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Abstract 

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy 
imaging in particular is currently undergoing rapid technological advancements. However for scientists 
wishing to publish the obtained images and image analyses results, there are to date no unified 
guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to 
interpret. Here we present community-developed checklists for preparing light microscopy images and 
image analysis for publications. These checklists offer authors, readers, and publishers key 
recommendations for image formatting and annotation, color selection, data availability, and for 
reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility 
of image figures and thereby heighten the quality of microscopy data is in publications.  

Introduction 

Images and their analyses are widespread in life science and medicine. Microscopy imaging is a dynamic 
area of technology development, both in terms of hardware and software. This is especially true in the 
area of light microscopy with great recent improvements in sensitivity, and spatial and temporal 
collection. Resources developed by scientists help researchers to navigate designing microscopy 
experiments and obtaining image data (Brown, 2007; North, 2006; Senft et al., 2022), and cover aspects 
such as sample preparation (North, 2006), microscope usage (Jonkman, 2020; North, 2006), method 
reporting (Hammer et al., 2021; Heddleston et al., 2021; Montero Llopis et al., 2021; Rigano et al., 2021), 
or fluorophore and filter usage (Kiepas et al., 2020; Laissue et al., 2017). Despite widespread adoption of 
microscopy as a tool for biology and biomedical research, the resulting image figures in publications at 
times fail to fully communicate results or are not entirely understandable to audiences. This may be 
because authors do not include comprehensive imaging method statements Sheen et al., 2019), or 
because they omit basic information in figures such as specimen size or color legends (Jambor et al., 
2021), which are key to fully understanding the data. To ensure that images are presented in a clear, 
standardized, and reproducible manner, it is essential that the scientific community establishes unified 
and harmonized guidelines for image communication in publications. 

Images document biological samples and ranges of their phenotypes. Increasingly, microscopy images are 
also a source of quantitative biological data where and variables are measured with a growing number of 
image analysis software packages (FIJI/ImageJ (Schindelin et al., 2012), CellProfiler (Stirling et al., 2021), 
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KNIME (Dietz et al., 2020), commercial software packages such as ZEN Blue, Amira, Imaris, Arivis, and 
Python software libraries (Perkel, 2021), https://scikit-image.org/; see also Eliceiri 2012). Image analysis is 
often a workflow of many steps, such as image reconstruction, pre-processing, segmentation, post-
processing, rendering, visualization and statistical analysis, many of which require expert knowledge 
(Aaron and Chew, 2021; Miura and Tosi, 2017). A comprehensive publication of quantitative image data 
then not only includes basic specimen and imaging information but additionally the image processing and 
analysis steps that produced the data plot and statistics. Towards fully reproducible image analysis it is 
also essential that images and workflows are available to the community, e.g., in image repositories or 
archives (Ellenberg et al., 2018; Hartley et al., 2022; Williams et al., 2017), and code repositories such as 
Github (Ouyang et al., 2022). 

To ensure that image figures provide insights to their readership, any supportive experimental metadata 
and image analysis workflows must be clear and understandable (“what is the pixel size”, “what does the 
arrow mean”), accessible (“are colors visible to colorblind audiences”), representative (no cherry picking), 
and reproducible (“how were the data processed”, “can one access and re-analyze the images”). In the 
framework of the initiative for ‘Quality Assessment and Reproducibility for Instruments and Images in 
Light Microscopy’, QUAREP-LiMi, the ‘Image Analysis and Visualization workgroup’ established 
community consensus checklists to help scientists publish understandable and reproducible light 
microscopy images and image analysis procedures. Where applicable, the checklists are aligned with the 
FAIR principles, which were developed as recommendations for research data (Findability, Accessibility, 
Interoperability, and Reusability (Wilkinson et al., 2016).  

