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Abstract: In this work, ammonium pyrrolidine dithiocarbamate (APDC) was used as a surface etchant
to modify CdTe/CdS core-shell quantum dots (QDs). The APDC etchant combines with the cadmium
ions (Cd2+) on the surface of the QDs, resulting in the formation of surface holes. The formation of
these holes changes the QD surface structure, which leads to fluorescence quenching of the QDs.
Newly added Cd2+ can selectively recognize and combine with these holes; thus, the fluorescence
intensity of the QDs can be restored. The linear response of this turn-on fluorescent sensor was found
to be 0–100 µg/L and 100–600 µg/L under the determined optimal conditions, and its limit of detection
(LOD) for Cd2+ was 2.642 µg/L (23.5 nmol/L).

Keywords: quantum dot; cadmium; ammonium pyrrolidine dithiocarbamate; fluorescence quenching;
fluorescent sensor

1. Introduction

Cadmium is a highly toxic heavy metal with a long biological half-life, easily accumulates in
organisms, and is difficult to eliminate [1–3]. The International Agency for Research on Cancer
(IARC) has defined cadmium as a human carcinogen that can lead to liver cancer, kidney cancer, and
osteomalacia, and cadmium is a soil and water contaminant strictly controlled by all countries [4–6].
Therefore, due to the human health effects and pollution risk of cadmium, its detection in the
environment, especially its rapid detection, is of great significance [7–9].

The need for cadmium detection has increased over the past few years, and the methods
commonly used for cadmium detection are atomic absorption spectrometry (AAS) [10,11], atomic
emission spectrometry (AES) [12,13], inductively coupled plasma mass spectrometry (ICPMS) [14,15],
conductometric analysis (CA) [16,17], anodic stripping voltammetry (ASV) [18–21], immunoassays, and
biosensors. AAS, AES, and ICPMS all require large-scale analysis equipment and complex operations.
CA and ASV involve a long reaction or deposition process of more than 5 min, and both require a
complex electrode modification procedure. Biosensors require strict storage conditions to prevent their
invalidation [22–25]. The disadvantages of these methods limit their application for portable and rapid
detection of trace Cd2+.

Quantum dots (QDs) are inorganic fluorescent clusters that have been developed in recent
years and have unique optical properties, such as an adjustable size and emission wavelength, strong
fluorescence stability, and high fluorescence efficiency. Compared with the cadmium detection methods
mentioned above, fluorescent QD sensors are increasingly used for biomolecule and metal ion (such as
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Cd2+, Cu2+, Pb2+, Hg2+, and Ag+) detection due to their small size, simple usage, good preservation,
and good selectivity [26–29].

At present, the QD sensors commonly used for cadmium measurement are based on Cd2+,
especially cadmium telluride (CdTe) and cadmium selenide (CdSe) QDs, and are all single-core
QDs [30–32]. Most of these reported QDs use the turn-off mode for Cd2+ detection; only a few use the
turn-on mode, which has a lower false positive rate than the turn-off mode and a limit of detection
(LOD) in the range of 11–62 µg/L (0.097–0.552 µmol/L) [33–35]. In this work, a simple CdTe/CdS
core-shell QD sensor that uses the turn-on mode was developed for portable and rapid detection
of Cd2+, and compared with the single-core QD structure, the core-shell structure leads to stronger
fluorescence stability, higher fluorescence efficiency, and lower toxicity. This sensor is formed by
using ammonium pyrrolidine dithiocarbamate (APDC) to etch the surface of CdTe/CdS core-shell QDs,
which leads to the formation of holes on the QD surface that cause fluorescence quenching. Cd2+

ions selectively recognize and combine with these holes, leading to recovery of the QD fluorescence.
The reaction mechanism of this turn-on-mode QD sensor is shown in Figure 1.

Figure 1. The reaction mechanism of the turn-on mode CdTe/CdS quantum dots (QD) sensor.

2. Experimental

2.1. Instruments and Reagents

All measurement processes were performed using a ThinkPad X230 notebook computer (Lenovo,
Beijing, China), a USB4000-XR1-ES modular spectrometer with related software and an optical fiber
(Ocean Optics, Dunedin, USA), an LED460-T optical source (Wyoptics Technology, Shanghai, China),
and a 4.5-mL UV cuvette (Fisher Scientific, Shanghai, China). All reagent treatment processes involved
the use of a BSA224S electronic balance (Satorius Group, Gottingen, Germany) and a Research Plus
pipette (Eppendorf, Shanghai, China). Ultrapure water was prepared using a ultrapure water system
(model: UPT-UPHW) (Ulupure Ultrapure Technology, Chengdu, China).

