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Abstract: This paper analyses the semi-industrial process of spray drying chokeberry juice with
carbohydrate polymers used as a carrier. Tapioca dextrin (Dx) was proposed and tested as an
alternative carrier and it was compared with maltodextrin carriers (MDx), which are the most
common in industrial practice. The influence of selected process parameters (carrier type and
content, inlet air temperature, atomiser speed) on the characteristics of dried chokeberry powder was
investigated. The size and microstructure of the powder particles, the bulk and apparent density,
porosity, flowability, yield and bioactive properties were analysed. In comparison with MDx, the Dx
carrier improved the handling properties, yield and bioactive properties. An increase in the Dx carrier
content improved the phenolic content, antioxidant capacity, flowability and resulted in greater yield
of the powder. An increase in the drying temperature increased the size of particles and improved
powder flowability but it also caused a greater loss of the phenolic content and antioxidant capacity.
The rotary atomizer speed had the most significant effect on the bioactive properties of obtained
powders, which increased along with its growth. The following conditions were the most favourable
for chokeberry juice with tapioca dextrin (Dx) as the carrier: inlet air temperature, 160 ◦C; rotary
atomizer speed, 15,000 rpm; and Dx carrier content, 60%.

Keywords: spray drying; fruit powders; chokeberry; tapioca dextrin carrier; bioactive compounds;
antioxidants; phenolic content; physicochemical properties of powder

1. Introduction

The growing consumption of instant foods around the world causes an increasing demand for
dried products. Consumers expect products that enable quick and easy preparation of meals and
their storage [1]. An increasing demand for natural and health-promoting food is the second most
important trend in the food industry [2]. Both trends have intensified in recent years and significantly
increased the popularity of these products. Dried fruit products are ideal semi-finished goods that can
be used in the production of this food. Both whole fruits and fruit pieces as well as pastes and juices
can be dried [3]. Fruit powders match both of these food market trends, especially chokeberry powder,
due to its properties. This product can be an excellent ingredient, as it colours, flavours and enriches
food with bioactive substances. The effect is a health-promoting finished product.

Chokeberry (Aronia melanocarpa L.) is a fruit with various health-promoting properties. It prevents
diseases of affluence, such as hypertension, atherosclerosis, diabetes and some types of cancer [4–7].
The consumption of chokeberry products delays ageing processes, prevents age-related eye diseases
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such as macular disorders and helps to maintain good night vision and visual acuity [8]. The skin
maintains resistance to UV radiation [9]. Most of these properties of chokeberry result from its high
content of antioxidants, which is 3–4 times greater than the content of antioxidants in blackberry,
blackcurrant and raspberry [10–12]. Chokeberry fruits are one of the richest natural sources of
anthocyanins (460–700 mg per 100 g) [12]. The food industry mostly offers chokeberry juice, which is
not only a healthy product but also a natural red and blue pigment of great colouring strength because
it is rich in anthocyanins [13]. Recently, the demand for chokeberry juice powder has increased due to
the rising popularity of instant products and food for specified health use.

The spray drying of fruit juice is one of the most common methods of fruit powder production.
The advantage of spray drying consists in the fact that it is a mild and fast dehydration process due
to rapid evaporation. Changing the liquid form of juices into dry powders by reducing the water
content prolongs the shelf life of products (decrease in water activity) [14]. It enables the maintenance
of product stability and functionality until its use, such as reconstitution behaviour. It is not easy
to dry fruit juice because it is sticky [15]. These properties are caused by the main ingredients of
fruit juices, like low molecular weight sugars and organic acids, which are characterised by low glass
transition temperature (Tg), high hygroscopicity, low melting temperature and high solubility in
water. All these factors reduce product stability, yield (due to juice sticking to the dryer walls) and
even cause difficulties operating the spray dryer [16]. Carriers, which are colourless and odourless
high molecular weight additives, especially carbohydrate polymers such as hydrolysed starch and
gum [17], are used to eliminate all these negative phenomena. Apart from carbohydrate polymers,
proteins and lipids, such as whey proteins, soy proteins, sodium caseinate and lecithin could also
be used as more effective carriers in the spray drying process [18,19], but they are more expensive.
Therefore, cheaper carbohydrate polymers are usually chosen and their quantity is optimised. Potato
and maize starches with various degree of saccharification are the most widely used carbohydrates for
this purpose [20,21]. These low-priced mass-produced products can also efficiently stabilise pigments
and other bioactive compounds by microencapsulation [18,22]. There are attempts to minimise the
number of carriers added to industrially manufactured products because any amount that exceeds the
required minimum may negatively affect the sensory quality of the product [23]. Therefore, researchers
are trying to find optimal drying additives (carriers), the minimal addition of which will maintain the
desired technological effect in the spray drying of fruit juices. Villacrez et al. [24] tested six different
carbohydrate polymer carriers and three blends of these carriers in the spray drying of andes berry
aqueous extract. Maltodextrin DE20 and Hi-CapTM 100 (chemically modified food starch refined from
waxy maize) exhibited the highest retention of bioactive compounds (anthocyanins). They did not
differ much in their effectiveness of stabilisation of bioactive compounds (<10%). Therefore, researchers
continue looking for inexpensive carriers that will exhibit higher retention of bioactive compounds and
other useful properties. If more efficient carriers are used for the production of powders with bioactive
properties, they may be used in smaller quantities, which is very much expected by the food industry.
However, as the economic aspect is a key issue in industrial practice, the price of new carriers cannot
differ significantly from that of maltodextrin.