Scope of checklists 

The scope of the checklists is to help scientists publish fully understandable and interpretable images and 
results from image analysis (Figure 1). In this work the term images includes raw or essentially 
unprocessed light microscope data, compressed or reconstructed images, and quantification results 
obtained through image analysis (See Glossary). While the focus of QUAREP-LiMi is on light microscopy 
images in life sciences, the principles may also apply to figures with other images (photos, electron 
micrographs, medical images) and to image data beyond life sciences. The intended audience of the 
checklists are novices or non-experts occasionally using light microscopy, and also experts (core facility 
staff, global bioimage community) who review image data or teach image handling.  

The checklists do not include principles for designing imaging experiments and recommendations to avoid 
image manipulation. Previous literature covers experimental design for microscopy images, including 
truthful image acquisition (Brown, 2007), examples and recommendations for avoiding misleading images 
(Bik et al., 2018, 2016; Cromey, 2013; CSE, 2012; North, 2006; Rossner and Yamada, 2004), detection of 
image manipulation (Bucci, 2018; Koppers et al., 2017; Van Noorden, 2022, 2020), appropriate image 
handling and analysis (Aaron and Chew, 2021; Hammer et al., 2021; Martin and Blatt, 2013; Miura and 
Norrelykke, 2021), guidelines for writing materials and methods sections for images (Marques G, 2020), 
and recommendations for general figure preparation Nature Guidelines). These topics are therefore not 
covered in the checklists. 

The checklists cover image (Figure 2, Suppl. Figure 1) and image analysis (Fig. 8, Suppl. Figure 2) and are 
structured into three levels that prioritizes legibility and reproducibility.  

• The first reporting level ("Minimal”) describes necessary, non-negotiable requirements for the 
publication of image data (microscopy images, data obtained through image analysis). Scientists can 
use these minimal criteria to identify crucial gaps before publication. 

• The second reporting level (“Recommended”) defines measures to ensure the understandability of 
images and aims to reduce the efforts toward evaluating image analysis . We encourage scientists to 

https://scikit-image.org/
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aim for the “Recommended” level as their image publication goal. However, we acknowledge that 
some aspects (e.g., large data in repositories) may today be still unattainable for some authors. 

• The third reporting level (“Ideal”) are  recommendations we encourage scientists to consider 
adopting in the future. 
 

 
Figure 1. Scope of the checklists of image figure and image analysis requirements. The checklists present easy-to-use 
guidelines for publishing microscopy image figures and image analysis workflows.   

Checklists for image publication 

IMAGE FORMATTING. Preparing a figure begins with the selection of representative images from the dataset. 
When quantitative measurements are reported in a chart, an example of the input image should be 
shown; when ranges of phenotypes are described, several images may be necessary for illustrating the 
diversity. To quickly focus the audience on key structures in the image, it is permitted to crop areas 
without data or with non-relevant data (Figure 3A). As a rule, cropping, similar to selecting the field-of-
view on the microscope, is allowed as long as this does not change the meaning of the conveyed image. 
Image rotation may help standardize specimen orientation (e.g., apical side of cells upwards) and is 
permitted. Image rotation by angles different from 90 degrees or multiples thereof, however, changes 
the intensity values through interpolation and therefore alters the information in the image (Cromey, 
2013, 2010; Schmied and Jambor, 2020). When cropping and rotating, authors should ensure that the 
operation does not affect the original information contained in the image, and quantifications, especially 
intensity measurements, should be performed beforehand (Miura and Norrelykke, 2021). Overall, any 
loss in image quality may be acceptable for image figure preparation, but image quantifications should be 
done beforehand. In a figure, individual images should be well separated (spacing, border, see Figure 3B) 
to avoid misleading image-splicing (Bik et al., 2016; Cromey, 2013).  

