcement, and detailed
instructions was highly successful in suppressing physiologic 18F-
FDG uptake (91% among the structured protocol group vs. 78%
in the standard protocol group, P < 0.001) (73).

Given the limitations posed by the use of 18F-FDG in the
setting of physiologic uptake by cardiac myocytes, alternative
radiotracers have been explored to improve the specificity of
PET imaging in CS (75–81). One novel radiotracer of particular
interest is a radiolabeled somatostatin analog (68Ga-somatostatin
analog), which targets the somatostatin receptor (SSTR) 2
subtype that is highly expressed in sarcoid granulomas but not
in normal cardiac myocytes (75). Early feasibility studies suggest
somatostatin analogsmay increase diagnostic accuracy compared
to FDG-PET (77, 78); however, more data are needed to guide the
use of this modality.

When high quality imaging can be obtained, serial FDG-
PET imaging may be used to assess response to treatment and
to guide management of CS. One single-center study of 32
patients with CS who underwent FDG-PET imaging before and
after corticosteroid therapy demonstrated that 81% of patients
had a decrease in the extent and 88% experienced a decrease
in the intensity of FDG uptake on follow-up imaging (82). A
separate study of 34 patients with CS who collectively underwent
128 FDG-PET scans per an institutional management protocol
found that 94 (73%) of scans led to a change in therapy
and 42 (33%) resulted in a decrease in prednisone dose (83).
Several retrospective studies have now demonstrated the role of
serial FDG-PET in guiding immunosuppression management,
specifically the ability to taper corticosteroids while maintaining

good cardiac disease control (83–85). While SNMMI/ASNC
guidance recommends assessing change in intensity and extent
of FDG uptake on follow-up studies (67), it is also worth noting
that perfusion defects, which may be related to microvascular
compression and local ischemia, may also resolve with treatment
(62, 67). The ongoing CHASM-CS randomized clinical trial of
combination prednisone/methotrexate compared to prednisone
alone for initial treatment of active CS includes perfusion defects
on 6-month PET scan as the primary endpoint (86). Experts
recommend repeat FDG-PET imaging in a 3–6 month interval
after initiation of immunosuppressive therapy to assess for
improvement (which may guide tapering of corticosteroids and
minimize drug related side effects) vs. stability to worsening of
inflammation (possibly prompting escalation of therapy) (6, 11,
62, 68).

For patients with CS, FDG-PET imaging also conveys
important prognostic information. Blankstein et al. found that
among 118 patients referred for FDG-PET for evaluation of
possible CS, the presence of both perfusion defects and FDG
uptake was associated with increased incidence of death or
sustained ventricular tachycardia (HR 3.94, 95% CI 1.50–10.31, P
< 0.01) compared to patients with normal imaging (87). Notably,
right ventricular FDG uptake was also associated with adverse
events (HR 4.22, 95% CI 1.87–9.50, P < 0.001). Similarly, among
67 patients with CS who were referred for FDG-PET, intensity of
FDG uptake (as quantified by standardized uptake values, SUV)
was associated with increased incidence of cardiac events (88).
Other studies have noted that decrease in inflammation on serial
FDG-PET scans is associated with improvement in LVEF (89, 90).
The longer-term implications however of mildly persistent FDG
uptake or perfusion defects remain unknown in patients with
otherwise clinically controlled CS.

IMAGING IN CS: A MULTIMODALITY
APPROACH

The pathophysiology of CS lends itself to the complementary
imaging modalities of echocardiography, CMR and FDG-PET
for purposes of diagnosis, management, and prognostication. A
proposed algorithm for imaging in CS is provided in Figure 1.
Echocardiography is highly accessible and allows an initial,
urgent assessment of ventricular function, valvular disease or
pericardial effusion that may point toward specific immediate
management approaches. Advanced cardiac imaging allows for
more nuanced CS assessment. Focal inflammation identified and
quantified by FDG uptake may be prominent in early stages
of the disease, whereas fibrosis occurring later in the disease
course may be better assessed by superior spatial resolution of
CMR. Several studies have evaluated the utility of sequential
(38, 91, 92) or hybrid (93–95) CMR/PET imaging for diagnosis
of CS. In the largest of these studies, 107 patients underwent
both CMR and FDG-PET for evaluation of known or suspected
CS and imaging findings were integrated to determine the
combined likelihood of CS (no CS, possible CS, probable CS, or
highly probable CS) (38). When FDG-PET results were added
to findings from CMR, 48 patients (45%) were reclassified as
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TABLE 1 | Imaging modalities for the diagnosis and management of cardiac sarcoidosis.