This study analyses the usefulness of tapioca dextrin as an alternative carrier to potato maltodextrin.
Dextrins and maltodextrins are a class of low molecular weight carbohydrates resulting from partial
acid and/or enzymatic hydrolysis of starch or glycogen. Maltodextrins are a combination of 3–20
D-glucose units that are primarily linked by α-1,4-bonds. Dextrins are saccharide polymers composed
of D-glucose units linked primarily by α-1,4-bonds or α-1,6-bonds [25].

The functionality and quality of resulting powders are affected not only by the type of carrier used
in the spray drying of fruit juices but also by the production process parameters, which influence their
microstructure and properties [26–28]. Therefore, it is very important to choose the right parameters
of the drying process to overcome operational difficulties (mostly juice sticking to the dryer walls
during the process), which decrease the yield of powder [29]. Moreover, the food and pharmaceutical
industries increasingly often seek more natural fruit powders with ultimate flavouring, colouring and
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bioactive properties, which can perfectly enrich end products. As powder made from spray-dried
chokeberry juice has good handling and storage properties, it fits well with the current development
trend in this branch of products. Therefore, it was reasonable to analyse the effectiveness of tapioca
dextrin as a carrier in the spray drying of chokeberry juice and the influence of direct and indirect
drying conditions on the properties of powders. The data from this study may be used for the spray
drying of chokeberry juice in industrial production.

2. Materials and Methods

2.1. Materials

Chokeberry juice concentrate with 65◦ Brix extract content (SVZ International B. V., Breda,
The Netherlands) was the research material. Tapioca dextrin (Dx) (trade name Crystal Tex 626,
Ingredion) and for comparison—maltodextrin (MDx) with the saccharification degree (DE) = 8
(Roquette Freres) were used as carriers. Feed solutions with various carrier to chokeberry juice
concentrate ratios were prepared for drying to make powders with 50, 60 and 70% content of the
carrier in dry mass. Water was added to each solution to obtain 33% of dry mass. A system tested by
Wesołowski and Gawałek was used for effective mixing and dissolution [30].

2.2. Spray Drying

The industrial drying process was fully simulated in a semi-industrial Niro Atomiser FU 11 DA
spray dryer. Liquid was sprayed with a rotary atomiser. The dryer had pneumatic hammers, which
periodically removed the residual powder from its walls. There were three different temperatures of
inlet air in the drying process: 150, 160 and 170 ◦C, and three different speeds of the rotary atomiser:
12,000, 13,500 and 15,000 rpm. The process was conducted at variable inlet air temperatures and a
rotary atomiser speed of 12,000 rpm, or at variable rotary atomiser speeds and an inlet air temperature
of 160 ◦C. The outlet air temperature in all experiments was held at 88–90 ◦C by setting the raw solution
flow between 10 and 15 L/h. The same method of collecting the product and dryer wall cleaning
(pneumatic hammers impact frequency) was used in all the drying processes.

2.3. Particle Size Distribution

After dispersing the powders in isopropanol the size of particles was measured with a Cilas 1190
laser particle size analyser (Orleans, France). The results were shown as the 10th, 50th (median), and
90th percentile of the volume distribution of particle size.

2.4. Microstructure of Particles

The morphology of chokeberry juice powder was observed with a scanning electron microscope
(Hitachi TM3000, Tokyo, Japan). The powders were gold sputtered (Cressington 108, UK).

2.5. Bulk Density, Flowability and Moisture Content

Loose bulk density (ρL) and tapped bulk density (ρT100 and ρT500) (the bulk density of the
powder packed with 100 and 500 standard taps) were measured with a STAV 2003 jolting volumeter
(Engelsmann AG, Ludwigshafen, Germany). The flowability of powder was expressed as the Hausner
ratio (HR), the loose and tapped bulk density HR100 = ρT100/ρL and HR500 = ρT500/ρL [31]. The moisture
content of powder was analysed by the oven method at 105 ◦C for 4 h.

2.6. Apparent Particle Density and Bulk Porosity Powder Bed

The apparent particle density (ρ) was measured with a Stereopycnometer helium pycnometer
(Quantachrome Instruments, Boynton Beach, FL, USA). The bulk porosity powder estimated from
interstitial air in loose (εL) or tapped powder bed (εT100 and εT500) was calculated from the apparent
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particle density (ρ) and bulk densities (ρL, ρT100, ρT500) respectively, as follows: εL = 1 − ρL/ρ,
εT100 = 1 − ρT100/ρ and εT500 = 1 − ρT500/ρ.