CdTe/CdS core-shell QDs were purchased from Xingzi New Material Technology Development
(Shanghai, China). Tris-HCl buffer solution and APDC reagent were purchased from Senbeijia
Biological Technology (Nanjing, China). The cadmium solution standard was purchased from Boyao
Biological Technology (Shanghai, China). Sodium nitrate, potassium nitrate, aluminum nitrate, calcium
nitrate, magnesium nitrate, chromic nitrate, manganous nitrate, ferric chloride, silver nitrate, copper
sulfate, mercury nitrate, lead nitrate, and zinc nitrate were all obtained from Macklin Biochemical
Technology (Shanghai, China). Ultrapure water (18.24 MΩ/cm) was used in all experiments.

2.2. Fluorescence Intensity Measurements

In the initial fluorescence intensity measurement, 2 mL of 10 mmol/L Tris-HCl buffer solution
with a pH of 8.5 was injected into a 4.5-mL cuvette. Then, 0.4 mL of 5 µmol/L CdTe/CdS QD solution
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was added to the cuvette and 1.6 mL of the same Tris-HCl buffer solution was added to bring the
volume of solution in the cuvette to 4 mL. Finally, the cuvette was placed into the spectrometer and the
fluorescence intensity was measured under excitation at 460 nm.

To determine the optimal volume of APDC solution to add to the cuvette, the first 2 steps were
the same as those in the initial measurement. In the 3rd step, different volumes of 100 µmol/L APDC
solution were added into different cuvettes to etch the QDs and to induce QD fluorescence quenching.
Then, 1 µL of 1 g/L cadmium standard solution was added to these cuvettes and the volume of solution
in the cuvettes was brought to 4 mL with the same buffer solution used in the initial measurement.
Finally, the cuvettes were placed in the spectrometer and their fluorescence intensities were measured
under the same excitation conditions mentioned above.

After the optimal volume of APDC solution volume was determined, the detection time and pH
of the buffer solution were optimized while holding the APDC solution volume and other conditions
constant to determine the optimal detection conditions.

Under these optimal experimental conditions, the volume of the 1 g/L cadmium standard solution
needed to produce a signal that fell on the fluorescence intensity curve of the etched QD solution for
Cd2+ detection was determined, and then, different interfering ions were added to the etched QD
solution to investigate the detection robustness. Finally, the fluorescence detection by the etched QD
solution was verified by real sample analysis.

3. Results and Discussion

3.1. The Stability of the Fluorescence Intensity of the QD Solution

To investigate the stability of the fluorescence intensity of the QD solution, the fluorescence intensity
of a QD solution without etching was measured from 0 to 10 min. As shown in Figure 2a, the variation
in the fluorescence intensity of the QD solution was less than 0.85% over the detection time range,
showing that the fluorescence intensity of the QD solution did not significantly vary over time and that
the QD solution has good stability and a long fluorescence lifetime. Figure 2b shows the fluorescence
intensity response curve of the QD solution without etching. The initial fluorescence intensity of this
solution was 1420.25, and there are 2 emission peaks with wavelengths of 461.13 nm and 594.19 nm.
The fluorescence peak near 594.19 nm may represent the fluorescence emitted by the core and shell
of the QDs upon excitation. Because the change in the QD shell structure results in a change in the
fluorescence intensity of the QD solution, the fluorescence peak intensity near 594.19 nm is used as the
index to express the fluorescence intensity of the QD solution in the following discussion. As shown in
Figure 2c, the QD solution in the cuvette emitted a bright orange band under excitation at 460 nm.

Figure 2. Cont.
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Figure 2. (a) Relationship between the fluorescence intensity of a QD solution without etching and
time. Concentration of Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5.
Concentration of added QD solution: 5 µmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD
solution (0.4 mL)→ Tris-HCl buffer solution (1.6 mL). Excitation wavelength: 460 nm. Observation
time: 10 min. (b,c) The fluorescence response of a QD solution without etching. Concentration of
Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added
QD solution: 5 µmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD solution (0.4 mL)→
Tris-HCl buffer solution (1.6 mL). Excitation wavelength: 460 nm. All data in this figure is mean of
five measurements.

