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Introduction: Echocardiography is widely used because of its portability, high temporal

resolution, absence of radiation, and due to the low-costs. Over the past years,

echocardiography has been recommended by the European Society of Cardiology

in most cardiac diseases for both diagnostic and prognostic purposes. These

recommendations have led to an increase in number of performed studies each requiring

diligent processing and reviewing. The standard work pattern of image analysis including

quantification and reporting has become highly resource intensive and time consuming.

Existence of a large number of datasets with digital echocardiography images and recent

advent of AI technology have created an environment in which artificial intelligence (AI)

solutions can be developed successfully to automate current manual workflow.

Methods and Results: We report on published AI solutions for echocardiography

analysis on methods’ performance, characteristics of the used data and imaged

population. Contemporary AI applications are available for automation and advent

in the image acquisition, analysis, reporting and education. AI solutions have been

developed for both diagnostic and predictive tasks in echocardiography. Left ventricular

function assessment and quantification have been most often performed. Performance

of automated image view classification, image quality enhancement, cardiac function

assessment, disease classification, and cardiac event prediction was overall good but

most studies lack external evaluation.

Conclusion: Contemporary AI solutions for image acquisition, analysis, reporting and

education are developed for relevant tasks with promising performance. In the future

major benefit of AI in echocardiography is expected from improvements in automated

analysis and interpretation to reduce workload and improve clinical outcome. Some of

the challenges have yet to be overcome, however, none of them are insurmountable.
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INTRODUCTION

Echocardiography is the most commonly performed non-
invasive cardiac procedure. It is the recommended imaging
modality for most cardiac diseases for diagnostic and prognostic
purposes by the European Society of Cardiology (1–7).
Echocardiography has unique characteristics such as portability,
high temporal resolution, absence of ionizing radiation and
low-costs. Precise and reliable echocardiographic assessment is
prerequisite for high-quality clinical decision-making (8).

Analysis of echocardiography is associated with numerous
challenges. Given that it is recommended as first-line diagnostic
tool, an ongoing growing worldwide challenge is to process
millions of echocardiography clips and images obtained
daily. The increasing workload in all echocardiographic
laboratories and varying image quality makes thorough and
timely interpretation challenging. Technicians acquire the
clips and images, perform manual measurements, write the
draft report, which is followed by approval of cardiologists
making the total process rather complex, resource intensive
and time consuming (9). Cardiologists in private practices
and those in small hospitals often do not have technicians
available. Hence, they are often overloaded with routine tasks
inherent to echocardiographic exams and sometimes miss very
specialized expertise. Moreover, it also takes years of education
and experience for a technician or cardiologist to become an
expert in detecting perceptual cues in echocardiography clips
and automatically integrating this information into a clinical
differentiation based upon pattern recognition without overt
statistical reasoning. Echocardiography is also increasing in
complexity, particularly strain imaging and three dimensional
(3D) analysis (10). Furthermore, volume of exams is rising due
to new diagnostic assessments and therapeutic options leading
to a further increase in expert workload (11–13).

Artificial intelligence (AI) is a rapidly emerging field and refers
to the broad concept of simulating human logic and intelligence

FIGURE 1 | Artificial intelligence, machine learning and deep learning.

and covers any algorithm or model executed by a computer
that mimics human intelligence, see Figure 1 (14–16). Machine
learning (ML) is a subfield of AI where the algorithms learn
to perform a task based on expert engineered characteristics
describing the data (17). Deep learning (DL) is a subfield of ML
where the algorithms learn directly from the data themselves
circumventing the feature engineering. ML and DL techniques
are described in detail elsewhere (18). Handling high complexity,
high dimensional data; particularly time series and machine
generated data is a strength of many ML and DL algorithm (18).

During development of AI methods, the data sets are
partitioned into training, validation and test sets. The training
set often encompasses the bulk of all available data and together
with a smaller validation set, it is used for the development

of the AI method (19). The hold-out test set is used to

evaluate overall performance. To evaluate generalizability of the

AI solution with respect to e.g., image acquisition or imaged
population diverse datasets are required. Application of these

approaches for analysis of echocardiography clips and images
creates opportunities for automation of expert analysis to advent

the acquisition and analysis and thereby improve the clinical

workflow (18, 20, 21).

