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Abstract
The first-generation, live attenuated rotavirus (RV) vaccines, such as RotaTeq and Rotarix, were successful in reducing the 
number of RV-induced acute gastroenteritis (AGE) and child deaths globally. However, the low efficacy of these first-gen-
eration oral vaccines, coupled with safety concerns, required development of improved RV vaccines. The highly conserved 
structural protein VP6 is highly immunogenic, and it can generate self-assembled nano-sized structures, including tubes and 
spheres (virus-like particles; VLPs). Amongst the RV proteins, only VP6 shows these features. Interestingly, VP6-assembled 
structures, in addition to being highly immunogenic, have several other useful characteristics that could allow them to be 
used as adjuvants, immunological carriers, and drug-delivery vehicles as well as acting a scaffold for production of valuable 
nano-biomaterials. This review provides an overview of the self-assembled nano-sized structures of VP6-tubes/VLPs and 
their various functions.

Introduction

Rotavirus (RV) virions are triple-layered particles with 
icosahedral symmetry, enclosing 11 segments of double-
stranded (ds) RNA, the viral RNA-dependent RNA polymer-
ase (VP1), and the capping enzyme (VP3) [14, 39, 45]. RVs 
were first identified in animals [1, 75], and later in humans 
[12, 13, 48, 63]. They are prominent causative agents of 
acute gastroenteritis (AGE) in children less than 5 years of 
age worldwide [93, 94, 112] and were responsible for around 
500,000 deaths each year, prior to the beginning of global 
vaccination programs [112]. However, after the introduc-
tion of RV vaccines, the number of RV deaths decreased to 
215,000 in 2013 [113] and then to 128,500 in 2016 [115], 

globally. The vaccines that have been introduced include 
live attenuated oral vaccines, which are used at both the 
global (RotaTeq and Rotarix) [7, 8, 19, 20, 106, 119, 120] 
and national (RotaVac, Rotavin-M1, ROTASIIL, and Lan-
zhou lamb RV vaccines) [7–10, 19, 20, 59] levels. Despite 
the success of live attenuated oral vaccines in reducing the 
number of RV deaths worldwide, several concerns, such as 
efficacy, safety, and cost, have impeded their development, 
and novel alternative approaches to producing RV vaccines 
are being considered.

Among the RV proteins, the highly conserved structural 
protein VP6 was the first RV antigen (Ag) to be used for 
classification of RV strains. Accordingly, 10 groups (A–J) 
and two new tentative groups, K (for RVC-like group) and 
L (for RVH-like group) [6, 58, 62, 82, 87], have been identi-
fied based on serological cross‐reaction to the VP6 protein 
(group Ag). In addition, further VP6 classification into four 
subgroups (SGI, II, I + II, and non‐I, non‐II) based on reac-
tivity with one, both, or neither of the monoclonal antibodies 
(mAbs) 255/60 and 631/9 has been proposed [52, 73]. How-
ever, other classification systems based on the genotypes of 
the outer capsid proteins VP7 and VP4, the glycoprotein 
36G, and the protease-sensitive protein 51P have also been 
described [58, 69, 79, 81]. Furthermore, a whole-genome‐
based RV classification system has also been introduced that 
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defines the genotypes of all 11 genomic RNA segments [79, 
80].

Besides being a highly immunogenic protein containing 
dominant antigenic epitopes, VP6 is also the most abundant 
viral protein and is capable of self-assembling into com-
plex structures when expressed in isolation under defined 
conditions. These structures include trimeric, spherical, and 
tubular forms and sheet structures. Structural proteins from 
several viruses such as hepatitis B virus (HBV), human pap-
illoma virus (HPV), human immunodeficiency virus (HIV), 
adeno-associated virus (AAV), hepatitis C virus (HCV), 
norovirus (NoV), human influenza virus, respiratory syn-
cytial virus (RSV), coronaviruses, and bacteriophages have 
also been shown to be capable of producing immunogenic 
VLPs that can be used for vaccine development [88, 100]. 
However, VP6 is one of only a limited number of structured 
viral protein assemblies that are able to be used as carrier 
proteins with strong adjuvant activity. Moreover, VP6 is one 
of the very few immune-carrier/adjuvant systems that are 
capable of producing tubular forms and sheet structures. One 
well-known example of a viral carrier protein is the highly 
immunogenic hepatitis B core antigen (HBcAg), which is 
used as a carrier for heterologous Ags/epitopes to enhance 
antibody production and T-cell responses directed to het-
erologous antigens [105]. However, despite the powerful 
adjuvant activity of HBcAg VLPs, they do not make tubular 
forms or sheet structures like VP6.