3.2. Optimization of the Concentration of APDC in the Detection Cuvette

The concentration of APDC in solution affects the number of holes etched on the QD surface, and
the number of these holes affects the performance of the QD solution for Cd2+ detection. To optimize
the concentration of APDC in solution, different volumes of 100 µmol/L APDC solution were added to
cuvettes containing QD solution at the same volume and concentration, and the fluorescence intensity
of the QD solution was measured after addition of the APDC solution. Then, the same volume of 1 g/L
cadmium standard solution was added to these solutions and the fluorescence intensity was measured
again. The fluorescence intensity recovery ratio was calculated by dividing the fluorescence intensity
after addition of the cadmium standard solution by the fluorescence intensity before addition of the
cadmium standard solution.

As shown in Figure 3, as the volume of APDC solution increased, the fluorescence intensity of
the QD solution gradually decreased because the QD surface contains complexes of cadmium and
mercaptan, which act as a passivation layer to eliminate the surface defects in the QD, enabling the
QD to emit fluorescence upon excitation. However, as a metal-chelating agent, APDC can combine
with Cd2+ on the QD surface to destroy the passivation layer. The QD surface is etched because of the
loss of Cd2+, forming holes. These holes are considered new defects on the QD surface and lead to
a decrease in the fluorescence intensity of the QD, namely, fluorescence quenching. As more APDC
solution is added, more holes are produced on the QD surface and the fluorescence intensity of the
QDs decreases.

Figure 4 indicates that the newly added Cd2+ fills some holes on the QD surface, which reduces
the surface defects and restores the fluorescence intensity. However, as the amount of added APDC
solution increases, the newly added Cd2+ will increasingly combine with APDC to form chelates.
This mechanism competes with the process of filling holes on the QD surface by Cd2+, which hinders
repair of surface defects by newly added Cd2+. The higher the concentration of APDC is, the stronger
the hindrance, the fewer the surface defects repaired, and the lower the fluorescence intensity recovered
by the QD solution.
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Figure 3. Relationship between the fluorescence intensity of the QD solution and the volume of added
ammonium pyrrolidine dithiocarbamate (APDC) solution. Concentration of Tris-HCl buffer solution:
10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L.
Concentration of added APDC solution: 100 µmol/L. Addition order: Tris-HCl buffer solution (2 mL)
→ QD solution (0.4 mL)→ APDC solution (0–0.6 mL)→ Tris-HCl buffer solution (1.6–1 mL). Excitation
wavelength: 460 nm. Observation time: 3 min. All data in this figure is mean of five measurements.

Figure 4. Relationship between the fluorescence intensity of the QD solution with added cadmium
standard and the volume of the added APDC solution. Concentration of Tris-HCl buffer solution:
10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L.
Concentration of added APDC solution: 100 µmol/L. Concentration of cadmium standard solution:
1 g/L. Addition order: Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL) → APDC solution
(0–0.6 mL)→ cadmium standard solution (0.001 mL)→ Tris-HCl buffer solution (1.6–1 mL). Excitation
wavelength: 460 nm. Observation time: 3 min. All data in this figure is mean of five measurements.

The fluorescence intensity recovery ratio indicates the Cd2+ detection ability of the etched QD
solution. The higher the ratio is, the easier it is for the etched QD solution to be repaired by the newly
added Cd2+ to restore the fluorescence intensity. As shown in Figure 5, with an increase in the amount
of APDC solution added, the recovery ratio gradually increases. When 520 µL of APDC solution was
added, the recovery ratio reached a maximum of 4.483. When the amount of APDC solution added
continued to increase, the ratio began to decrease. This is because, when too little APDC solution
is added, few holes are etched on the QD surface, the newly added Cd2+ can fill the holes, and the
fluorescence intensity recovery ratio of the QD solution is low. However, when there is too much
APDC solution, the number of etched holes on the surface of the QDs increases significantly, but
compared with the number of Cd2+ ions filling these holes, most of the newly added Cd2+ combines
with APDC to form complexes, which hinders the QD surface defect repair process and reduces the
fluorescence intensity recovery ratio of the QD solution. Therefore, the optimal concentration of APDC
in the mixed solution was 13 µmol/L, and the optimal volume of added APDC solution was 520 µL.
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Figure 5. The fluorescence intensity recovery ratio of the etched QD solution with added cadmium
standard. Concentration of Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5.
Concentration of added QD solution: 5 µmol/L. Concentration of added APDC solution: 100 µmol/L.
Concentration of cadmium standard solution: 1 g/L. Addition order: Tris-HCl buffer solution (2 mL)
→ QD solution (0.4 mL)→ APDC solution (0–0.6 mL)→ cadmium standard solution (0.001 mL)→
Tris-HCl buffer solution (1.6–1 mL). Excitation wavelength: 460 nm. All data in this figure is mean of
five measurements.