2.7. Powder Yield

The following formula was used to calculate the powder yield after spray drying:

Y =
mp·wdmp

m f ·wdm f
·100 [%] (1)

where

mp, mf—mass of powder and feed solution; kgp, kgf, respectively;
wdmp, wdmf—dry matter content in the powder and feed solution; kgdmp/kgp, kgdmf/kgf, respectively.

2.8. Total Polyphenol Content (TPC)

The Folin–Ciocalteu reagent was used to determine the total polyphenol content (TPC).
Measurements were made with a Jasco V630 spectrophotometer (Tokyo, Japan) at a wavelength
of 765 nm, according to the methodology used in our previous study [32]. Gallic acid was used as
standard and the results were expressed as mg of gallic acid (GA) per 100 g d.m. (dry matter).

2.9. Antioxidant Capacity

The trolox equivalent antioxidant capacity (TEAC) was measured with the ABTS method, by means
of a Jasco V630 spectrophotometer (Japan), in accordance to the methodology described by Re et al. [33].
A sample (30 µL of solution: 0.5 g of powder in 10 mL of 70% (v/v) acetone/water solution) was mixed
with 3 mL of ABTS+ solution (after incubation with K2S2O8). The reaction was carried out in darkness
for 6 min. Next, the absorbance values were measured at 734 nm. The results were expressed as mg
trolox equivalents (TE) per 100 g d.m.

2.10. Statistical Analysis

There were at least 3 replicates of all physicochemical measurements. The hypothesis about the
significant effect of the inlet air temperature, rotary atomiser speed, carrier content and type (Dx or
MDx) on the values of the parameters under analysis was verified by means of one- and two-way
analysis of variance (ANOVA) with the Statgraphics 12 program. Differences between the mean values
were evaluated with Tukey’s test at a significance level of α = 0.05. The homogenous groups of mean
values were marked with letters.

3. Results and Discussion

3.1. Particle Size

The size of dried fruit juice particles obtained in the spray drying process influences physical
properties, such as bulk density, flowability, compressibility, solubility and hygroscopicity [34]. Table 1
shows that the range of particle sizes of spray-dried chokeberry juice was narrower and had a relatively
uniform distribution. The span value expressing the width of the particle size distribution was at the
same low level for all powders (1.219–1.298). The mean diameter of particles (median D50) ranged
from 39 to 50 µm (Table 1). The substitute diameters D10 and D90 ranged from 14 to 20 µm and 64 to
82 µm, respectively (Table 1).
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Table 1. Particle size distribution (D10, D50, D90, span) of spray-dried chokeberry powders.

Drying
Conditions/Carrier
Type and Content

D10 (µm) D50 (µm) D90 (µm) Span

Dx, T = 150 ◦C 16.3 ± 0.5 a 39.6 ± 0.8 a 64.5 ± 1.9 a 1.22 ± 0.01 a

Dx, T = 160 ◦C 15.7 ± 0.7 a 41.7 ± 1.4 a 69.3 ± 2.5 a 1.29 ± 0.00 b

Dx, T = 170 ◦C 18.6 ± 0.9 b 48.4 ± 1.1 b 81.5 ± 2.9 b 1.30 ± 0.01 b

Dx, n = 12,000 rpm 15.7 ± 0.7 a 41.7 ± 1.4 a 69.3 ± 2.5 a 1.30 ± 0.00 b

Dx, n = 13,500 rpm 15.8 ± 0.4 a 41.8 ± 0.5 a 68.3 ± 1.3 a 1.26 ± 0.01 a

Dx, n = 15,000 rpm 14.9 ± 0.5 a 40.2 ± 0.6 a 65.9 ± 1.8 a 1.27 ± 0.01 ab

50% Dx 19.4 ± 1.1 D 49.4 ± 1.3 C 81.6 ± 3.4 C 1.26 ± 0.02 AB

60% Dx 15.7 ± 0.7 AB 41.7 ± 1.4 AB 69.3 ± 2.5 AB 1.29 ± 0.00 BC

70% Dx 17.8 ± 0.5 CD 47.9 ± 0.8 C 78.6 ± 1.9 C 1.28 ± 0.01 ABC

50% MDx 16.7 ± 0.7 BC 43.8 ± 0.9 B 71.6 ± 1.9 B 1.25 ± 0.01 A

60% MDx 14.3 ± 0.3 A 39.2 ± 0.6 A 64.2 ± 1.7 A 1.27 ± 0.02 ABC

70% MDx 14.9 ± 0.3 A 41.9 ± 0.5 A 69.3 ± 1.2 AB 1.30 ± 0.01 C

Dx—tapioca dextrin used as a carrier, MDx—potato maltodextrin used as a carrier, T—inlet drying air temperature,
n—rotary atomizer speed, a, b Homologous groups for one of the factors: T, n, A, B, C, D Homologous groups of
factors: carrier type and content.

