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Abstract: The scope of ruthenium (Ru)-catalyzed cross metathesis (CM) of allyl-decorated polyhedral
oligomeric silsesquioxanes (POSS) was explored. A variety of different commercial and non-commercial
ruthenium complexes were tested to determine that the nitro-activated Ru catalyst is optimal for this
transformation. The reported transformation was used to prepare selected hybrid steroid-POSS compounds.
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1. Introduction

Polyhedral oligomeric silsesquioxanes (POSS) are characterized by their remarkable cubic
structure, which has received attention from scientists of different disciplines [1–3]. POSS can be
used as precursors and components in a variety of hybrid materials for biomedical applications,
such as biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications,
and biological sensors [4–10]. The POSS molecule (Figure 1) consists of a cubic silica-oxygen core that
is surrounded by eight tunable groups, one in each corner of the cube. These groups can be identical or
one of them can be different, allowing for further site selective modification. The chain groups (R, X)
can be substituted with a potentially unlimited number of organofunctional groups, such as alkyls,
olefins, alcohols, esters, anhydrides, amines, imides, epoxides, thiols, sulfonates, silanols, and many
others [11].

Olefin cross metathesis (CM) is one of the most powerful methods for preparing variously
substituted alkenes [12–15]. CM is widely used as a key step in the synthesis of many chemicals from
simple oils [16,17] to complex structures that exhibit biological activity [18–20].

CM is catalyzed by ruthenium (Ru) or molybdenum (Mo) complexes; the most common catalysts
are ruthenium complexes such as Grubbs (Gr), Hoveyda-Grubbs (Hov) and Indenylidene (Ind)
(Figure 2) [21].
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The first cross metathesis reaction of octavinyl POSS was performed by the Feher group in
1997 employing Schrock and Grubbs catalysts [22]. Schrock catalysts were substantially more active
compared to Grubbs. The authors showed that metathesis offers an important new route in the
functionalization of POSS derivatives. Even though Schrock catalysts provided better results,
the authors emphasized that ruthenium catalysts are the future of POSS CM. Marciniec et al. reported
the first efficient CM of vinyl-POSS in the presence of a ruthenium catalyst [23–25]. POSS CM was
also applied for the synthesis of POSS-core dendrimers [26,27]. Notably, this methodology required
extremely high catalyst loading (45 mol%) of first generation Grubbs catalyst (Gr-I) [26,27].

The CM reaction of POSS derivatives might be considered the most direct method for obtaining
new POSS biohybrids, which is being intensively explored in nanomedicine [4]. Herein, we report the
first examples of allyl-POSS CM reaction. To achieve this transformation, a variety of commercially
available ruthenium complexes, as well as a few obtained in our laboratories, were screened in two
model CM reactions of allyl-POSS derivative (1), using easily reacting cis-1,4-Diacetoxy-2-butene (3)
and the more challenging, electron-deficient, tert-butyl acrylate (2) as CM partners. After selecting the
most efficient catalysts the utility of this method was demonstrated by the synthesis of some selected
POSS-steroid conjugates.

2. Results and Discussion

The first step in the present study was to choose an appropriate catalyst and conditions. For this
approach, we selected tert-butyl acrylate (2) and (Z)-diacetoxy-but-2-en (3) as the model CM partners
(Table 1). The CM reactions were performed at room temperature in dichloromethane (DCM). Notably,
the catalyst loading in these preliminary experiments was set at 0.5 mol%, which is substantially lower
than in the previous reports on CM of POSS molecules of 45 mol%.