3.3. Optimization of the pH of the Tris-HCl Buffer Solution

Figure 6 shows the relationship between the fluorescence intensity recovery ratio and the pH of
the Tris-HCl buffer solution. With increasing pH, the recovery ratio increased, and when the pH of
the Tris-HCl buffer solution was 8.5, the recovery ratio reached a maximum of 4.291. When the pH of
the buffer solution continued to increase, the ratio began to decrease. This phenomenon is likely due
to the instability and decomposition of the cadmium and mercaptan complexes on the surface of the
QDs when the pH of the buffer solution was low, leading to an increase in the number of holes on the
surface of the QDs and a decrease in the recovery ratio when the number of newly added Cd2+ ions
is constant. At high pH, the buffer solution contains abundant OH– ions, which may preferentially
combine with the newly added Cd2+ to form Cd(OH)2, reducing the number of newly added Cd2+

ions to fill the holes on the QD surface and reducing the fluorescence intensity recovery ratio of the QD
solution. Consequently, the optimal pH of the Tris-HCl buffer solution was 8.5.

Figure 6. The relationship between the fluorescence intensity recovery ratio and the pH of Tris-HCl
buffer solution. Concentration of Tris-HCl buffer solution: 10 mmol/L. Concentration of added QD
solution: 5 µmol/L. Concentration of added APDC solution: 100 µmol/L. Concentration of cadmium
standard solution: 1 g/L. Addition order: Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL)
→ APDC solution (0.52 mL)→ cadmium standard solution (0.001 mL)→ Tris-HCl buffer solution
(1.08 mL). Excitation wavelength: 460 nm. All data in this figure is mean of five measurements.
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3.4. Fluorescence Quenching Caused by the Etching Effect of APDC in the CdTe/CdS QD Solution

To investigate the fluorescence quenching caused by APDC etching in the QD solution, after
addition of the APDC solution to the QD solution in the cuvette, the fluorescence intensity of the QD
solution was measured. As shown in Figure 7, the fluorescence of the QD solution was quenched in
the first minute after addition of the APDC solution and the fluorescence intensity of the QD solution
decreased rapidly by 77.68%. This phenomenon shows that APDC caused rapid damage to the surface
structure of the QDs, and the fluorescence intensity of the QD solution subsequently decreased slowly.
After the 25th minute, the fluorescence intensity no longer changed significantly. Therefore, 25 min was
chosen to prepare the APDC/(CdTe/CdS) blank contrast solution without added Cd2+ for comparison
and analysis in the subsequent measurement process.

Figure 7. Relationship between the fluorescence intensity of the QD solution and the time after addition
of the APDC solution. Concentration of Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer
solution: 8.5. Concentration of added QD solution: 5 µmol/L. Concentration of APDC solution:
100 µmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD solution (0.4 mL)→ APDC solution
(0.52 mL)→ Tris-HCl buffer solution (1.08 mL). Excitation wavelength: 460 nm. Observation time:
35 min. All data in this figure is mean of five measurements.

3.5. Fluorescence Recovery Caused by Addition of Cd2+ to the APDC/CdTe/CdS QD Solution

Figure 8 depicts the relationship between the fluorescence intensity of the restored QD solution
and the time after addition of the cadmium standard solution. The fluorescence intensity of the restored
QD solution recovered to 220.99 after the initial measurement and then to 289.75 after 1 min. After the
second minute, the fluorescence intensity of the solution no longer changed significantly, which meant
that some of the surface holes had been filled rapidly in these 2 min, and the fluorescence intensity
of the QD solution was restored to a certain extent. The average fluorescence intensity of the QD
solution was 308.02 from the 3rd to 10th minute, and the average fluorescence intensity recovery ratio
of the QD solution was 4.569, which is almost consistent with the fluorescence intensity recovery ratio
corresponding to the optimal addition amount of APDC solution mentioned above.
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Figure 8. Relationship between the fluorescence intensity of the restored QD solution and the time
after addition of the cadmium standard solution. Concentration of Tris-HCl buffer solution: 10 mmol/L.
pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L. Concentration
of APDC solution: 100 µmol/L. Concentration of cadmium standard solution: 1 g/L. Addition order:
Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL) → APDC solution (0.52 mL) → cadmium
standard solution (0.001 mL)→ Tris-HCl buffer solution (1.08 mL). Excitation wavelength: 460 nm.
Observation time: 10 min. All data in this figure is mean of five measurements.