When presenting two magnifications of the same image (e.g., a full- and a zoomed/inset view), the 
position of the inset in the full-view image should be made clear; if the inset is placed on top of the full-
view image, e.g., to save space, it should not obstruct key data (Figure 3C). If an inset is digitally zoomed, 
the original pixels should not be interpolated but “resized” to maintain the original resolution.  Overall, 
the image should be sufficient in size so that audiences can identify all relevant details. Limitations for 
figure height/width may be set by publishers, however, without specifying the size of images inside the 
figure. Complete figures are commonly required at 300 dots per inch (dpi) or pixels per inch (ppi) 
resolution, however, this does not apply to all individual sub-images in a panel figure. At times images, for 
example from single molecule imaging, may be as small as a few pixels per dimension. 
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Figure 2. Checklist for image publication including points to be addressed on image format, image colors and  
channels, image annotations, and image availability.  
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Figure 3. Image formatting may include (A) image cropping, rotation, and resizing, (B) image spacing in the figure, 
and (C) presenting several magnifications (zoom, inset) of images.  
 

IMAGE COLORS AND CHANNELS. Fluorescent light microscopes use a range of wavelengths to generate images 
of specimens. In the images, the light intensity for individual wavelengths, most often in grayscale, is 
assigned or mapped to a visible color scheme. In multi-colored images, several channels are overlaid to 
compare data from several channels.  

Microscopy images often must be processed to adapt the bit depth to the visible range (Brown, 2007; 
Russ, 2006). Usually, brightness/contrast is adjusted for each channel independently in many software 
platforms (e.g., ImageJ/FIJI) by defining the minimum and maximum displayed intensity values before  
converting these into 8-bit (for screen display, printing). Intensity range adjustments should be monitored 
with the e.g. the image histogram and done with care: a too wide intensity range results in ‘faded’ images 
that lack details, while a too narrow intensity range removes data (Figure 4A). Scientists must be 
especially attentive with auto-contrast/auto-level, image intensity normalization, non-linear adjustments 
(‘gamma,’ histogram equalization, local contrast e.g., CLAHE, Zuiderveld, 1994), image filters, and image 
restoration methods e.g., deconvolution, Noise2Void, CARE, etc. (Fish et al., 1995; Krull et al., 2019; 
Richardson, 1972; Weigert et al., 2018) as their improper application may result in misleading images. 
When images are quantitatively compared in an experiment, the same adjustments and processing steps 
must be applied. If deemed critical for understanding the image data, advanced image processing steps 
(e.g., deconvolution, Noise2Void, CARE) may need to be indicated in the figure (figure legend), in addition 
to the material and methods sections.  

Next, image colors must be interpretable and accessible to readers, and not mislead (Crameri et al., 
2020). For full-color (e.g., histology) images, the staining/preparation method, and for fluorescence 
microscope images the channel-specific information (fluorophore/labeled biomolecule) should be 
annotated (Figure 4B, also see next section). In fluorescence microscope images, the channels can be 
assigned a user-defined color scheme, often referred to as lookup table (LUT), which should be chosen 
such that imaged structures are well distinguishable from the background and accessible to color-blind 
audiences (Jambor et al., 2021). Grayscale color schemes will allow the audience to interpret image 
details best since they are uniformly perceived, which allows unbiased interpretation. Inverting image 
LUTs, to display intensities on a white instead of a black background may enhance signal contrast further, 
but be aware that different software handles this calculation differently. 

A few steps may overall improve the understandability of colors. For multi-colored fluorescent images, 
consider if showing individual channels in separate, grayscale images may help readers fully appreciate 
details (Figure 4C). A separate, linear-adjusted grayscale version may help when images were adjusted 
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with non-linear adjustments or pseudo-colored LUTs (e.g., ‘jet,’ ‘viridis,’ and ‘union-jack’), which map 
intensity values to a dual- or multiple color sequential scheme. Annotation of intensity values with a color 
scale bar (‘calibration bar’) helps to orient readers and is essential for pseudo-colored and non-linear 
color schemes (Figure 4D). Calibration bars should indicate absolute intensity values to informs audiences 
about the displayed intensity range and can be prepared with Imaris and ImageJ/FIJI (see ImageJ user 
guide).  
 

 

Figure 4. Image colors and channels. (A) Adjust brightness/contrast to achieve good visibility of the imaging signal. 
(B) Channel information should be annotated and visible to audiences (high contrast to background color, visible to 
color-blind audiences). (C) Image details are most unbiased in grayscale. (D) It is best practice to publish legends to 
color scales with images, and mandatory for pseudo-color scales.  
 