ROUTINE ECHOCARDIOGRAPHY AND
ARTIFICIAL INTELLIGENCE SOLUTIONS

Here, we provide an overview of the AI methods developed
for analysis of routine echocardiography. Advanced solutions

like those for fusion imaging and role of 3D augmented virtual
reality are beyond the scope of this paper. Thus far developed

methods are mostly focusing on automated image view selection
and image segmentation. One of the important steps in

echocardiography is selecting the best view for the subsequent
analysis. This can be challenging, and hence time consuming,

particularly for inexperienced operators. Subsequently, we
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discuss AI solutions for diagnosis and prognostication in various
diseases. A graphical abstract is shown in Figure 2.

Automated Image View Classification
Automated view classification can help standardizing views
and measurements in echocardiography exams. Moreover,
automated view classification can help non-experts to start
learning understanding and using echocardiography (12).
During training, automatic tools classifying cardiac views could
recognize off-axis acquisition and incorrect views and provide
guidance on how to move the probe in order to obtain
the correct diagnostic images. Nowadays, the acquisition of
ultrasound images is still usually performed in two-dimensional
(2D) mode (22). Khamis et al. developed a method exploiting
supervised dictionary learning for classification of apical two-
chamber (AP2CH), four-chamber (AP4CH), and long-axis (AL)
views using clips of 103 patients. The evaluation demonstrated a
classification accuracy of more than 91% in all views (23). Gao
et al. performed viewpoint classification using a convolutional
neural network (CNN) and achieved 92.1% accuracy (24). Later,
Madani et al. used a CNN to classify 15 standard views,
based on labeled still images and videos from 267 transthoracic
echocardiograms that captured a range of real-world clinical
variation (25). To our knowledge, there are no studies on
how well view classification works in real life. However, every
clinician knows that there is a learning curve to learn to
practice ultrasound, and every clinician has seen a foreshortened
recording of an inexperienced user in clinical practice. Evaluation
demonstrated an accuracy of 91.7% among 15 views. Cheema
et al. studied guiding of beginners toward a technically correct
image with a DL technique (EchoGPSTM, Bay Labs) (26). In this
study 28 users with no prior training in echocardiography were
evaluated on their ability to obtain images of 10 routine echo
views on a standardized subject after a 1.5-h familiarization with
the software. The mean percent of auto-captures was 69% in
physicians, 72% in advance practice providers, 83% in registered
nurses, and 70% in certified medical assistants. All participants
were able to use static and dynamic guidance to improve image
quality while scanning. As a resume, AI solutions are well-suited
for image view classification tasks and are increasingly availably.
Automation of these tasks improves learning curve of students
and has clinical impact due to the collection of higher quality
images that improve interpretation.

Automated Function Assessment
Left ventricular (LV) function assessment and quantification have
been most often performed because of the clinical importance
(19, 25, 27–32). Several studies have evaluated AI-driven
echocardiography image analysis methods including automated
contour-based segmentation, see Table 1. Asch et al. used
commercial software (AutoEF, BayLabs) with NN to perform
LV EF estimation automatically on a database of more than
50.000 echocardiographic studies, including multiple AP2CH
and AP4CH views. The evaluation on a set of 99 patients
shows that the method performs similar to measurements of
cardiologists with more than 20 years of experience: r = 0.94,

bias=1.4%, limits of agreement = ±13.4%, sensitivity 0.93,
specificity 0.87 (33).

Cannesson et al. performed an evaluation study using
commercial software (AutoEF, Siemens) in 218 patients,
including 165 patients with abnormal LV function (34). The AI
solution was trained on more than 10,000 tracings by human
experts to automatically locate and track the LV endocardium
from routine grayscale digital loops and calculate EF. The AI
solution correlated well with visual EF by expert readers (r =