The first biochemical analyses of the native oligomeric 
structure of VP6 were performed using infected cells or 
virus particles, selectively removing VP6 from double-lay-
ered particles (DLPs; VP2/6) [11, 51]. In parallel, several 
other researchers attempting heterologous expression of RV 
VP6 also reported the production of this protein in its native 
oligomeric state [2, 17, 37, 38, 67, 72, 89, 90, 126, 127] 
and suggested the use of nano-tubular (tube)/nano-spherical 
(VLP) structures of VP6 as an immunological carrier for 
heterologous and homologous Ags [49, 102, 111] as well as 
a drug delivery system [126]. Of note, these structures were 
shown to react with VP6-specific mAbs, indicating that their 
native immunoreactive determinants were conserved [44]. 
It has also been shown that self-assembly of VP6 into nano-
scale structures can create multifunctional scaffolds for con-
struction of organized nanoparticle-based biomaterials with 
novel functions and characteristics [99]. Therefore, based on 
its strong immunogenicity, conserved characteristics, and 
ability to self-assemble, VP6 is being considered as both an 
antigen and a platform to develop alternative non-living RV 
vaccine candidates, as well as an organized nanoparticle-
based structure for biomedical applications.

We have previously reviewed several promising VP6-
based vaccine platforms (VP6 DNA vaccine, VP6 recom-
binant protein vaccine, and VP6-VLPs vaccine) [3, 60] 
that were able to induce heterologous cross-protective 

immunity to RV in animal models. In the present article, 
we provide an updated overview of potential applications 
of VP6 tubes/VLPs as an adjuvant, immunological carrier, 
and drug delivery tool and their use in the design of a new 
generation of vaccines and as a scaffold for generation of 
nano-biomaterials.

Vp6 expression and formation of structured 
VP6 tubes/VLPs

Various expression systems (Fig. 1A), from the prokaryotic 
E. coli [2, 72, 126] to eukaryotes such as yeast (including 
the baker's yeast Saccharomyces cerevisiae and the methylo-
trophic yeasts Pichia pastoris and Hansenula polymorpha), 
baculovirus-silkworm systems [17], insect cell/baculovirus 
(IC-BV) systems [38, 67], mammalian cells [38], herpes 
simplex virus 1 (HSV-1)-based vectors [90], and plant cells 
[37, 89, 127] have been used to produce multimeric VP6 
structures that morphologically resemble VP2- and VP6-
containing VLPs, as well as tubes.

The assembly of VP6 into different structural forms 
depends on the pH, ionic strength, and concentrations of 
the divalent cations  Ca+2 and  Mg+2 [68, 101]. Spherical mul-
timeric structures are formed in the pH range of 3.5-5.5, 
whereas large and small tubular multimeric structures are 
formed in the pH range of 5.5-7 and above 7, respectively 
[68, 86]. In contrast, structured protein assemblies of VP6 
are disassembled at  Ca+2 concentrations above 10 mM [68, 
86] and at increased oxidant concentrations during the stages 
of the particle formation [25]. The formation of VP6 nano-
tubes in vitro was first reported in 1987 [101], but recently, 
a simple and efficient ultrafiltration method to purify VP6 
tubes/VLPs in vitro was developed [67]. More recently, an 
easy and reproducible method to produce VP6 nanotubes 
from VP6 monomers was introduced that not only offers 
a novel approach to producing VP6 tubes in vitro but also 
makes it possible to modulate the length of the tubes [104]. 
Progress in the production/purification and development of 
various VP6 tubes/VLPs has provided the opportunity to 
investigate their potential application as immunogens, adju-
vants, delivery tools, and nano-biomaterials (Table 1).

VP6 immunogenicity

Various RV VP6 Ag-encoding vaccine modalities, includ-
ing DNA vaccines [3, 26–28, 36, 56, 57, 60, 74, 121, 123, 
125, 128], subunit vaccines (harboring recombinant VP6 
protein) [2, 3, 29–35, 40, 46, 60, 66, 83–85, 107, 116, 
117, 121, 124, 127], and self‐assembled structures [3, 15, 
16, 18, 44, 60, 64, 76–78, 95, 108, 110, 121] have been 
reported to induce an immune response and/or protection 
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in animal models. The results of these animal immuniza-
tion studies have indicated that, even in the absence of 
neutralizing Abs, immune responses to VP6 alone might 
be protective. It is known that neutralizing epitopes are 
only present on the VP4 and VP7 proteins of RV. There-
fore, the observed protection of animals immunized with 
VP6 preparations lacking VP4 and VP7 proteins indicates 
that neutralizing Abs (directed against VP4 and VP7) 
might not be needed for protection against RV infection 
[3, 60]. Similarly, there have been several reports showing 