The increase in the inlet air temperature caused an increase in all equivalent diameter values
(D10, D50, D90) in the upper range of tested temperatures (T = 170 ◦C). The analysis of variance did not
show any statistically significant changes in other ranges. The changes were caused by an increase in
the energy delivered to the sprayed juice droplets and an increase in the drying rate, i.e., a higher drying
rate reduced the shrinkage of particles [35]. Gawałek et al. [32], Bednarska and Janiszewska-Turak [36]
also observed this trend in chokeberry juice dried on a maltodextrin carrier (MDx). Other authors
also noted this dependency when drying other fruit juices: acai juice [37], jamun fruit juice [38], guava
juice [39], tamarind pulp [40]. An increase in the rotary atomiser speed decreased the size of droplets in
the solution. As a result, the powder particles were smaller. These dependencies were also observed by
Chegini and Ghobadian [41] in orange juice and by Gawałek et al. [32] in chokeberry juice dried with a
maltodextrin carrier (MDx). There were no statistically significant changes observed in chokeberry
juice dried with the tapioca dextrin carrier for all equivalent diameters (Table 1).

The ANOVA proved that the drying process with the Dx carrier resulted in larger particles than
the process with the MDx carrier (Table 1). This effect may have been caused by the higher feed
solution viscosity of the Dx carrier. The spray drying of more viscous solutions usually results in larger
particles of powder [42]. The statistical analysis proved significant changes for different content of
both carriers—MDx and Dx. In both cases the lowest values were observed for the medium content of
60%, while the highest values were observed for the lowest carrier content, i.e., 50%.

3.2. Microstructure of Powder Particles

The particles produced in the spray drying process may differ in size, morphology and structure [23].
Figure 1 shows micrographs of powder particles with different type and mass fraction of the wall
material (carrier). Spray drying very often results in hollow particles, which favour the formation of
cracks and wrinkles on their surface, because air is trapped inside while particles are being formed.
If feed has been prepared using a high shear mixing process, air in the form of tiny bubbles is entrained
into the liquid.
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Figure 1. Microscopic images of spray-dried chokeberry juice particles for various types and content of
the carrier at 1500x magnifications (Dx—tapioca dextrin, MDx—potato maltodextrin).

The resulting particles had various sizes and spherical shapes with multiple creases and cracks on
their surfaces. As the content of both carriers (Dx and MDx50–70% d.m.) decreased, the number of
creases and other deformations increased. When the content of simple sugar increases, particles tend to
swell due to a smaller amount of the carrier added [32]. The Dx carrier resulted in fewer deformations
and shrinkages on the surface of particles than the MDx carrier. Other authors also observed similar
images of the microstructure of dried fruit juice particles on maltodextrin carriers [32,36,43–45].

3.3. Bulk Density, Flowability and Moisture Content

Bulk density is one of the most important properties of powder for its storage, processing,
packaging and distribution [46]. It is a very complex property, which results from several other
properties. However, the primary determinants of bulk density are particle density, the amount of
interstitial air (i.e., external porosity), and flowability [47]. Powders obtained as a results of the spray
drying of fruit juice usually have a wide range of particle sizes, which means that small particles can
closely fill the spaces between large ones. Consequently, these powders contain a minimal volume of
interstitial air [48], which results in a relatively high bulk density. In this study, the loose and tapped
bulk densities of chokeberry juice powders were ρL 520–594, ρT100 598–697 and ρT500 735–764 kg/m3,
respectively (Table 2). There were statistically significant changes in bulk density of the powder with
the Dx carrier when the inlet air temperature changed. An increase in the temperature (150–170 ◦C)
caused a 14% increase in the loose bulk density and 6.2% and 3.9% increases in the tapped bulk density.
The spray drying of chokeberry juice on an MDx carrier [32] as well as the spray drying of other fruit
juices resulted in a completely opposite relationship between temperature and bulk density [49–51].
However, Zareifard et al. [52] and Mishra et al. [44] also noted a growing dependence in the experiments
which they conducted respectively on lime and hog plum juice dried with maltodextrin.
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Table 2. Loose bulk density (ρL), tapped bulk density (ρT100 and ρT500), Hausner ratio (HR100 and HR500) as a flowability, apparent density (ρ) and bulk porosity of
loose powder bed (εL).