Almost all tested complexes (Figures 2 and 3) presented some activity toward POSS CM. First
generation catalysts [Ru]-1 and [Ru]-2 (Table 1, Entry 1 and 2, respectively) showed the lowest
activity among the catalysts studied here. In the Indenylidene family, complexes Ind-2 (Table 1, Entry
10) and [Ru]-8 (Table 1, Entry 12) did not catalyse the process, whereas [Ru]-7 (Table 1, Entry 11)
exhibited medium activity. However, those complexes perform better at elevated temperatures [28].
Complexes with SIPr N-Heterocyclic Carbene (NHC) ligands [Ru]-4 (Table 1, Entry 5), [Ru]-5 (Table 1,
Entry 8), [Ru]-13 (Table 1, Entry 22), and Ru-[14] (Table 1, Entry 23) displayed higher catalytic activity
toward the CM reaction in comparison to the parent catalysts [20,29]. Complexes bearing so-called
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“Turbo” unsaturated NHC ligand [Ru]-3 (Table 1, Entry 4) and [Ru]-6 (Table 1, Entry 9) according the
literature supposed to behave similarly to SIPr-modified complexes [30]. Interestingly, in this case,
we observed lower catalytic activity. A modification of the benzylidene ligand, as in the case of Nitro
(Table 1, Entry 13), [Ru]-13 (Table 1, Entry 21), [Ru]-14 (Table 1, Entry 23), and [Ru]-15 [31] (Table 1,
Entry 25), did not improve catalytic activity compared to parent Hov-II (Table 1, Entry 10). Similarly,
the additional chelation present in the case of complexes [Ru]-9 (Table 1, Entry 15), [Ru]-10 [32,33]
(Table 1, Entry 17), and [Ru]-11 (Table 1, Entry 19) did not significantly change the reaction outcome.

Table 1. Cross metathesis of allyl-polyhedral oligomeric silsesquioxanes (POSS) derivative with
model partners.Molecules 2018, 23, x FOR PEER REVIEW  3 of 10 
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17 [Ru]-10 5 99 66 

18 [Ru]-10 2 72 26 
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21 [Ru]-12 2 93 90 

22 [Ru]-13 5 91 82 
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24 [Ru]-14 2 87 80 

25 [Ru]-15 5 85 83 
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Entry 10) and [Ru]-8 (Table 1, Entry 12) did not catalyse the process, whereas [Ru]-7 (Table 1, Entry 

11) exhibited medium activity. However, those complexes perform better at elevated 

temperatures.[28] Complexes with SIPr N-Heterocyclic Carbene (NHC) ligands [Ru]-4 (Table 1, 

Entry 5), [Ru]-5 (Table 1, Entry 8), [Ru]-13 (Table 1, Entry 22), and Ru-[14] (Table 1, Entry 23) 

displayed higher catalytic activity toward the CM reaction in comparison to the parent catalysts 

Entry Catalyst Time (h) Yield of 4 (%) Yield of 5 (%)

1 [Ru]-1 5 6 33
2 [Ru]-2 5 5 40
3 Gr-II 5 71 80
4 [Ru]-3 5 28 31
5 [Ru]-4 5 79 83
6 Hov-II 5 99 98
7 Hov-II 2 80 73
8 [Ru]-5 5 99 69
9 [Ru]-6 5 40 57

10 Ind-II 5 0 0
11 [Ru]-7 5 50 52
12 [Ru]-8 5 0 0
13 Nitro 24 90 64
14 Nitro 5 87 76
15 [Ru]-9 5 94 89
16 [Ru]-9 2 81 69
17 [Ru]-10 5 99 66
18 [Ru]-10 2 72 26
19 [Ru]-11 5 56 77
20 [Ru]-12 5 91 82
21 [Ru]-12 2 93 90
22 [Ru]-13 5 91 82
23 [Ru]-14 5 91 95
24 [Ru]-14 2 87 80
25 [Ru]-15 5 85 83
26 [Ru]-16 5 81 86
27 [Ru]-17 5 96 82
28 [Ru]-18 5 90 82

Reaction conditions: 1 (0.5 mmol), 2 (1 mmol), or 3 (1.5 mmol), [Ru] 0.5 mol%, dichloromethane (DCM) (4 mL),
room temperature (RT).
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Figure 3. Additional ruthenium complexes used in this study.

Next, we investigated the catalytic activity of Ru complexes bearing the NHC ligand with a more
bulky naphthyl side chains (Dorta’s NHC ligands, Figure 4) [34]. This type of complexes possesses
higher activity in some olefin metathesis transformations [35–37]. However, in the case of POSS
CM, catalysts [Ru]-16 (Table 1, Entry 26), [Ru]-17 (Table 1, Entry 27), and [Ru]-18 (Table 1, Entry 28)
generally displayed similar activity as the other “decorated” Hoveyda-type complexes.
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Figure 4. Family of ruthenium complexes bearing N-Heterocyclic Carbene (NHC) ligand with naphthyl
side chains used in this study.

For further investigation of POSS metathesis with more sophisticated CM partners, the most
popular Hov-II catalyst was selected due to its commercial availability and satisfying catalytic activity.
Additionally, the Nitro catalyst was selected due to its high catalytic activity toward steroids [38] as
well as its commercial availability.
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As these steroidal CM partners can be more challenging in terms of reactivity than a simple
diacetate 3 or even acrylate 2, we expected that an increase in the reaction temperature and catalyst
loading might be necessary to obtain practically useful product yields.