IMAGE ANNOTATION. Light microscopy images show objects sized from submicron to millimeters resolution. 
As physical size is not obvious without context, annotating the scale for publication is therefore 
necessary. Including a scale bar of a given size (in or next to image) is needed to orient audiences (Figure 
5A). The corresponding size statement/dimension, e.g., “0.5 mm”, can be placed next to the scale bar 
(when not possible then in the figure legend). To avoid quality changes (pixelated/illegible text) when 
adapting (re-size, compress) figures for publication, annotations should be added as vector graphics. 
Statements about the physical length of the entire image are acceptable alternatives to scale bars. 
Magnification statements should be avoided as pixel size can be determined by a number of factors e.g., 
sampling rate or binning, and does not only depend on the objective magnification. 

Many images include further annotations such as symbols (arrows, asterisks), letter codes, or regions-of-
interest (dashed shapes) which must be explained in the figure or figure legend (Figure 5B). Annotations 
placed on top of images should not obscure key image data and must be legible (font, font size). 
Furthermore, annotations should have good visibility on the image, i.e., must be legible to color-blind 
persons and distinguishable from image background and image content (annotation shapes/colors 
distinct from object shapes/colors). Symbols that resemble image data should be avoided, and note that 
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symbols with clear vertical/horizontal arrangement are easier to distinguish than randomly oriented 
symbols on busy backgrounds (for examples see: (Jambor et al., 2021). Images without annotations 
should be available to audiences (see Image Availability). When images are used for quantitative 
measurements (length, volume, time constants) it is advisable to include statements about the sampling 
rate in space/time. Depending on the situation, this may be the pixel-size for 2D imaging, z-distance for 
image volumes/3D-images, or imaging frequency for time-lapse data (Figure 5C).  

 
 

 
Figure 5. Image Annotation. (A) Possible ways to provide scale information. (B) Features in images can be annotated 
with symbols, letters, or region-of- interest. (C) For advanced image publication, information on z-stack or voxel size, 
anatomical view, or camera settings such as pixel-dwell time, exposure time, or frame-time may be required. 

 
 

IMAGE AVAILABILITY. Any image processing should be performed on a duplicate copy of the original 
microscope image (Cromey, 2010; Schmied and Jambor, 2020) and upon publication both, the original 
image (or a lossless compressed version) and the published image should be available. The specific file 
type of the original image depends on the microscope type and the vendor. The definition of ‘original 
data’ or ‘raw data’, and whether its storage is feasible, depends on the specific microscopy technique. In 
data-heavy techniques that collect sparse information (e.g., light-sheet microscopy, time-lapse), 
reconstructed images may faithfully capture the key data and should be made available. To retain the 
metadata, a conversion into open formats such as OME-TIFF (Linkert et al., 2010; which supports 
uncompressed, lossless, but also lossy compressed files) is compatible with broad applications to allow re-
analysis of image data. If only a compressed version may be kept (i.e., a file in which image channels and 
annotations are irretrievably merged), PNG files are superior to the JPEG format as they allow lossless 
compression (Cromey, 2010).  
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As a minimal requirement, image files shown in figures or used for quantification should be available. 
When possible (see limitations above), lossless compressed files which allow replication of the analysis 
workflow should be shared or made available (Figure 6). We strongly discourage that authors make 
images available “upon request” since this has been shown to be inefficient (Gabelica et al., 2022; 
Tedersoo et al., 2021), however at present infrastructure is not sufficiently in place to ban this option. A 
clear advancement is depositing both the published and the original images in a public repository with an 
open license that permits re-use in the scientific context (CC-BY, CC0). Zenodo, OSF, figshare are current 
options also for image data, however these have file size limitations. OMERO servers 
(https://www.openmicroscopy.org/omero/institution/) enable institutions but also individual labs to host 
public or private (access controlled) image sharing databases (Overview of current repositories, see Suppl. 
Figure 3). Long-term (“Ideal”), uploading of images with all experimental metadata to dedicated, 
specialized or fully searchable image databases has the potential to unlock the full power of image data 
for automated image and/or metadata searches, and the possibility of image data re-use. The databases 
allowing such functionalities and more include the BioImage Archive (a primary repository which accepts 
any image data in publications), the Image Data Resource (which publishes specific reference image 
datasets), or EMPIAR (a dedicated resource for Electron Microscopy datasets). 