Drying
Conditions/Carrier
Type and Content

ρL (kg/m3) ρT100 (kg/m3) ρT500 (kg/m3) HR100 (-) HR500 (-) ρ (kg/m3) εL (-)

Dx, T = 150 ◦C 520.7 ± 3.8 a 639.5 ± 4.1 a 735.4 ± 3.4 a 1.23 ± 0.01 b 1.41 ± 0.02 b 1325.2 ± 2.1a 0.39 ± 0.00a

Dx, T = 160 ◦C 546.2 ± 2.1 b 662.8 ± 4.2 b 756.3 ± 2.6 b 1.21 ± 0.01 b 1.38 ± 0.01 b 1343.3 ± 0.4c 0.41 ± 0.00b

Dx, T = 170 ◦C 593.4 ± 2.3 c 679.2 ± 2.7 c 764.1 ± 1.7 c 1.14 ± 0.02 a 1.29 ± 0.01 a 1333.8 ± 0.7b 0.45 ± 0.00c

Dx, n = 12,000 rpm 546.2 ± 2.1 b 662.8 ± 4.2 b 756.3 ± 2.6 b 1.21 ± 0.01 a 1.38 ± 0.01 ab 1343.3 ± 0.4c 0.41 ± 0.00a

Dx, n = 13,500 rpm 522.9 ± 3.7 a 641.1 ± 2.7 a 737.8 ± 3.7 a 1.23 ± 0.03 a 1.41 ± 0.02 b 1290.7 ± 0.4a 0.41 ± 0.00a

Dx, n = 15,000 rpm 545.2 ± 4.9 b 648.2 ± 4.5 a 738.4 ± 5.2 a 1.19 ± 0.01 a 1.35 ± 0.02 a 1310.9 ± 1.0b 0.42 ± 0.00b

50% Dx 549.2 ± 7.8 AB 697.0 ± 9.8 C 777.4 ± 7.5 C 1.27 ± 0.02 C 1.42 ± 0.03 B 1357.0 ± 0.3D 0.41 ± 0.01A

60% Dx 546.2 ± 2.1 AB 662.8 ± 4.2 B 756.3 ± 2.6 B 1.21 ± 0.01 B 1.38 ± 0.01 AB 1343.3 ± 0.4C 0.41 ± 0.00AB

70% Dx 551.4 ± 2.9 AB 660.4 ± 2.9 B 742.0 ± 2.9 A 1.20 ± 0.01 B 1.35 ± 0.01 A 1312.3 ± 1.8A 0.42 ± 0.00C

50% MDx 556.9 ± 5.5 B 696.0 ± 5.0 C 771.4 ± 6.2 AB 1.25 ± 0.01 B 1.39 ± 0.02 A 1380.7 ± 1.3E 0.40 ± 0.00A

60% MDx 552.7 ± 7.5 AB 662.8 ± 2.8 B 746.2 ± 2.9 AB 1.20 ± 0.02 B 1.35 ± 0.01 A 1359.6 ± 2.4D 0.40 ± 0.00A

70% MDx 541.7 ± 2.2 A 598.8 ± 8.1 A 738.5 ± 5.5 AB 1.11 ± 0.01 A 1.36 ± 0.01 AB 1327.1 ± 1.1B 0.42 ± 0.01BC

Dx—tapioca dextrin used as a carrier, MDx—potato maltodextrin used as a carrier, T—inlet drying air temperature, n—rotary atomizer speed. a. b. c Homologous groups for one of the
factors: T, n. A. B. C. D, E Homologous groups of factors: carrier type and content.
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Santhalakshmy et al. [38] conducted research on jamun fruit dried with maltodextrin and observed
statistically insignificant changes in bulk and tapped density, depending on the inlet air temperature.
The statistical analysis of the effect of the carrier content on loose bulk density ρL showed no significant
changes when the Dx carrier was used, but the MDx carrier resulted in a decreasing trend. The tapped
bulk density ρT100 and ρT500 gave the opposite results. Its value decreased while the content of the
Dx carrier increased. When the MDx carrier was used, changes in the ρT500 values were statistically
insignificant. The relation observed with the MDx carrier was consistent with the findings of the
study by Gawałek et al. [32]. There were similar results reported by Goula and Adamopoulos [50]
(orange juice with maltodextrin), Zareifard et al. [52] (lime juice with maltodextrin), Patil et al. [53]
(guava juice with maltodextrin) and Mishra et al. [44] (hog plum juice with maltodextrin).

Table 2 shows the values of the Hausner ratio for powders with different bed packing degrees
(HR100 and HR500). According to de Jong et al. [31], powders with an HR of 1–1.25, 1.25–1.4 and >1.4
are free flowing, easy flowing and difficult flowing, respectively. According to Hayes [54], powders
with an HR of 1–1.1, 1.1–1.25, 1.25–1.4 and >1.4 are free flowing, medium flowing, difficult flowing and
very difficult flowing, respectively. In our study the flowability of the chokeberry powders deteriorated
as the bed packing degree increased.