Reacting androsterone derivative 6 with allyl-POSS (1) (Table 2) in the previously determined
optimal conditions yielded only traces (3%) of the desired product. Increasing the temperature to
45 ◦C and the loading of Hov-II to 2 mol% increased the yield of 7 to 36%. Further improvement was
achieved by performing the reaction 100 ◦C in toluene to access the desired product 7 in 69% yield.
Finally, when we performed the reaction in the presence of the Nitro catalyst, product 7 was obtained
with 72% of yield as a mixture of Z/E isomers 20:80.

Table 2. Cross metathesis of allyl-POSS 1 with derivative of androsterone 6.
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Hov-II (2) Toluene 100 5 69
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Pregnenolone derivative 8 (Table 3) react with allyl-POSS to give the functionalized POSS 9 in
29% yield using 0.5 mol% of Hov-II at room temperature. Increasing the temperature to 100 ◦C did not
significantly improve the yield (36%), as well as applying Nitro as a catalyst (46%). However, the best
result was obtained refluxing the reaction mixture in DCM for 24 h using 2 mol% of Nitro catalyst.
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Table 3. Cross metathesis of allyl-POSS 1 with derivative of pregnenolone 8. 

 
Catalyst (mol%) Solvent Temperature (◦C) Time (h) Yield of 9 (%)

Hov-II (0.5) DCM RT 5 29
Hov-II (2) Toluene 100 5 36
Nitro (2) Toluene 100 10 46
Nitro (2) DCM 45 24 69

We were intrigued by very similar results obtained at room temperature and 100 ◦C using
substrate 8. We hypothesized that the higher reaction temperature might facilitate both reaction
between and 1 and 8 but also self CM of 1. We performed control experiments by mixing 1 with
0.5 mol% of Hov-II in toluene at 100 ◦C and in DCM at room temperature. Indeed, the experiment
at elevated temperature resulted in 90% of the self cross metathesis product and no conversion was
observed at room temperature.

Next, we employed the optimal conditions for substrate 8 to prepare estrone POSS derivative 11
(Scheme 1) that was obtained as 20:80 mixture of Z/E isomers in 62% yield.
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3. Materials and Methods

3.1. General

Nuclear magnetic resonance (NMR) spectra were recorded in CDCl3 (chloroform-d) or benzene-d6

solutions (unless indicated otherwise); chemical shifts are reported in the δ scale in ppm, with the
solvent signal as the internal standard (CDCl3, 1H NMR 7.26 ppm; 13C NMR 77.00 ppm, benzene-d6,
1H NMR 7.16 ppm, 13C NMR 128.06 ppm). Column chromatography was performed on Merck silica
gel 60, 230–400 mesh (Darmstadt, Germany). Thin layer chromatography (TLC) was performed
on aluminum sheets, Merck 60 F254 (Darmstadt, Germany). Anhydrous solvents were obtained by
distillation over calcium chloride (CaCl2) (DCM, Toluene). All reactions were performed under argon
(Ar) in pre-dried glassware using Schlenk techniques.

3.2. General Procedure for the Cross Metathesis of 1 with Different Partners

The catalyst was added in one portion to a solution of propyl-POSS and appropriate partner in
DCM/Toluene (4 mL). The resulting mixture was stirred in an appropriate temperature under an
argon atmosphere. The solvent was removed under reduced pressure. The crude product was purified
by flash chromatography (c-hexane/EtOAc) to obtain pure product.

3.3. 4-(POSS)but-2-en-1-yl acetate (4)