 

 
 

Figure 6. Image Availability. (A) Currently, image data is often shared ‘upon request’. (B) More images along with the 
image metadata should be available for download in public databases, and in the future (C) also archived in 
dedicated, added-value databases, in which images are machine searchable or curated.  

 

Checklists for publication of image analysis workflows 

Image analysis workflows usually combine several processing steps carried out in a specific sequence to 
mathematically transform the input image data into a result (i.e., image for visualization or data for a plot; 
Figure 7, Miura et al., 2020). As images are numerical data, image processing invariably changes these 
data and thus needs to be transparently documented (Cromey, 2013, 2010; Miura and Norrelykke, 2021). 
We developed separate checklists for scientists wishing to publish results originating from image 
processing and image analysis workflows (Figure 8, Suppl. Figure 2). Focusing on easy implementation of 
the checklists we propose three  categories: 

1. Established workflows or workflow templates: workflows available in the scientific literature or well 
established in the respective fields. 

2. Novel workflows:  established or new image analysis components (available in software platforms or 
libraries) are assembled by researchers into a novel workflow. 

https://www.openmicroscopy.org/omero/institution/
https://www.ebi.ac.uk/bioimage-archive/
https://idr.openmicroscopy.org/
https://www.ebi.ac.uk/empiar/


9 

3. Machine learning (ML) workflows: ML uses an extended technical terminology and ML workflows that 
utilize deep neural networks (‘deep learning’) face unique challenges with respect to  reproducibility. 
Given the rapid advancements in this field, we created a separate ML checklist. 

 

 
 

Figure 7. Image analysis. (A) An established workflow template is applied on new image data to produce a result 
(plot). (B) A new sequence of existing image analysis components is assembled into a novel workflow for a specific 
analysis (image segmentation). (C) Machine learning workflows learn specific tasks from data, and the resulting 
model is applied to obtain results. 

 

ESTABLISHED WORKFLOWS. Examples of well-established workflows are published pipelines for cell profiler 
(CellProfiler published pipelines, CellProfiler examples), workflows in KNIME (Fisch et al., 2018), 
specialized plugins and easy-to-use scripts in ImageJ (Erguvan et al., 2019; Klickstein et al., 2020; Schmied 
et al., 2021), tools and plugins that solve generic image analysis problems such as tracking (Tinevez et al., 
2017) or pixel classification (Arganda-Carreras et al., 2017; Arzt et al., 2022). For these workflows 
extensive expertise, documentation, and tutorials already exist that allow others (e.g., reviewers, readers) 
to reproduce the workflow and to judge the validity of the results. Scientists publishing images or image 
analysis results processed with established workflows thus can focus on documenting key parameters 
only.   

Minimal. The authors must cite the used workflow. The specific software platform or library needs to be 
cited if the workflow is not available as a stand-alone tool. Key processing parameters must be reported. 
To validate the performance of the workflow and its settings, example input and output data  must be 
provided. Any manual interventions (e.g., ROIs) must be clarified. 

Recommended. To ensure proper reproduction, the precise version numbers of the workflow and the 
platform used are vital and should be documented in the methods. If the used software does not allow 
the researcher to easily define and retrieve a specific versions number, the exact version used should be 
deposited as a usable executable or code. Authors should state all settings in the methods or the 

https://cellprofiler.org/published-pipelines
https://cellprofiler.org/example
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supplements of the article. Providing data upon request is an ineffective method for data sharing 
(Gabelica et al., 2022). Thus, authors should provide the example input, output and any manual regions of 
interest via a public repository (see above). 