0.96; p < 0.001) and performed analysis in 15 s per patient.
However, less favorable results were found by Rahmouni et al.
who evaluated the same AI algorithm and found discrepancies in
EF estimates between AutoEF and manual tracing and between
AutoEF and CMR (35). The authors recommended validation
in a number of large, busy echocardiographic laboratories.
Knackstedt et al. performed an external evaluation study using
a commercial ML solution (AutoLV, TomTec) in 255 patients, of
whom apical AP2CH and AP4CH views were collected from four
centers that assessed EF using both visual estimation and manual
tracing (27). ML was applied for calculating fully automated
EF and longitudinal strain measurements. Interclass correlation
coefficients and Bland-Altman analysis revealed good agreements
among automated EF (ICC: 0.83, bias 0.7%, 95%), local center
manual tracking, and reference center manual tracking, but
not for visual EF assessments. 3D echocardiography, which can
be obtained with more complex transducers, is increasingly
available. In an evaluation study by Tsang et al. the commercial
ML solution HeartModel was evaluated in 159 patients to
quantify 3D echocardiography derived left atrial and LV volumes
and LV EF (28). The AI technique strongly correlated with
expert measurements (r = 0.87 to 0.96) and volumes and
ejection fraction derived from magnetic resonance imaging (r
= 0.84 to 0.95) using a 1.5-Tesla scanner (Achieva, Philips
Healthcare). Medvedofsky et al. used the same ML tool on
3D echocardiographic images in 180 patients at six sites and
demonstrated that LV EF and chamber volume were an accurate
alternative to expert assessment (r: LVEDV: 0.99, LVESV: 0.99,
LVEF: 0.94, LAV: 0.99) (36).

Evaluation of diastolic parameters is also important in
assessing LV function of patients. Diastolic dysfunction is
associated with increased myocardial fibrosis, increased
ventricular stiffness and reduced prognosis (37, 38). Lancaster
et al. used hierarchical clustering to discriminate between
the different degrees of diastolic dysfunction, and improved
prediction of event-free survival was found by clusters over
conventional guideline-based classification for all-cause
mortality and cardiac mortality (38). More recently, Hubert
et al. reported on an AI solution for diastolic assessment in fifty
patients (25 with amyloidosis, and 25 with heart failure with
preserved ejection fraction) (39). This AI solution demonstrated
a significant difference of the global area between both groups
(37 vs. 72 mL%, respectively, P < 0.0001). Applying a linear
discriminant analysis classifier, results showed a mean area
under the curve (AUC) of 0.91 for the comparison between
both groups. In this study classical indices of diastolic function
were pathological in both groups with greater left atrial
volume index, greater mitral average E/e’ ratio, faster tricuspid
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FIGURE 2 | Graphical abstract on future expectations. AI will support doctors, not replace them.
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TABLE 1 | Artificial intelligence for image analysis and quantification.

Authors Summary Data Performance

Acquisition Datasets Patients Metric value Compared

against

Left ventricular function assessment and quantification

Asch et al. Automated EF using ML to assess LV function and volumes 2D 1 > 50.000 r = 0.95 EA

Cannesson et al. Automated EF using AI to assess LV function and volumes 2D 1 218 r = 0.96 EA

Hubert et al. Automated diastolic function assessment 2D 1 50 AUC 0.91 OVS

Knackstedt et al. Automated EF and strain using ML to assess LV function 2D 4 255 ICC 0.83 EA

Lancaster et al. Automated diastolic function assessment 2D 1 866 Kappa 0.62 OVS

Medvedofsky et al. Automated EF using ML to assess LV function and volumes 3D 6 180 r 0.94 EA

Rahmouni et al. Automated EF using AI to assess LV function and volumes 2D 1 92 r = 0.64 EA

Sabovik et al. Automated diastolic function assessment 2D 1 1,407 AUC 0.88 OVS

Tsang et al. Automated EF using ML to assess LV function and volumes 3D 1 159 r 0.87–0.96 EA

Disease classification

Calleja et al. Automated quantification using ML to assess aortic stenosis and regurgitation 3D 1 40 ICC 0.99 OIM

Casaclang et al. Automated ventricular response to AS using ML 2D 1 246 p < 0.001 EA

Diller et al. Automated segmentation using DL to detect congenital heart disease 2D 2 239 AUC 0.98 EA

Ghesu et al. Automated detection valve morphology using DL 3D X 869 CE 45.2% CT

Jeganathan et al. Evaluate valve morphology using AI in mitral valve analysis 3D 1 4 P = 0.0083 EA

Jin et al. Automated localizing prolapse using ML to evaluate mitral insufficiency 3D 1 90 AC 0.89 EA

Madani et al. Automated diagnosis ventricular hypertrophy using DL 2D 1 79.937 AUC 91.2 EA

Moghaddasi et al. Automated quantification mitral regurgitation using ML 2D 1 102 AUC 0.99 EA

Narula et al. Automated discrimination HCM or athlete heart using ML 2D 1 139 S&S p = 0.04 EA

Pereira et al. Automated detection aortic coarctation using DL 2D 1 163 ER 12.9 EA