3.6. Analytical Performance of the APDC/CdTe/CdS QD Solution

As shown in Figure 9, the relationship between the fluorescence intensity of the restored QD
solution and the concentration of added Cd2+ in the QD solution was investigated. Under the
optimal detection conditions, the fluorescence intensity of the restored QD solution had a good linear
relationship with the concentration of Cd2+ in the ranges of 0–100 µg/L and 100–600 µg/L. At the
same time, with an increase in the concentration of Cd2+, the fluorescence emission peak wavelength
of the QD solution was redshifted, which may be a result of gradual filling of the etched holes on
the QD surface and the increasing size of the QDs. Under the optimal detection conditions, the
fluorescence intensity of the APDC/CdTe/CdS QD solution was repeatedly measured 20 times without
addition of the cadmium standard solution, and the standard deviation was calculated. To obtain
the LOD, 3 times the standard deviation was divided by the slope of the calibration curve shown in
Figure 10a. Similarly, 10 times the standard deviation was divided by the slope of the calibration curve
in Figure 10a to obtain the limit of quantitation (LOQ). The LOD of the APDC/CdTe/CdS QD solution
for Cd2+ detection was 2.642 µg/L (23.5 nmol/L), the LOQ of the APDC/CdTe/CdS QD solution for
Cd2+ detection was 8.807 µg/L (78.4 nmol/L), and the detection time was less than 3 min. As shown in
Figure 10a, the equation y = 2.897x + 40.111 (y: count, x: µg/L) with a correlation coefficient of 0.9938
(S/N = 3) was obtained for a Cd2+ concentration range of 0–100 µg/L, and Figure 10b shows that the
equation y = 0.7091x + 281.56 (y: count, x: µg/L) with a correlation coefficient of 0.9886 (S/N = 3) was
obtained for a Cd2+ concentration range of 100–600 µg/L. Table 1 is the comparison of different QD
sensors or fluorescent probes for Cd2+ determination.
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Figure 9. Relationship between the fluorescence intensity of the restored QD solution and the
concentration of added Cd2+ in the QD solution. Concentration of Tris-HCl buffer solution: 10 mmol/L.
pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L. Concentration
of APDC solution: 100 µmol/L. Concentration of cadmium standard solution: 1 g/L. Addition order:
Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL) → APDC solution (0.52 mL) → cadmium
standard solution (0–0.0028 mL)→ Tris-HCl buffer solution (1.08–1.0772 mL). Excitation wavelength:
460 nm. Observation time: 3 min. All data in this figure is mean of five measurements.

Figure 10. (a) Corresponding calibration plots for the APDC/CdTe/CdS QD solution based on different
Cd2+ concentrations in Tris-HCl buffer solution. Concentration of Tris-HCl buffer solution: 10 mmol/L.
pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L. Concentration
of APDC solution: 100 µmol/L. Concentration of cadmium standard solution: 1 g/L. Addition order:
Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL) → APDC solution (0.52 mL) → cadmium
standard solution (0–0.0004 mL)→ Tris-HCl buffer solution (1.08 mL). Excitation wavelength: 460 nm.
Observation time: 3 min. * Mean of five measurements. (b) Corresponding calibration plots for
the APDC/CdTe/CdS QD solution based on different Cd2+ concentrations in Tris-HCl buffer solution.
Concentration of Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration
of added QD solution: 5 µmol/L. Concentration of APDC solution: 100 µmol/L. Concentration of
cadmium standard solution: 1 g/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD solution
(0.4 mL)→ APDC solution (0.52 mL)→ cadmium standard solution (0.0004–0.0024 mL)→ Tris-HCl
buffer solution (1.08–1.0776 mL). Excitation wavelength: 460 nm. Observation time: 3 min. All data in
this figure is mean of five measurements.
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Table 1. Comparison of different QD sensors/fluorescent probes for Cd2+ determination.