Ideal. Documenting the usage of software in the form of a screen recording or in the case of command 
line tools via reporting all executed commands in detail, greatly facilitates understanding of the workflow 
application and therefore reproduction. To avoid any variation arising from factors such as computer 
hardware or operating system authors could provide cloud-hosted solutions (Berginski and Gomez, 2013; 
Hollandi et al., 2020; Stringer et al., 2021)(kiosk-imagej-plugin) or the workflow packaged in a software 
container (docker, Singularity)(da Veiga Leprevost et al., 2017).  

 

NOVEL WORKFLOWS. Novel image analysis workflows assemble components into a new sequence e.g., a 
macro in Fiji, a pipeline in CellProfiler or workflow in KNIME in an original way. To ensure reproducibility 
of the analysis, it is essential to report the specific composition and sequence of such novel workflows.  

Minimal. The individual components utilized in the novel workflow must be cited, named and/or 
described in detail in the methods section along with the software platform used. It is essential tothat 
scientists specify or provide the exact software versions of the used components and software platform in 
the methods if possible. Authors must describe the sequence in which these components have been 
applied. Key settings (e.g., settings that deviate from default settings) must be documented in the 
methods section. Finally, the developed workflow must be shared as code (e.g., via code repositories 
https://github.com/), pipelines (e.g., KNIME workflow, CellProfiler pipeline) if possible, along with 
example input, output, and any manually generated inputs (i.e., ROIs), must be made available (See Image 
Availability). Novel workflows that were created using software that does not allow scripting, the 
workflow steps should be carefully described as a text. 

Recommended. Disclose and describe all settings of the workflow to help the reproduction of the 
analysis. Provided example input, output, and manual inputs (ROIs) via public repositories such as Zenodo 
(European Organization For Nuclear Research and  OpenAIRE 2013)  . The developer should describe the 
rationale as well as the limitations of the workflow and the used components in more detail in the 
methods or supplements. Evidence of the adequacy and efficiency of the used algorithms on the 
published data and potentially even comparisons to related established workflows, when possible, 
facilitate such a documentation. 

Ideal. To further promote reproducibility, add documentation such as a screen recording or a text-based 
tutorial of the application of the workflow. To enable  the efficient reproduction of an analysis with a 
novel workflow, provide easy installs (e.g., update sites, packages) or easy software reproduction (e.g., via 
software containers), and easy-to-use user interfaces of software (i.e., graphical user interfaces). Publish 
the novel workflow as independent methods papers with extensive documentation and online resources 
(Arganda-Carreras et al., 2017; Arzt et al., 2022; Erguvan et al., 2019; Fisch et al., 2018; Klickstein et al., 
2020; Schmied et al., 2021; Tinevez et al., 2017). Taken together, with extensive documentation, ease of 
installation and use will ultimately contribute to the novel workflow becoming well-established and 
reproduced within the community (a future established and published workflow template) (Cimini et al., 
2020). 

 

https://github.com/vanvalenlab/kiosk-imageJ-plugin
https://www.docker.com/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://github.com/
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MACHINE LEARNING WORKFLOWS. Machine learning, and especially deep learning, have recently become 
capable of surpassing the quality of results of even the most sophisticated conventional algorithms and 
workflows and are continuing to advance (Laine et al., 2021). Deep learning procedures are quickly 
adapted to microscopy image tasks such as U-net (Ronneberger et al., 2015) for cell segmentation (Falk et 
al., 2019), Noise2Void for image reconstruction (Krull et al., 2019), StarDist (Schmidt et al., 2018; Weigert 
et al., 2020), (Schmidt et al., 2018; Weigert et al., 2018) Cellpose (Stringer et al., 2021) for instance 
segmentation, DeepProfiler (Moshkov et al., 2022) for feature extraction, and Piximi 
(https://www.piximi.app/) for image classification. 
In machine learning workflows (supervised, unsupervised, self-supervised, shallow or deep learning), the 
input image data is transformed by one or multiple distinct mathematical operations into a scientific 
result. The instructions for this transformation are learned from provided data (e.g., labeled data for 
supervised learning, and unlabeled data for unsupervised learning) to produce a machine learning model. 
However, the precise makeup of this model is not easily accessible to a user and depends strongly on the 
quality and nature of the supplied training data as well as the specific training parameters. Biases in the 
training data/errors in the labels of ground truth for supervised machine learning will bias machine 
learning models (Larrazabal et al., 2020; Obermeyer et al., 2019; Seyyed-Kalantari et al., 2020). Reporting 
is thus even more critical for  reproducibility and understandability when ML applications are applied for 
image analysis.  