that non-neutralizing Abs are capable of clearing RV 
infection, suggesting the occurrence of intracellular inhi-
bition of RV infection by IgA [4, 21, 47] and IgG [22] fol-
lowing transcytosis. Interestingly, among the various VP6 
preparations, self-assembled VP6 structures such as VP6 
tubes/VLPs have been reported to be the strongest immu-
nogens, not only inducing a stronger immune response 
and a higher level of immunogenicity and protection [95] 
but also exhibiting adjuvant and immunological carrier 
properties [15].

Fig. 1  The RV protein VP6 is capable of self-assembling into nano-
sized spherical and tubular forms when expressed in isolation under 
defined conditions. (A) Different expression systems from prokar-
yotic E. coli [2, 72, 126] to eukaryotic systems such as yeast [17], 
insect cell/baculovirus systems (IC-BV) [38, 67], mammalian cells 
[38], HSV-1 [90], and plant cells [37, 89, 127] have been used suc-

cessfully to produce assembled structures of VP6 tubes/VLPs. (B) 
Applications of VP6 tubes/VLPs, as vaccines (immunogenicity and 
protection) [15, 44, 54, 55, 64–66, 70, 95, 108], adjuvants [15, 16, 55, 
76–78, 108–110], immunological carriers [49, 53, 92, 96, 102, 111], 
drug delivery tools [5, 91, 122, 126], and nano-biomaterials [5, 23, 
24, 41, 42, 50, 91, 122, 126]
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Table 1  Summary of the reports on the multiple functions of RV VP6 tubes/VLPs

Property/application Reports References

(i) VP6 tube/VLP immunogenicity VP6 tubes/VLPs have potential as non-living RV vac-
cines

VP6 tubes protect mice more efficiently from RV chal-
lenge than trimers or DLP2/6, suggesting their superior-
ity for vaccine formulations

A combination of norovirus GII-4/GI-3 VLPs and RV 
VP6 tubes maintained the immunogenicity of the VP6 
tube and the other Ags, suggesting the possibility of 
developing mixed vaccines against both pathogens

VP6-tube-specific Abs in the gut of immunized animals 
might act as a first line of defense to inhibit infectivity 
of different RV strains, suggesting a significant role of 
mucosal immunity and VP6-specific IgA in inhibition 
of RV replication and heterotypic protection against RV 
infection

The generation of cellular immune responses (IFN-γ, 
IL-4, and pro-inflammatory cytokine IL-17) implies 
that VP6 tubes provide protection against RV infection 
by other mechanisms besides mucosal IgA induction

[15, 44, 54, 55, 64–66, 70, 95, 108]

(ii) The adjuvant role of RV VP6 tubes/VLPs A priming effect of RV VP6 immunization to enhance the 
elicitation of the neutralizing antibodies against hetero-
typic RV VP4 or VP7 proteins was documented

Combined vaccines (norovirus GII-4, GI-3 VLPs, and 
VP6 tubes/VLPs) induced higher titers of cross-reactive 
Abs against norovirus genotypes than non-combined 
vaccines, indicating the adjuvant effect of RV VP6 on 
norovirus GII.4 or GI.3 VLPs

The adjuvant effect of VP6 tubes on co-administered 
norovirus VLPs (as a mixture) is strictly dependent on 
co-localization of VP6 with norovirus VLPs, which was 
further supported by showing the enhanced uptake of 
norovirus VLPs into the APCs

VP6 tubes/VLPs exerted similar dose-dependent adjuvant 
effects on norovirus-specific Ab responses

The particulate nature and size of the co-administered Ag 
might also affect the adjuvant effect of the VP6-VLPs

Similar adjuvant effects were observed using plant-
derived VP6 tubes co-administered with plant-derived 
norovirus VLPs, indicating the independence of this 
adjuvant characteristic on the system used for vaccine 
production

[15, 16, 55, 76–78, 108–110]