QD Sensor/Fluorescent Probe Linear Range
(µmol/L) LOD (µmol/L) Reference

Ag2S QD 1–40 0.5460 [33]
competitive immunochromatographic

strips/gold nanoparticles QD 0.0022–0.0712 0.0016 [34]

4,5-bis (N, N-di (2- hydroxyethyl)
iminomethyl) acridine fluorescent probe 1–30 0.1300 [36]

6-mercaptonicotinic acid/L-Cys/gold
nanoparticles fluorescent probe 0.2–1.7 0.1000 [37]

CdTe/CdS QD 0.0784–5.338 0.0235 This work

3.7. Interference Study

To investigate the selectivity of the APDC/CdTe/CdS QD solution, an interference study was
conducted. As observed in Figure 11a,b, when the concentration of all ions was 5 µmol/L, the presences
of Na+, K+, Al3+, Ca2+, Mg2+, Cr3+, Mn2+, Fe3+, and Pb2+ did not have a significant impact on the
fluorescence intensity of the Cd-APDC/CdTe/CdS system. The presence of Ag+, Cu2+, and Hg2+ led to
a decrease in the fluorescence intensity of the system to varying degrees because these ions have a
stronger ability than Cd2+ to bind the S in mercaptan. At the same time, it is possible that the solubilities
of CuTe, Ag2Te, and HgTe are lower than that of CdTe. Thus, when Ag+, Cu2+, and Hg2+ were added,
these insoluble compounds easily accumulate on the surface of the QDs, hindering the hole filling
by Cd2+ and leading to a reduction in the fluorescence intensity recovery of the restored solution
and in the fluorescence intensity recovery ratio. When Zn2+ is added, the fluorescence intensity of
the Cd-APDC/CdTe/CdS system increased, possibly because Zn2+ can form compounds similar to
Cd-mercaptan on the surface of the QDs, which leads to an increase in the fluorescence intensity of
the solution. The fluorescence intensity decrease caused by Ag+, Cu2+, and Hg2+ was eliminated by
addition of the masking agent thiosemicarbazide (TSC) before detection. To investigate the masking
effect of TSC for silver, copper, and mercury, a masking effect study was conducted. The silver, copper,
and mercury standard solutions were mixed with TSC solution of different concentrations before
detection, and then, the mixed silver, copper, and mercury standard solutions were added into the
Cd-APDC/CdTe/CdS solution and the fluorescence intensities of these hybrid solutions were measured.
As shown in Figure 12a,b and Figure 13a, the fluorescence intensity of the three hybrid solutions
increased with an increase in the concentration of the TSC solution added in the pretreatment stage of
the silver, copper, and mercury standard solutions. With an increase in the TSC solution concentration,
the masking effect became increasingly more obvious and the fluorescence intensities of the hybrid
solutions containing mixed silver, copper, and mercury standard solutions returned to the level without
interference factors when the concentrations of mixed TSC solution were 15, 25, and 100 mmol/L,
respectively. Consequently, the optimal concentration of TSC solution was 100 mmol/L. Similarly, the
increase caused by Zn2+ was eliminated by addition of (1,2-cyclohexylenedinitrilo)-tetraacetic acid
(DCTA) before detection. As can be seen from Figure 13b, the fluorescence intensity of the hybrid
solution decreased with an increase in the DCTA solution added in the pretreatment stage of the zinc
standard solution. When the concentration of DCTA solution was 50 mmol/L, its masking effect on zinc
ions began to reach saturation. According to Figure 13b, the optimal concentration of DCTA solution
was 50 mmol/L. According to the above discussion, the APDC/CdTe/CdS QD solution can be used as a
selective sensor for Cd2+ detection.
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Figure 11. (a,b) Relationship between the fluorescence intensity of the restored QD solution and
the presence of added Cd2+ and other ions in the QD solution. Concentration of Tris-HCl buffer
solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution:
5 µmol/L. Concentration of APDC solution: 100 µmol/L. Concentration of cadmium standard solution:
2.5 mmol/L. Concentration of other standard solutions: 2.5 mmol/L. Addition order: Tris-HCl buffer
solution (2 mL)→ QD solution (0.4 mL)→ APDC solution (0.52 mL)→ cadmium standard solution
(0.008 mL)→ other standard solution (0.008 mL)→ Tris-HCl buffer solution (1.064 mL). Excitation
wavelength: 460 nm. Observation time: 3 min. All data in this figure is mean of five measurements.