Three major approaches are widely used in ML-based image analysis today, which require different 
documentation : 1) pre-trained models are directly applied to new image data and referral to existing 
references is sufficient (minimal). 2) pre-trained models are re-trained (transfer learning) with novel 
image data to improve the application, and in this case more information must be provided 
(Recommended). 3) models are trained de-novo, in which case extensive documentation is required for 
reproducibility (Ideal). 

Minimal. The precise machine learning method needs to be identifiable. Thus, the original method must 
be cited. At the minimum, access to the model that has been produced in the particular learning 
approach must be provided as well as validation input and output data. If a pre-trained model has been 
used, it must be clearly identifiable. For both supervised and unsupervised machine learning applications, 
the provided example or validation data must not be part of the training and testing data.  

Recommended. To facilitate the reproduction and validation of results from either models trained from 
scratch or pre-trained models that were re-trained, the full training and testing data and any training 
metadata (e.g., training time) should be made available. The code used for training the model should be 
provided. Code, as well as data, should be provided via public repositories (European Organization For 
Nuclear Research and OpenAIRE 2013). The authors should discuss and ideally test how well the model 
has performed and show any limitations of the used machine learning approach on their data. The 
application of machine learning models will particularly benefit from being deployed in a cloud-hosted 
format or via software containers. 

Ideal. Further standardization promotes ease of reproduction and validation by the scientific community 
by making use of emerging online platforms. Thus, models could be created conforming to standardized 
formats (e.g., Model zoo) if they become more readily available in the future. 

https://bioimage.io/#/about
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Figure 8. Checklist for publication of image analysis workflows. 
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Discussion 

Herein we have presented recommendations in the form of checklists to increase the understandability 
and reproducibility of published image figures and image analyses. While our checklists were initially 
intended for bioimages from light microscopes, we do believe that its many principles are applicable more 
widely. Our checklists include recommendations for image formatting, annotation, color display, and data 
availability , which at the minimal level can largely be achieved with commercial or open-source software 
(e.g., ‘include scale bar’). Likewise, the minimal suggestions for image analysis pipelines can be 
implemented readily with today’s options (e.g., code repositories). We believe that, once included in 
microscopy core facility training and microscopy courses, and introduced as guidelines from publishers, 
the recommendations will present no additional burden. On the contrary, transparent requirements for 
publishing images and progress monitoring checklists will ease the path from starting a microscopy 
experiments to producing reproducible (Baker, 2016) understandable image figures for all scientists.  

Recommendations extending the “Minimal” level are introduced in the “Recommended” and “Ideal” 
reporting levels and at times go beyond what is easy to implement with standard tools today. They are 
meant to encourage a continuous strive towards higher quality standards in image publishing. Before all 
of these advanced standards can become a new norm, technologies, software and research infrastructure 
must still be improved. At present no image database is used widely enough to become a go-to solution, 
although dedicated resources exist and are slowly getting traction, and publishers are experimenting with 
parallel solutions (e.g., EMBO source data). Also, while funding agencies increasingly require data to be 
deposited in repositories, few guidelines are provided for publishing terabytes to petabytes of raw data. 
While publishers may mandate data deposition or availability, they are not always reviewing its 
implementation. Combined with a lack of recognition of efforts put into publishing original image data, 
scientists are often discouraged to make data openly available. Commercial solutions for data storage are 
increasingly becoming available. For instance the AWS Open Data has already been used to host image 
data (https://registry.opendata.aws/cellpainting-gallery/) and we believe that, ultimately, images 
presented in most publications should be linked to a losslessly compressed image amenable to re-
analysis.  