1H NMR (500 MHz, CDCl3): δ, 5.79–5.70 (m, 1H), 5.66 (dtt, J = 11.4, 8.6, 1.4 Hz, 1H), 5.55–5.45
(m, 1H), 4.61 (dd, J = 6.8, 1.4 Hz, 1H), 4.48 (dd, J = 6.7, 1.1 Hz, 2H), 2.06 (s, 1H), 2.04 (s, 2H), 1.85 (dpd,
J = 13.4, 6.7, 2.3 Hz, 7H), 1.66 (dd, J = 8.6, 1.4 Hz, 1H), 1.61 (dd, J = 7.9, 1.3 Hz, 2H), 0.96 (dd, J = 6.6,
1.0 Hz, 42H), 0.63–0.58 (m, 14H) ppm. 13C NMR (126 MHz, CDCl3): δ, 171.1, 171.0, 130.7, 128.6, 124.2,
122.9, 77.4, 77.3, 77.1, 76.9, 65.6, 60.6, 25.9, 25.8, 25.8, 24.0, 22.9, 22.6, 22.5, 21.2, 18.4, 14.6, 1.2, 0.1 ppm
(Supplementary Materials). IR (film, DCM) ν 2954, 2927, 2907, 2870, 1745, 1465, 1401, 1383, 1366, 1332,
1230, 1169, 1107, 1038, 964, 838. EA Anal. Calcd. For C34H72O14Si8: C, 43.93; H, 7.81; found C, 43.77; H,
7.98. MS (ESI): m/z [M + Na]+: 951.

3.4. tert-butyl 4-(POSS)but-2-enoate (5)

1H NMR (500 MHz, CDCl3): δ, 6.86 (dt, J = 15.4, 8.5 Hz, 1H), 5.67 (dt, J = 15.4, 1.4 Hz, 1H), 1.85
(dpd, J = 13.5, 6.8, 1.5 Hz, 7H), 1.75 (dd, J = 8.5, 1.4 Hz, 2H), 1.47 (s, 9H), 0.95 (dd, J = 6.6, 1.0 Hz, 43H),
0.63–0.58 (m, 14H) ppm. 13C NMR (126 MHz, CDCl3): δ, 166.1, 143.0, 123.3, 79.8, 79.7, 28.5, 28.4, 25.9,
25.8, 24.1, 24.0, 24.0, 22.7, 22.6, 22.5, 22.2, 22.1, 19.4, 1.2, 0.2 ppm (Supplementary Materials). IR (film,
DCM) ν 2955, 2932, 2907, 2870, 1714, 1646, 1465, 1401, 1383, 1367, 1326, 1296, 1230, 1213, 1168, 1106,
1040, 982, 839. EA Anal. Calcd. For C36H76O14Si8: C, 45.15; H, 8.00; found C, 45.03; H, 7.93. MS (ESI):
m/z [M + Na]+: 979.

3.5. (10R,13S)-10,13-dimethyl-1,2,3,4,7,8,9,10,11,12,13,14,15,16-tetradecahydrospiro[cyclopenta[a]
phenanthrene-17,2’-[1,3]dioxolan]-3-yl 6-(POSS)hex-4-enoate (7)

1H NMR (400 MHz, C6D6): δ, 5.76–5.62 (m, 1H), 5.59–5.44 (m, 1H), 5.35–5.26 (m, 1H), 4.87 (ddt,
J = 11.1, 8.4, 5.5 Hz, 1H), 3.61–3.46 (m, 4H), 2.58–2.46 (m, 1H), 2.41 (t, J = 6.9 Hz, 2H), 2.36–2.30 (m, 1H),
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2.18–1.98 (m, 9H), 1.88 (dddd, J = 17.2, 14.9, 7.3, 4.0 Hz, 4H), 1.80–1.69 (m, 3H), 1.67–1.53 (m, 5H), 1.46
(dd, J = 11.4, 3.2 Hz, 3H), 1.36 (td, J = 13.8, 13.0, 5.0 Hz, 3H), 1.16–1.04 (m, 47H), 0.96 (d, J = 1.6 Hz, 3H),
0.91 (t, J = 2.3 Hz, 3H), 0.88–0.80 (m, 14H) ppm. 13C NMR (101 MHz, CDCl3): δ, 171.9, 139.8, 129.8,
124.6, 122.7, 119.6, 73.8, 65.2, 64.6, 50.9, 50.3, 46.1, 38.8, 37.2, 36.9, 34.9, 34.7, 32.4, 31.7, 30.9, 28.8, 28.3,
25.9, 24.5, 23.2, 23.1, 22.9, 20.9, 19.4, 18.5, 14.6 ppm (Supplementary Materials). IR (film, DCM) ν 3444,
2925, 2856, 1733, 1671, 1462, 1378, 1307, 1255, 1228, 1170, 1109, 1040, 959, 903, 881.