Figure 12. (a) Relationship between the fluorescence intensity of the restored QD solution and the
concentration of thiosemicarbazide (TSC) solution added into a copper standard solution before
detection. Concentration of TSC solution: 5–100 mmol/L. Concentration of copper standard solution
before detection: 0.5 mol/L. Mix order: copper standard solution (5 µL) → TSC solution (5 mL).
Concentration of Tris-HCl buffer solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration
of added QD solution: 5 µmol/L. Concentration of APDC solution: 100 µmol/L. Concentration of
cadmium standard solution: 2.5 mmol/L. Concentration of mixed copper standard solution: 0.5 mmol/L.
Concentration of TSC in mixed copper standard solution: 5–100 mmol/L. Addition order: Tris-HCl
buffer solution (2 mL)→ QD solution (0.4 mL)→ APDC solution (0.52 mL)→ cadmium standard
solution (0.008 mL)→mixed copper standard solution (0.04 mL)→ Tris-HCl buffer solution (1.032 mL).
Excitation wavelength: 460 nm. Observation time: 3 min. * Mean of five measurements. (b) Relationship
between the fluorescence intensity of the restored QD solution and the concentration of TSC solution
added into a mercury standard solution before detection. Concentration of TSC solution: 5–100 mmol/L.
Concentration of mercury standard solution before detection: 0.1 mol/L. Mix order: mercury standard
solution (25 µL)→ TSC solution (5 mL). Concentration of Tris-HCl buffer solution: 10 mmol/L. pH
of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L. Concentration of
APDC solution: 100 µmol/L. Concentration of cadmium standard solution: 2.5 mmol/L. Concentration
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of mixed mercury standard solution: 0.5 mmol/L. Concentration of TSC in mixed mercury standard
solution: 5–100 mmol/L. Addition order: Tris-HCl buffer solution (2 mL) → QD solution (0.4 mL)
→ APDC solution (0.52 mL)→ cadmium standard solution (0.008 mL)→ mixed mercury standard
solution (0.04 mL)→ Tris-HCl buffer solution (1.032 mL). Excitation wavelength: 460 nm. Observation
time: 3 min. All data in this figure is mean of five measurements.

Figure 13. (a) Relationship between the fluorescence intensity of the restored QD solution and the
concentration of TSC solution added into a silver standard solution before detection. Concentration of
TSC solution: 5–100 mmol/L. Concentration of silver standard solution before detection: 0.5 mol/L.
Mix order: silver standard solution (5 µL)→ TSC solution (5 mL). Concentration of Tris-HCl buffer
solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution:
5 µmol/L. Concentration of APDC solution: 100 µmol/L. Concentration of cadmium standard solution:
2.5 mmol/L. Concentration of mixed silver standard solution: 0.5 mmol/L. Concentration of TSC in
mixed silver standard solution: 5–100 mmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD
solution (0.4 mL)→APDC solution (0.52 mL)→ cadmium standard solution (0.008 mL)→mixed silver
standard solution (0.04 mL)→ Tris-HCl buffer solution (1.032 mL). Excitation wavelength: 460 nm.
Observation time: 3 min. * Mean of five measurements. (b) Relationship between the fluorescence
intensity of the restored QD solution and the concentration of (1,2-cyclohexylenedinitrilo)-tetraacetic
acid (DCTA) solution added into a zinc standard solution before detection. Concentration of DCTA
solution: 2.5–50 mmol/L. Concentration of zinc standard solution before detection: 1 mmol/L. Mix
order: DCTA solution (5 mL) → zinc standard solution (5 mL). Concentration of Tris-HCl buffer
solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution:
5 µmol/L. Concentration of APDC solution: 100 µmol/L. Concentration of cadmium standard solution:
2.5 mmol/L. Concentration of mixed zinc standard solution: 0.5 mmol/L. Concentration of DCTA in
mixed zinc standard solution: 1.25–25 mmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD
solution (0.4 mL)→ APDC solution (0.52 mL)→ cadmium standard solution (0.008 mL)→mixed zinc
standard solution (0.04 mL)→ Tris-HCl buffer solution (1.032 mL). Excitation wavelength: 460 nm.
Observation time: 3 min. All data in this figure is mean of five measurements.