The checklists and recommendations for image analysis will naturally be dynamic and require regular 
updates to reflect new developments in this active research domain. Moreover, it is possible that 
generation of publication quality images will also become a standardized ‘workflow’ in and of itself. It was 
previously suggested that images should be processed through scripting, with every step, from 
microscope output to published figure, stored in a metadata file (Miura and Norrelykke, 2021). Another 
challenge is the continuous availability of  image analysis software and workflows, which requires 
software maintenance and updates to stay usable. 

We envision that the present checklists will be continuously updated by the scientific community and 
adapted to future requirements and unforeseen challenges. Future work of the Image Analysis and 
Visualization Working Group will be to, in alliance with similar initiatives such as NEUBIAS (Cimini et al., 
2020; Martins et al., 2021) and BINA, develop educational materials and tutorials based on the presented 
checklists and to continuously lobby to integrate its contents in general resources for better images 
(Collins et al., 2017). We ask that all readers consider how their work will be seen and used in the future 
and join us in building a stronger scientific foundation for everyone. The presented checklists, version 1.0, 
will already make images in publications more accessible, understandable and reproducible, providing a 
valuable resource that may be used to build a solid foundation within today's research that will benefit 
future science and scientists.   

 

https://registry.opendata.aws/cellpainting-gallery/
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Glossary 

 
Term Description 

Image Used here for image data from a microscope experiment, principles described 
may also apply to medical images, electron microscopy images.  

Original image 

  

Output files/source image data of the microscope; depending on microscope 
type and the vendor these may be essentially “raw”, i.e., what is visible through 
the ocular, or pre-processed.  

Workflow A series of image processing and analysis steps to generate a meaningful result 
for only a specific application, without reusability in mind. The individual steps 
typically use existing image analysis components. A workflow exists usually as a 
script or plugin within a software platform or as a stand-alone. See also workflow 
template 

Image analysis component Computer vision methods and algorithms  that are available as functions or 
classes in software platforms for image analysis 

Software platform/library Software that bundles many algorithms, tools, and workflows (e.g., Fiji, 
CellProfiler). 

Workflow template A workflow that is engineered such that it can be reused for more applications 
and different users. Typically is created with more flexibility and accessibility in 
mind. Thus, provides more options to modify for a different use case and 
exposes settings in an easy-to-use manner (e.g., GUI). 

GUI Graphical user interface 

Machine learning model A program that makes a decision (classifier) or returns an output (regression) 
based on some input, with the ability to process previously unseen data. 

Channel adjustment Change to the brightness, contrast, or gamma correction. 

Contrast The difference between the brightest and darkest pixels in an image. 

Supervised machine learning Training a machine learning model with labeled data, for example the inputs for 
training have been previously classified by a human. 

Unsupervised machine learning Training a machine learning model with unlabeled data, often to perform  tasks 
such as clustering   

Deep learning  Machine learning using deep neural networks. 

Ground truth Labeled data. While often described as ground truth, mistakes are often made, 
especially in large data sets, and should not be assumed to be the actual truth. 

Software containers A versioned, reproducible, and reusable computing system (such as an operating 
system visualizer such as Docker (https://www.docker.com/) or Singularity 
(https://docs.sylabs.io/guides/3.5/user-guide/introduction.html) or an otherwise 
reusable virtual machine system) that allows arbitrary numbers of users to 
access one or more software tools in a controlled and defined environment. 

 
  

https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
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Supplemental materials  

Supplemental figure 1. Alternative layout Checklist for image Publishing  
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Supplemental figure 2. Alternative layout Checklist for image Analysis Publishing 
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Supplemental figure 3. Overview of current repositories that accept image data. (Cimini, 2023) 
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