3.6. (13S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]
phenanthren-3-yl-6-(POSS)hex-4-enoate (9)

1H NMR (400 MHz, C6D6): δ, 5.94–5.82 (m, 0.2 × 1H), 5.76–5.65 (m, 1H), 5.62–5.52 (m, 0.8 × 1H),
5.35 (dt, J = 5.6, 1.8 Hz, 1H), 3.45–3.34 (m, 1H), 2.30–2.21 (m, 2H), 2.20–2.03 (m, 9H), 1.99–1.87 (m, 2H),
1.86–1.77 (m, 2H), 1.75–1.65 (m, 3H), 1.63–1.53 (m, 2H), 1.50–1.36 (m, 5H), 1.31 (s, 3H), 1.14–1.06
(m, 44H), 0.96 (s, 3H), 0.93 (s, 3H), 0.89–0.83 (m, 14H) ppm. 13C NMR (101 MHz, C6D6): δ, 141.3, 126.8,
125.6, 121.6, 74.9, 74.8, 74.3, 71.7, 59.2, 58.9, 58.8, 57.3, 50.6, 50.6, 47.6, 43.3, 43.1, 43.1, 42.9, 41.4, 40.7,
40.6, 37.7, 36.8, 32.3, 32.2, 31.7, 27.8, 27.2, 27.0, 26.0, 26.0, 25.9, 24.5, 24.4, 24.3, 24.2, 23.1, 23.0, 22.8, 22.5,
21.4, 21.4, 19.5, 18.6, 14.5, 14.0, 13.9, 13.8 ppm (Supplementary Materials). IR (film, DCM) ν 3387, 2954,
2871, 1708, 1465, 1401, 1382, 1366, 1333, 1229, 1110, 954, 837. MS (TOF ES): m/z [M + Na]+: 1210.53

3.7. ((13S,17R)-13-methyl-17-(4-(POSS)but-2-en-1-yl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-
cyclopenta[a]phenanthrene-3,17-diol (11)

1H NMR (400 MHz, CDCl3): δ, 7.30–7.26 (m, 1H), 6.88–6.77 (m, 2H), 5.69–5.56 (m, 0.2 × 1H),
5.63–5.55 (m, 0.2 × 1H), 5.54–5.45 (m, 0.8 × 1H), 5.44–5.35 (m, 0.8 × 1H), 2.96–2.84 (m, 2H), 2.62–2.54
(m, 2H), 2.53–2.46 (m, 1H), 2.46–2.36 (m, 2H), 2.29 (t, J = 10.9 Hz, 1H), 2.21–2.07 (m, 1H), 2.07–1.93
(m, 3H), 1.86 (dpd, J = 13.4, 6.7, 2.0 Hz, 8H), 1.69–1.58 (m, 3H), 1.58–1.38 (m, 6H), 1.05–0.83 (m, 46H),
0.65–0.56 (m, 14H) ppm. 13C NMR (101 MHz, CDCl3): δ, 220.9, 172.2, 148.7, 138.1, 137.4, 128.2, 126.7,
126.5, 125.3, 124.8, 121.7, 121.7, 118.9, 118.8, 50.6, 48.1, 44.3, 38.1, 36.0, 34.7, 34.5, 31.7, 29.5, 28.4, 26.5,
25.9, 25.8, 24.0, 23.9, 23.9, 22.7, 22.6, 22.6, 22.5, 21.7, 18.2, 13.9, 1.2 ppm (Supplementary Materials).
IR (film, DCM) ν 3455, 3077, 2952, 2928, 2870, 1739, 1641, 1608, 1583, 1494, 1453, 1417, 1369, 1335, 1260,
1226, 1114, 1009, 915. MS (TOF ES): m/z [M + Na]+: 1204.44

4. Conclusions

In summary, we explored the ruthenium-catalyzed cross metathesis reactions between allyl-POSS
and five alkenes, including three steroid derivatives. We showed that, even for such challenging
partners and relatively mild conditions, such as 0.5–2 mol% of catalyst at DCM or toluene at RT to
100 ◦C, are sufficient to perform an efficient CM reaction with POSS derivatives. The best catalysts for
these transformations were Hov-II and Nitro complexes.

Supplementary Materials: The following are available online. Figure S1: 1H NMR of compound 4; Figure S2: 13C
NMR of compound 4; Figure S3: 1H NMR of compound 5; Figure S4: 13C NMR of compound 5; Figure S5: 1H
NMR of compound 7; Figure S6: 13C NMR of compound 7; Figure S7: 1H NMR of compound 9; Figure S8: 13C
NMR of compound 9; Figure S9: 1H NMR of compound 11; Figure S10: 1H NMR of compound 11.
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