Imaging

modality

Techniques Findings Clinical role Limitations

TTE 2D TTE STE • Left or right ventricular systolic/diastolic

dysfunction

• Ventricular dilatation

• Abnormal septal wall thickness

• LVH

• Wall motion abnormalities

• Ventricular aneurysm

• Pericardial effusion

• Valvular dysfunction

• Reduced GLS

• Initial screening of patients with ECS

• Serial monitoring of LV function (for purpose

of GDMT, ICD, AHF therapy)

• Reduced GLS associated with adverse

cardiac events

• Limited sensitivity/specificity

CMR LGE

T1/T2-mapping

• Midwall/ subepicardial LGE

• Patchy, non-coronary distribution

• Basal septum most commonly involved

• CS diagnosis (subacute/chronic)

• Evaluation of LV morphology/function

• Risk stratification (LGE associated

with VA/SCD)

• May be less specific for CS

• Limited sensitivity in early disease

• Challenging in patients with devices

• Gadolinium contraindicated in

advanced CKD

FDG-PET 18F-FDG MPI

Hybrid PET/CT

Whole body PET

• Focal or focal-on-diffuse FDG uptake

• FDG-avid extracardiac lesions

• Perfusion defects

• FDG/perfusion mismatch

• CS diagnosis (acute/chronic)

• Serial imaging to assess response to/titrate

of IS

• Assess ECS activity

• Identify non-cardiac biopsy sites

• Risk stratification (FDG uptake associated

with death/VA)

• Patient preparation required for adequate

glucose suppression

• May be less specific for CS

AHF, advanced heart failure; CKD, chronic kidney disease; CMR, cardiac magnetic resonance imaging; ECS, extracardiac sarcoidosis; GDMT, guideline-directed medical therapy; GLS,

global longitudinal strain; ICD, implantable cardioverter-defibrillator; IS, immunosuppression; LGE, late gadolinium enhancement; LVH, left ventricular hypertrophy; MPI, myocardial

perfusion imaging; FDG-PET, 18F-fluorodeoxyglucose position emission tomography; SCD, sudden cardiac death; STE, speckle-tracking echocardiography; TTE, transthoracic

echocardiogram; VA, ventricular arrhythmia.

having a higher or lower probability of CS compared to results
from a single imaging study (38). Similarly, a small study of
patients undergoing hybrid CMR/PET imaging resulted in high
quality 18F-FDG and CMR images, demonstrating the value
of this modality for diagnosis, prognosis, and potentially cost-
saving (95). Notably, both FDG-PET and CMR are included
among HRS criteria for diagnosis of CS and carry a class IIa
recommendation for performing in patients with at least one
abnormality detected on initial cardiac screening (history, ECG,
and TTE) (9). However, given the high negative predictive value,
CMR might serve as the best initial testing option—in many
patients, a normal CMR might be sufficient to obviate the need
for further testing (62, 68). By JMHW criteria, a clinical diagnosis
of CS might be made with abnormalities on TTE and CMR in
the presence of one major clinical criterion (advanced AV block,
thinning of the basal interventricular septum, positive cardiac
Gallium-67 uptake, or LVEF < 50%) (8). Interstitial fibrosis
or monocyte infiltration on endomyocardial biopsy may also
comprise a minor criterion, with identification of noncaseating
granulomas confirming a histological diagnosis; however, the
yield of endomyocardial biopsy is often limited (9). FDG-PET
is excluded from these guidelines, with potential implications
for the sensitivity of JMHW criteria for diagnosing CS (62,
67). Importantly, advanced imaging modalities of CMR and
FDG-PET are both incorporated into the more recent Japanese
Circulation Society guidelines as major criteria for a diagnosis of
CS (12), reflecting the value of these tests in evaluating patients
with suspected CS.

Beyond confirming a diagnosis, the management of CS
also relies heavily on multimodality imaging. As previously
detailed, FDG-PET has shown to be an effective tool for
monitoring response to and tailoring immunosuppression. Serial
echocardiographic evaluation is invaluable for longitudinal
assessment of LV function to guide GDMT and, if needed,
identify candidates for advanced therapies including left
ventricular assist devices and orthotopic heart transplant (4,
5, 11). Another important decision point pertains to ICD
therapy and is again highly reliant on imaging findings to guide
management. Echocardiography and CMR are essential for risk
stratification of patients with CS to classify those at highest risk
of sudden cardiac death (4, 9, 54).

CONCLUSIONS

CS is a disease of complex pathophysiology that is well-suited
to a multimodality imaging approach for purposes of diagnosis,
treatment, and prognostication. Together, TTE, CMR and FDG-
PET provide complementary clinical information that allows
for a comprehensive understanding of the extent of cardiac
involvement for each individual patient (Table 1). Ongoing
studies involving more advanced imaging techniques—including
speckle-tracking echocardiography and hybrid CMR/PET
imaging—may provide additional insights. Further studies are
needed to best employ these more advanced modalities for
optimal management of CS.
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