In the state of slight packing (HR100 = 1.11–1.27) the powders could be classified as medium
flowing, whereas in the packed state (HR500 = 1.35–1.42) the same powders might be classified as
difficult flowing (according to the Hayes scale). The reduced material flowability, which was observed
in our study along with the increase in the bed packing of fine-grained powders, is consistent with
other authors’ findings [46,55]. It is caused by increased cohesion of powders in the packed state.
The analysis of the effect of inlet air temperature on the flowability of powders with the Dx carrier
showed that this property improved significantly at the highest temperature (T = 170 ◦C). The same
correlation was observed by Gawałek et al. [32] in an experiment on chokeberry juice dried with the
MDx carrier. This dependence correlates with the particle size and it is the greatest at T = 170 ◦C.
Improved flowability, which was observed along with the increase in the size of particles as a result of
a change in the operating conditions, is in line with the observations of other authors, who used the
Hausner ratio to evaluate the flowability of different types of powders [55,56]. As far as the rotary
atomiser speed of 12,000–15,000 rpm is concerned, there were no statistically significant changes
observed for the Dx carrier, as opposed to the MDx carrier [32]. In both cases, the increase in the
content of the carrier caused a slight decrease in the Hausner ratios of HR100 and HR500, but the biggest
drop was observed for MDx in the state of slight packing (HR100). Moreira et al. [57] found a similar
correlation in a study on the drying of acerola pomace juice.

All the powders had similar average moisture content, i.e., from 2.31 ± 0.32% wb to
2.85 ± 0.26% wb.

3.4. Apparent Particle Density and Bulk Porosity Powder Bed

The apparent particle density ρ of the powders in our study ranged from 1290 to 1381 kg/m3

(Table 2). Both carriers (Dx and MDx) caused a statistically significant drop in the ρ value when their
content increased. The Dx carrier resulted in respectively lower apparent particle density values, as the
two-way analysis of variance proved. Patil et al. [53] noted similar results when they dried guava pulp
using maltodextrin as the carrier.

External porosity is a very complex property. It is determined by the distribution of particle sizes,
the shape of particles and the degree of agglomeration [55]. The bulk porosity powder bed εL of the
chokeberry powders ranged from 0.393 to 0.445 (Table 2). The statistical analysis showed a significant
increase in porosity with the highest content (70%) of both the Dx and MDx carriers. The two-way
analysis of variance proved that the carrier type had no effect on the porosity of powders. However,
the analysis of the drying process conditions where the Dx carrier was used showed significant
influence of the inlet air temperature and the rotary atomiser speed. In both cases an increasing
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dependency could be seen. As far as the rotary atomiser speed is concerned, the powder bed porosity
increased significantly at 15,000 rpm.

3.5. Powder Yield

Powder yield is one of the most important parameters in industrial practice because it directly
affects the economic aspect of the process. Table 3 shows the yield of chokeberry powder Y under
various drying conditions. The values ranged from 25.4% to 80.1% for the MDx carrier and from 35.3%
to 95.3% for the Dx carrier. Both carriers caused a statistically significant increase in the powder yield
when their content increased. However, there were higher values of this parameter for particular
carrier contents when Dx was used. The lowest content (50%) of both the MDx and Dx carriers caused
a very high drop in the yield. This fact may lead to the conclusion that the industrial production of
chokeberry powder with such a low carrier content is economically unjustified. When the carrier
content amounted to at least 60%, the yield of both carriers in our study ranged from 74.3% to 95.3%.
It guarantees an acceptable loss level in industrial production. The results show that the Dx carrier
gave a 10–15% higher yield than the MDx carrier. The growing effect of the MDx carrier content on the
powder yield was also observed by Vardin and Yasar [58] on pomegranate juice, Zareifard et al. [52] on
lime juice, and by Troya et al. [59] on banana passionfruit pulp. Only Zareifard et al. [52] used a similar
carrier content as we did in our study (applicable on an industrial scale) and they also observed a big
difference in the powder yield between 50% and 60% of the carrier content. The absolute values of
the powder yield cannot be directly compared because Zareifard et al. [52] used a product discharged
through the bottom outlet of the cyclone and collected from the main chamber of the spray dryer
to calculate the yield. Our study was conducted on a semi-industrial scale. The conditions of the
industrial process were simulated, including the use of impact hammers. Only the product discharged
through the bottom outlet of the cyclone was included in the calculation of the yield.

The analysis of the effect of drying parameters on the yield of powder with the Dx carrier showed
a statistically significant dependency for the drying temperature and an insignificant dependency for
the rotary atomiser speed. An increase in the inlet air temperature caused a higher yield. This trend
corresponds with the powder flowability correlation (the powder flowability increased along with
the drying temperature). There were analogical correlations observed for both drying parameters
during the drying of chokeberry juice on the MDx carrier [32] and during the drying of other fruit
juices such as: lime juice [52], jamun fruit juice [38], tamarind pulp [40], black mulberry [49], banana
passionfruit pulp [59]. Chegini and Ghobadian [60] used a small laboratory dryer without a regular
wall residue brushing system in their experiment on the drying of orange juice. They observed the
opposite dependency—higher temperatures reduced the yield.
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Table 3. Powder yield (Y), total polyphenol content (TPC) in solution before drying, total polyphenol content (TPC) and TPC retention (RTPC) in spray-dried chokeberry
powder, trolox equivalent antioxidant capacity (TEAC) in solution before drying, trolox equivalent antioxidant capacity (TEAC) and TEAC retention (RTEAC) in
spray-dried chokeberry powder.