Sanchez et al. Automated clustering using ML for group classification 2D 4 156 κ, 72.6% EA

Sengupta et al. Automated discrimination pericarditis or RCM using ML 2D 2 94 AUC 0.89 OIM

Zhang et al. Automated discrimination HCM, amyloidosis, or PAH using DL 2D 1 14.035 AUC >0.84 EA

AC, accuracy; AUC, area under curve; DC, dice coefficient; EA, expert assessment; EF, ejection fraction; EV, echo vendor; HCM, hypertrophic cardiomyopathy; IG, information gain; LV,

left ventricular; ICC, intraclass correlation coefficient; OIM, other image modality; OVS, other validated scores; RCM, restrictive cardiomyopathy; SE, segmentation error; X, not available.

regurgitation (P < 0.0001) compared to controls. Another
study on AI and diastolic function was performed by Sabovčik
et al. The authors applied an AI solution to detect early stages
of cardiac remodeling and diastolic dysfunction in 1,407
participants (mean age, 51 years, 51% women) with an AUC
curve with values between 86.2 and 88.1% (40). In conclusion, AI
solutions might help to pre-select individuals in whom further
echocardiographic examination, monitoring, and preventive
measures are warranted.

The aforementioned studies show that AI solutions are
increasingly developed for both systolic and diastolic LV function
assessment and quantification. Use of these AI solutions is
feasible. To conform the findings external evaluation and
assessment of clinically relevant outcomes is required.

Automated Disease Classification
Analysis of echocardiographic images plays a crucial role in
clinical routine to measure the cardiac morphology to reach a
diagnosis (41). Such analysis is based on the interpretation of
clinical parameters which are extracted through image analysis
such as segmentation and tracking. For instance, diagnosis
of LV hypertrophy requires accurate delineation of the LV
endocardium in both end diastole and end systole. As a next

step labeled echocardiographic views from a patient with known
pathology can be used to train an AI solution, or to automate
disease classification in a new sample (42). In that case, the AI
solution recognizes a pattern similar to what a technician or
cardiologist recognizes.

Valvular Heart Disease
AI solutions are rapidly emerging for valvular heart disease,
see Table 1 (12). AI can help with sizing and modeling
of minimally invasive structural heart interventional devices,
where possible with real-time guidance (43). Studies limited to
internal validation demonstrate good performance. Moghaddasi
et al. used supervised ML classifiers for assessment of mitral
regurgitation (MR) severity in 102 patients with an accuracy of
99% (44). Ghesu et al. introduced Marginal Space DL to perform
automated valve detection and segmentation in 869 patients
with superior accuracy in corner error measured in millimeter
as compared to cardiac computed tomography (45). ML was
used to determine LV responses during the progression of aortic
stenosis by Casaclang et al. and the authors demonstrated precise
recognition of the pattern of LV responses during the progression
of AS (p < 0.0001) (46). Another study was performed to
determine the interobserver variability of automated 3D mitral
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valve analysis using commercial software (eSie Valve software,
Siemens) (47). The authors found a high reproducibility in this
study with a small data set size (P < 0.0083).

A number of studies focused on the evaluation of AI tools.
Automated quantification of aortic stenosis and regurgitation in
3D trans esophageal echocardiography with ML was developed
by a commercial vendor (Auto Valve, Siemens). External
evaluation at Ohio State University showed an excellent
performance as compared to expert assessment (ICC 0.99)
(48). Jin et al. used ML to support both experts and non-
experts in localizing mitral valve prolapse by 3D transesophageal
echocardiography (49). The authors reported significantly
improved accuracy of non-experts using the ML application
(from 83 to 89%, P = 0.003). Moreover, significantly less time
for image analysis was needed using ML by both experts (1.9
± 0.7 vs. 9.9 ± 3.5min, P < 0.0001) and non-experts (5.0
± 0.5 vs. 13 ± 1.5min, P < 0.0001), especially for complex
pathology (49).