(iii) VP6 tubes/VLPs as immunological carriers RV VP6 structured protein assemblies were used suc-
cessfully for chimeric Ag delivery. Some examples 
are insertion of (i) a peptide derived from the RV VP4 
protein, (ii) a 14-amino-acid peptide derived from sim-
ian paramyxovirus 5 (V5 epitope), (iii) three epitopes 
of poliovirus type 1, (iv) three epitopes derived from 
the VP4 of RV, (v) two peptides (23 and 140 amino 
acids) derived from the M2 and HA genes of influenza 
A virus, and (vi) the receptor-binding domain (RBD) of 
the SARS-CoV-2 spike protein (S) to the surface loops 
or N-terminus of VP6

[49, 53, 92, 96, 102, 111]

(iv) Drug delivery Biocompatible and biodegradable RV VP6 structured 
protein assemblies in the form of nanotubes/VLPs are 
capable of encapsulating therapeutic reagents for drug 
delivery and have been used successfully for treatment 
of diseases such as cancer.

[5, 91, 122, 126]

(v) Nano-biomaterials The VP6 tubes/VLPs form multifunctional scaffolds that 
can be used to create bio-electrochemical interfaces for 
construction of organized metallic nano-biomaterials 
(silver, gold, platinum), and palladium (Pd)

[5, 23, 24, 41, 42, 50, 91, 122, 126]



1017Practical applications of rotavirus VP6

1 3

VP6 tube/VLP immunogenicity 
and protective measures

Due to their superior immunogenicity compared to other 
VP6 preparations, VP6 tubes/VLPs have been selected 
for use in VP6-based RV vaccine candidates. Despite the 
challenges to efficient VLP generation on a large scale in 
insect cells, the establishment of IC-BV expression sys-
tems has been given high priority for production of VP6 
tubes/VLPs. Indeed, in the first studies in 1987 [44], a 
recombinant baculovirus encoding the VP6 gene of strain 
SA11 was used to express VP6 proteins capable of assem-
bling into tubular structures while maintaining their native 
antigenic determinants and oligomeric structure [44], 
and several studies demonstrated the immunogenicity of 
these insect-cell-derived VP6 tubes/VLPs. In this con-
text, immunization of BALB/c mice with a combination 
of norovirus GII-4 VLPs and RV VP6 tubes resulted in 
a robust systemic cross-reactive and cross-blocking anti-
body response to both norovirus and RV [15], indicating 
sufficient immunogenicity of both Ags in the combined 
preparation without any dominance of one over the other. 
In line with this finding, a trivalent combination vac-
cine containing norovirus GII-4 and GI-3 VLPs and RV 
VP6 tubes was also formulated by the same group of the 
researchers [108]. Immunization of mice with this trivalent 
vaccine demonstrated the ability of VP6 tubes to induce 
a robust, long-lasting, high-avidity IgG responses against 
various RV strains [108]. In still another study by the same 
group, the immunogenicity of the assembled VP6 tubes 
and double-layered (dl) 2/6-VLPs produced by coexpres-
sion of VP2 and VP6 was investigated [64]. The results 
indicated that this vaccine formulation induced a balanced 
Th1/Th2-type immune response with high levels of cross-
reactive serum IgG against different RV strains, as well as 
mucosal IgG and IgA Abs, and cellular immune responses 
with high levels of IFN-γ production [64]. Of particular 
note, the results of these and further studies indicated that 
mucosal VP6-specific Abs against VP6 tubes, which are 
found in the gut of immunized animals, might act as a first 
line of defense to inhibit infection by different RV strains 
in vitro and in vivo [64, 65, 108]. Similarly, other immuni-
zation studies in which VP6 assemblies were administered 
via the intramuscular or intranasal route in BALB/c mice 
indicated that serum VP6-specific IgA titers correlated 
with at least 65% protection against RV infection regard-
less of the delivery route [66]. These results suggested 
a significant role of mucosal immunity and VP6-specific 
IgA in inhibition of RV replication and heterotypic pro-
tection against RV infection. It should be noted, how-
ever, that immunization of BALB/c mice with VP6 tubes 
via the intradermal or intranasal route is also capable of 

generating diverse  CD4+ T cell subsets and induction of 
the antiviral cytokine IFN-γ, interleukin-4 (IL-4), and the 
pro-inflammatory cytokine IL-17 [54]. The induction of 
such diverse cellular immune responses might imply that 
immunization with VP6 tubes provides protection against 
RV infection by other mechanisms besides intracellular 
inhibition by VP6-specific IgA and IgG.