Drying
Conditions/Carrier
Type and Content

Y (%)
TPC in Solution

before Drying (mg
GA/100 g d.m.)

TPC in Powder
(mg GA/100 g

d.m.)
RTPC (%)

TEAC in Solution
before Drying (mg

TE/100 g d.m.)

TEAC in Powder
(mg TE/100 g

d.m.)
RTEAC (%)

Dx, T = 150 ◦C 79.8 ± 1.9 a 2080 2036 ± 17 c 97.9 ± 0.8 c 20.5 14.5 ± 0.5 b 70.8 ± 2.4 b

Dx, T = 160 ◦C 86.1 ± 2.6 ab 2080 1756 ± 17 b 84.4 ± 0.8 b 20.5 17.1 ± 0.6 c 83.5 ± 2.7 c

Dx, T = 170 ◦C 88.9 ± 2.2 b 2080 1643 ± 11 a 79.0 ± 0.5 a 20.5 10.1 ± 0.4 a 49.3 ± 1.9 a

Dx, n = 12,000 rpm 86.1 ± 2.6 a 2080 1756 ± 17 a 84.4 ± 0.8 a 20.5 17.1 ± 0.6 a 83.5 ± 2.7 a

Dx, n = 13,500 rpm 84.8 ± 1.7 a 2080 1826 ± 28 b 87.8 ± 1.3 b 20.5 19.2 ± 0.4 b 94.1 ± 2.2 b

Dx, n = 15,000 rpm 81.0 ± 2.0 a 2080 2024 ± 7 c 97.3 ± 0.3 c 20.5 19.4 ± 0.3 b 95.0 ± 1.5 b

50% Dx 35.3 ± 4.1 B 2600 2014 ± 11 E 77.5 ± 0.4 C 25.6 15.5 ± 0.5 D 60.6 ± 1.9 B

60% Dx 83.2 ± 1.9 D 2080 1756 ± 17 C 84.4 ± 0.8 D 20.5 17.1 ± 0.6 E 83.5 ± 2.7 D

70% Dx 95.3 ± 1.6 E 1560 1549 ± 25 B 99.3 ± 1.6 E 15.3 13.3 ± 0.3 C 86.9 ± 2.1 D

50% MDx 25.4 ± 3.9 A 2600 1854 ± 14 D 71.3 ± 0.5 A 25.6 7.8 ± 0.3 A 30.6 ± 1.1 A

60% MDx 74.3 ± 1.6 C 2080 1543 ± 6 B 74.2 ± 0.3 B 20.5 14.7 ± 0.4 D 72.0 ± 2.1 C

70% MDx 80.1 ± 2.7 CD 1560 1309 ± 9 A 83.9 ± 0.6 D 15.3 11.6 ± 0.3 B 75.5 ± 2.0 C

Dx—tapioca dextrin used as a carrier, MDx—potato maltodextrin used as a carrier, T—inlet drying air temperature, n—rotary atomizer speed, a, b, c Homologous groups for one of the
factors: T, n, A, B, C, D, E Homologous groups of factors: carrier type and content.
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3.6. Total Polyphenol Content (TPC)

A high content of polyphenols in fruit powders is very desirable due to their strong colouring and
antioxidative properties. Chokeberry is classified as a fruit with a high content of polyphenols. Due to
this fact it is used in the food industry as a natural colouring agent and as functional food [61,62].
However, spray-dried chokeberry powder with a high content of polyphenols is very desirable for
instant food production. In this study the content of polyphenols (TPC) in the chokeberry powders and
the TPC retention level (RTPC) was measured in relation to the initial content in the solutions before
drying. The TPC in the powders obtained with the Dx carrier ranged from 1549 to 2014 mg GA/100 g
d.m., whereas the retention ranged from 77.5% to 99.3%. The same parameters in the powders obtained
with MDx ranged from 1309 to 1853 mg GA/100 g d.m. and from 71.3% to 83%, respectively (Table 3).
The statistical analysis showed significantly higher values of the TPC and RTPC for the powders made
with the Dx carrier. The content of both the Dx and MDx carriers had analogical influence on the TPC
and RTPC values. An increase in the carrier content caused a statistically significant drop in the TPC
(it was obvious due to the composition of powders). The opposite correlation was observed for the
RTPC. This trend was caused by the higher content of the carrier, which provided better protection
against high drying temperature and reduced the deposition/sticking of powder inside the drying
equipment. Longer exposure and contact between powder and hot air, caused by the deposition of
the drying material inside the installation between the impacts of a pneumatic hammer, has negative
effect on polyphenolic compounds. The same effect of the carrier content on the degree of retention of
polyphenols was observed by Gawałek et al. [32] in their research on chokeberry powders on the MDx
carrier. Mishra et al. [44] and Moreno et al. [19] conducted experiments on the spray drying of hog
plum juice and grape marc extract, respectively, and they made similar observations.