Cardiomyopathies
AI tools have potential to be used to discriminate various
cardiomyopathies. Unfortunately, large multicenter studies are
lacking and current studies are limited to evaluation utilizing
single center data. For example, a supervised ML classifier was
used to discriminate between restrictive cardiomyopathy and
constrictive pericarditis using clinical and echocardiographic
data of 50 patients with constrictive pericarditis and 44 with
restrictive cardiomyopathy. The results demonstrated an
excellent AUC of 96.2% (50). A similar study evaluated an
ensemble combining three supervised classifiers (support
vector machine, random forest, artificial neural network)
to discriminate between hypertrophic cardiomyopathy
and physiological hypertrophy in athletes (51). The results
demonstrated superior performance compared to individual
echocardiographic indices early-to-late diastolic transmitral
velocity ratio, e’, and strain (p = 0.04). In another work,
unsupervised clustering approach was used to automatically
classify 156 patients with a heart failure who underwent stress
echocardiography. The method demonstrated good correlation

with expert assessment (κ = 72.6%) (52). Later, CNN was
successfully deployed by Zhang et al. to discriminate between
diagnosis of hypertrophic cardiomyopathy, cardiac amyloidosis,
and pulmonary arterial hypertension (AUC > 0.85) (42).
Madani et al. utilized DL and clustering analysis of image
classification in a small set of labeled data (4%) and a large set
of unlabeled data for LV hypertrophy classification. The method
achieved an accuracy of 0.92 (31). Other authors used CNNs
to diagnose transposition of the great arteries or congenitally
corrected transposition of the great arteries with 98.0%
accuracy (29). Furthermore, a combination of autoencoder
and support vector machine classifier was used to diagnose
aortic coarctation using echocardiography data with high
accuracy (53).

Quality Assessment and Enhancement
Quality of echocardiograms is operator dependent, and can vary
across patients and medical equipment. Patient characteristics
such as fat, bone and air, breathing and patient movements
may lead to reduced quality of clips and images and
artifacts. AI can help technicians and cardiologists to support
acquisitions and automate quality assessment and enhancement
of echocardiograms (19, 54). Wu et al. demonstrated superiority
of ML assisted echocardiogram enhancement over other image
despeckling methods and video denoising methods as visually
evaluated by experts (54). Abdi et al. performed a DL study in
which 6,916 echo images were annotated by an expert on a five-
point scale with a score between one (not acceptable) and five
(excellent) (55). Internal evaluation demonstrated satisfactory
accuracy (mean absolute error = 0.71) and <10 milliseconds
computation time per frame, sufficient for real-time deployment.
In summary, data on AI solutions for quality assessment and
enhancement are limited but promising.

Event Prediction
Risk assessment and prediction of both survival and cardiac
events are key tasks in management of cardiac patients (56,
57). Studies on AI and event prediction in the field of
echocardiography are listed in Table 2. In a study on in 866

TABLE 2 | Artificial intelligence solutions for prediction of events.

For Authors Summary Data Performance

Acquisition Datasets Patients Follow-up (m) Metric value Compared

against

Cardiovascular risk prediction

Ghorbani et al. Automated cardiovascular risk prediction using DL 2D 1 2.850 0 AUC 0.88 EA

Survival prediction

Kwon et al. Automated risk prediction using DL 2D 2 4.759 36 AUC 0.88 OVS

Samad et al. Automated risk prediction using ML 2D 1 171.510 60 AUC >0.82 OVS

Adverse events prediction

Berchialla et al. Automated event prediction using ML 2D 1 228 X PoV 0.70 ML

Lancaster et al. Automated event prediction using ML 2D 1 866 48 AIC 157 OVS

AIC, Akaike information criterion; AUC, area under the curve; EA, expert assessment; HR, hazard ratio; m, months; OCV, optimal cutoff value; OVS, other validated scores; PoV, part of

variance; N/A, not applicable; X, not available.
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patients referred for echocardiographic assessment automated
prediction of major adverse cardiovascular events (MACE) was
performed with ML cluster analysis (38). This technique was
superior to conventional prediction techniques (AIC 157, kappa
= 0.619, p< 0.001). Berchialla et al. used stress echocardiography
data integrated with LV functional and angiographic data to
predict MACE (58). The authors demonstrated discrimination
ability superior or comparable of a Bayesian network to
other ML classifiers. Ghorbani et al. developed a DL solution
(EchoNet) to predict cardiovascular risk in 2,850 patients
(59). Internal evaluation demonstrated a high accuracy of
the DL solution to detect systemic factors such as age and
sex from echocardiogram images alone (AUC 0.88), which
is impossible for human experts. Kwon et al. focuses on
the echocardiography reports and developed a DL solution
using deep neural networks with TensorFlow (the Google
Brain Team, Mountain View, United States) as the backend to
predict survival from these reports in a multicenter retrospective
cohort study on 25,776 patients with 1,026 mortalities (60).
Importantly, the authors used derivation data of hospital A and
performed external evaluation using echocardiography reports
of hospital B. The authors obtained superior performance
as compared to conventional prediction models (AUC =