3.8. Sample Analysis

The feasibility of the APDC/CdTe/CdS QD solution for Cd2+ detection was verified by analyzing
extracted river water samples. In the pretreatment stage, all samples were mixed with TSC and DCTA
solution to mask the interference of Ag+, Cu2+, Hg2+, and Zn2+.

The feasibility of detecting Cd2+ in practical samples using the APDC/CdTe/CdS QD solution sensor
was verified by analysis of extracted river water samples and comparison with AAS analysis. As shown
in Table 2, the relative error of Cd2+ detection in river water samples using the APDC/CdTe/CdS
QD solution sensor was no more than 3.5%. In addition, Table 3 shows recovery of Cd2+ from
river water samples using the APDC/CdTe/CdS QD solution sensor. The average recovery for the
APDC/CdTe/CdS solution sensor was 98.76%, and the RSD was less than 3%. These results indicate
that the APDC/CdTe/CdS QD solution can be used for Cd2+ detection in extracted river water samples.
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Table 2. Comparison of the detection of Cd2+ in river water samples using the QD solution sensor and
atomic absorption spectrometry (AAS).

Ion Number

Detected by
the QD

Solution
(µg/L) a

Detected by
AAS (µg/L) a

Relative
Error (%)

Standard
Deviation

(SD) (µg/L)

Relative
Standard
Deviation
(RSD) (%)

Cd2+

Sample 1 28.75 28.17 2.01 0.56 1.94
Sample 2 14.39 14.85 3.10 0.41 2.87
Sample 3 32.81 33.59 2.32 0.77 2.35

a Mean of five measurements. Concentration of TSC solution: 100 mmol/L. Concentration of DCTA solution:
50 mmol/L. Sample mix order: DCTA solution (5 mL)→ water sample (5 mL). Concentration of Tris-HCl buffer
solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L.
Concentration of APDC solution: 100 µmol/L. Addition order: Tris-HCl buffer solution (2 mL)→ QD solution
(0.4 mL)→ APDC solution (0.52 mL)→ TSC solution (0.04 mL)→mixed water sample (0.04 mL)→ Tris-HCl buffer
solution (1 mL). Excitation wavelength: 460 nm. Observation time: 3 min.

Table 3. Recovery of Cd2+ from river water samples.

Ion Number Added
(µg/L)

Detected by the
QD Solution

(µg/L) a.

Recovery
(%)

Standard
Deviation

(SD) (µg/L)

Relative
Standard
Deviation
(RSD) (%)

Cd2+

Sample 4 40 39.10 97.75 0.62 1.77
Sample 5 80 78.43 98.04 2.08 2.65
Sample 6 200 202.59 101.3 4.01 1.98
Sample 7 400 391.73 97.93 9.44 2.41

a Mean of five measurements. Concentration of TSC solution: 100 mmol/L. Concentration of DCTA solution:
50 mmol/L. Sample mix order: DCTA solution (5 mL)→ water sample (5 mL). Concentration of Tris-HCl buffer
solution: 10 mmol/L. pH of Tris-HCl buffer solution: 8.5. Concentration of added QD solution: 5 µmol/L.
Concentration of APDC solution: 100 µmol/L. Concentration of added cadmium standard solution: 40–400 mg/L.
Addition order: Tris-HCl buffer solution (2 mL)→ QD solution (0.4 mL)→ APDC solution (0.52 mL)→ cadmium
standard solution (0.004 mL)→ TSC solution (0.04 mL)→mixed water sample (0.04 mL)→ Tris-HCl buffer solution
(0.996 mL). Excitation wavelength: 460 nm. Observation time: 3 min.

4. Conclusions

In this work, a CdTe/CdS QD solution sensor etched by APDC for Cd2+ detection is introduced. The
sensor is based on the turn-on mode. With the addition of APDC, the surface structure of QDs is etched,
which leads to fluorescence quenching. Then, added Cd2+ can gradually recover the fluorescence
intensity of the APDC/CdTe/CdS QD solution. After optimization of the APDC concentration in the
QD solution and the pH, this APDC/CdTe/CdS QD solution can be used as a fluorescent sensor for
Cd2+ detection in water samples. The LOD of this QD solution sensor is 2.642 µg/L (23.5 nmol/L),
and its two linear response ranges are 0–100 µg/L and 100–600 µg/L. In addition, the QD solution
sensor has good selectivity, low toxicity, and a fast response time and shows potential for application
in environmental Cd2+ monitoring.
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