The inlet air temperature had a statistically significant effect on the phenolic content. Higher
temperature resulted in a decrease in the TPC and RTPC due to the susceptibility of polyphenols to
thermal degradation. This trend was observed in the spray drying process of chokeberry powder with
both the Dx and MDx carriers [32]. Ramírez et al. [63] studied passion fruit, blackberry, and mango
juice, whereas Moreno et al. [19] tested grape marc extract and they reported similar results. However,
the opposite trend was observed in the atomiser speed. Higher speed resulted in an increase in the
content of polyphenols in the chokeberry powder. This effect was probably caused by the fact that
bigger particles were formed at a lower speed of the atomiser and they tended to stick to the dryer
walls. For this reason, the exposure time to the stream of hot air was extended until the impact of the
pneumatic hammer detached residual powder from the dryer wall. Consequently, it increased the
thermal degradation of bioactive substances.

3.7. Antioxidant Capacity

The use of the Dx carrier also resulted in a statistically higher antioxidant capacity expressed as
TEAC and its retention RTEAC in the chokeberry powders than the use of the MDx carrier. The TEAC
values ranged from 13.3 to 17.1 mg TE/100 g d.m. for the Dx carrier and from 7.8 to 14.7 mg TE/100 g
d.m. for the MDx carrier, whereas the RTEAC values amounted to 60.6–86.9% for the Dx carrier and
30.6–75.5% for the MDx carrier (Table 3). The nature of changes was different than in the case of
TPC. The highest TEAC values were noted for the 60% content of both the Dx and MDx carriers.
The RTEAC retention values were statistically lower for the lowest carrier content (50%). There were no
statistically significant changes observed for the carrier content of 60% and 70%. There is no doubt that
when the carrier content was close to 50%, it was too low to effectively secure the bioactive properties
of chokeberry from the negative effect of temperature. Nambiar et al. [64] conducted laboratory
experiments on tender coconut water and the MDx carrier at amounts of 10%, 30% and 50% and they
found similar dependencies. The highest TEAC values were also obtained at the medium amount
(30%). The tested range of the carrier content did not include the commercially effective range, because
the powder yield in our study ranged from 9.37% to 16.04%. The loss of the antioxidant potential
generated during the spray drying process was much greater than the loss of polyphenol content (TPC).



Foods 2020, 9, 1125 12 of 15

The inlet air temperature affected the TEAC and RTEAC values in the chokeberry powders with
the Dx carrier differently than the TPC values. The highest values were noted at 160 ◦C, the lowest—at
170 ◦C. This variability was probably caused by the fact that at the highest temperature (170 ◦C)
massive thermal degradation of bioactive substances was observed due to the higher temperature of
the drying air, whereas at the lowest temperature particles of powder were more likely to stick to the
dryer walls, thus increasing the exposure time and TEAC loss. There were similar results reported by
Silva et al. [65], who also observed the highest TEAC at a temperature of 160 ◦C (the researchers used
the following inlet drying temperatures: 140, 160 and 180 ◦C). The statistical analysis of the influence of
the rotary atomiser speed on the TEAC and RTEAC showed that these values decreased significantly at
the lowest speed, i.e., 12,000 rpm. The nature of this change was probably similar to the one described
for the TPC.

4. Conclusions

The use of tapioca dextrin Dx as a carrier to dry the chokeberry juice concentrate resulted in a
powder with better functional properties than the powders obtained with potato maltodextrin as a
carrier, which is commonly used in the spray drying process. The growth of particles and moderate
increase in the flowability of the powders as well as reduced surface deformation and shrinkage
during drying resulted in the final product with better properties. In comparison to the MDx carrier,
the Dx carrier changed the product yield significantly (the same amounts of both carriers were used).
This aspect is very important in industrial practice because it can reduce the production loss. The Dx
carrier also improved the retention of bioactive properties of the powders, which was manifested by
the values of the polyphenols content (TPC) and antioxidant potential (TEAC).

The drying conditions affected the properties of the chokeberry powders dried with the Dx carrier.
The research showed that the best conditions of the semi-industrial drying of chokeberry juice with
the tapioca dextrin carrier Dx were: inlet air temperature, 160 ◦C; rotary atomiser speed, 15,000 rpm;
and Dx carrier content, 60%.

Tapioca dextrin has great potential to become an effective carrier in the spray drying of chokeberry
and other fruit juices, preserving their rich bioactive properties. As the properties of the powders
obtained with the Dx carrier were better than those obtained with MDx, the carrier content can be
decreased in industrial practice. The chokeberry powders obtained with 70% MDx and 60% Dx
carrier content were characterised by comparable performance and retention of bioactive properties.
Therefore, the use of Dx carrier could also make it possible to offer fruit powders with higher fruit
content on the market.
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