0.88). In another study that focused on echocardiography
reports Samad et al. predicted survival in 171,510 unselected
patients who underwent 331,317 echocardiograms (61). The
authors achieved a significantly higher prediction accuracy
with nonlinear ML over linear logistic regression models
(AUC>0.82). A model including clinical variables, LV function
and 57 echocardiographic measurements yielded the highest
prediction accuracy (p < 0.01 across all models and survival
durations). In conclusion, AI solutions for risk assessment and
prediction of both survival and cardiac events are promising,
but require further evaluation. Most data are obtained from
retrospective studies and evaluation on external datasets is
often lacking.

DISCUSSION

We summarize eleven studies on the development of AI in
the field of routine echocardiography. Overall performance
of the AI solutions was comparable to expert performance.
However, these studies were virtually all hampered by
lack of external validation of multi-center datasets. Eight
studies evaluated performance of commercial software, all for
diagnostic purposes.

To this end most successful AI methods are supervised, in
other words they learn from labeled data. Hence, performance
of supervised AI solutions depends on careful labeling of input
data, which often relies on the technicians and cardiologists.
Intra- and interobserver variability in data labeling may limit
AI performance (30, 33). The availability of large, diverse and
labeled data is a prerequisite for progress in the development
and evaluation of AI solutions. Last year two large open
datasets in the field of 2D echocardiography became publicly

available; from Stanford University and University of Lyon
(32, 41). This opens exciting possibilities. Nevertheless, the
data are limited to echocardiography videos only and not
accompanied by relevant clinical patient data and outcomes.
Another challenge has been the lack of data standardization
(62). Poor data standardization leads to incomplete and
inaccurate data collection, patient matching issues, and slower
workflows. Large sets with reference labels and standardized
evaluation procedures would allow better comparison between
the methods. An itemized checklist that highlights steps for
ensuring correct application of AI models and the consistent
reporting of model specifications and result might help (63).
Another challenge are potential ethical problems derived
from data sharing or de-identification to maintain patients’
privacy. Consequently, these studies need additional local
institutional review board authorizations to evaluate appropriate
use of data.

In the future it is to be expected that AI solutions will
increasingly support technicians and cardiologists in the field
of digital care (64, 65) and echocardiography (66). AI can be
incorporated into everyday practice and become a valuable aid
for cardiologists and technicians dealing with cardiovascular
disease (67, 68). AI will help to reduce workload, increase
reproducibility and standardize data reporting. AI is also
expected to improve study preparation by all related views
retrieved automatically. This would save the technician or
cardiologist time in searching through the complete study
with sometimes hundreds of images by allowing the them
to visualize all requested information quickly. AI is expected
to improve echocardiography acquisition with support on
automated probe adjustments and recording leading to
advances in efficiency and overcome human limitations of
both distraction and fatigue. Automated acquisitions will
additionally contribute to increased standardization. Future
AI solutions are also expected to extract information not
directly apparent to humans (43). Improved prediction of
events and mortality is expected with new data driven AI
solutions, preferably in real time (43). On an educational
level, much more can be expected from automated disease
classification. As a beginner it can be difficult to distinguish
between normal and abnormal structures, and with AI support
that may become much easier. So far, most educational
studies focused on automated view classification to recognize
off-axis acquisition and incorrect views and provide
guidance on how to move the probe in order to obtain
diagnostic images.

Specifically, for echocardiography, there is a major challenge
in the absence of standardization of the image sets and
the varying image quality. Datasets with CT and MRI
images are often obtained in a more standardized manner,
but this researcher has been performed in fewer patients.
Echocardiography is one of the basic researches in cardiology,
and therefore challenge in image quality are certainly not
insurmountable because of the extensive data volume.

As a resume, contemporary AI solutions for image
acquisition, analysis, reporting and education are developed
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for relevant tasks with promising performance. Studies
with external validation must show whether successful
performance is sustained. In the future major benefit of
AI in echocardiography is expected from improvements in
automated interpretation and event prediction to reduce
workload and improve clinical outcome. Some of the discussed
challenges have yet to be overcome, however, none of them are
insurmountable. Studies are also needed to acquire trust in new
technologies, supported by efforts toward explainable models
and transparency.
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