In an attempt to assess the immunogenicity of the various 
assemblies of RV VP6 in vaccine formulations, the immune 
responses elicited by VP6 tubes, dl2/6-VLPs, and trimers 
were compared [95], and the results indicated that immuni-
zation of mice with one dose of VP6 tubes induced the high-
est IgG titers and provided a level of protection against RV 
infection similar to that of two doses of either dl2/6-VLPs 
or trimers, suggesting the superiority of RV VP6 tubes for 
vaccine formulations [95].

In addition to the baculovirus expression system, E. coli 
has also been used to produce various RV VP6 assemblies 
[18, 70–72]. The morphology of the E. coli-derived VP6 
tubes/VLPs and trimers was verified using transmission 
electron microscopy (TEM) and atomic force microscopy 
(AFM) [18, 61, 70–72, 118]. Interestingly, the efficacy of the 
E. coli-derived VP6-VLPs or trimers against RV infection 
was significantly lower than that of E. coli-derived DLP2/6 
[70]. In addition to baculovirus and E. coli expression sys-
tems, mammalian cells [38] and HSV-1-based vectors [90] 
as well as plant cells [37, 89, 127] have also been shown to 
have the capacity to produce self-assembled RV VP6 struc-
tures to induce protective immune responses against virus 
infection [78, 90].

Overall, among the different RV VP6 preparations, VP6 
tubes/VLPs might have the highest potential as a non-living 
RV vaccine platform due to their strong immunogenicity and 
maintenance of conserved epitopes.

The adjuvant role of RV VP6 tubes/VLPs

Several studies have demonstrated the ability of RV VP6 
tubes/VLPs to enhance immune responses against co‐
administered homologous/heterologous antigens (Fig. 1B). 
The priming effect of immunization with the RV VP6 pro-
tein to enhance the generation of neutralizing Abs against 
heterotypic RV VP4 or VP7 proteins has been reported 
[43]. Several years later, in the early 2010s, the adjuvant 
effect of VP6 tubes/VLPs on a co-administered heter-
ologous antigen (norovirus GI-3 protein), enhancing the 
induction of GI-3-specific cross-reactive Abs in the immu-
nized mice, was shown [15]. In still another recent study, 
the adjuvant effect of VP6 tubes in mice immunized with 
suboptimal doses of norovirus GII.4 or GI.3 VLPs, either 
alone or in combination with VP6 tubes, was investigated 
[16]. The results of that study indicated that suboptimal 
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doses of the norovirus VLPs alone did not induce substan-
tial anti-norovirus Abs, but the combined vaccine induced 
considerable titers of cross-reactive Abs against both noro-
virus genotypes, indicating the adjuvant effect of RV VP6 
on norovirus GII.4 or GI.3 VLPs [16]. It was later shown 
that the adjuvant effect of VP6 tubes on co-administered 
norovirus VLPs (as a mixture), compared to the separate 
administration of two antigens, is strictly dependent on 
co-localization of the VP6 with norovirus VLPs [77]. 
This finding was further supported by showing enhanced 
uptake of norovirus VLPs into antigen-presenting cells 
(APCs) [103] when mixed with VP6 tubes [76]. This pro-
cess might induce the production of several cytokines/
chemokines (tumor necrosis factor [TNF]-α, IL-6, IL-1, 
and granulocyte macrophage colony-stimulating factor 
[GMCSF]), indicating the potential adjuvant effect of 
VP6 on norovirus-specific T-cell immunity [76, 77]. The 
potential roles of the administered dose and morphological 
features of the VP6 structural assemblies on their adjuvant 
activity were also addressed in studies on immunization 
with norovirus VLP [77]. In this context, it was shown 
that despite higher induction of the cytokine IL-4 by co-
administration of VP6 tubes with norovirus VLPs than 
with VP6 VLPs, both of these oligomeric VP6 assem-
blies exerted a similar dose-dependent adjuvant effect on 
norovirus-specific Ab responses [77]. More-recent studies 
have indicated that the particulate nature and size of the 
co-administered Ag might also affect the adjuvant effect 
of VP6 VLPs [55]. In this context, co-administration of 
VP6 VLPs with either a 20-nm norovirus P particle or a 
23-mer extracellular domain of matrix protein M2 (M2e, 
a monomeric peptide, ~3 kDa) of human influenza A virus 
showed an adjuvant effect of VP6 VLPs only, enhancing 
Ab and T-cell immune responses against the preceding 
Ag (norovirus P particle), and not M2e [55]. VP6 tubes/
VLPs have also been shown to enhance the uptake and 
presentation of co-administered norovirus GII.4 VLPs by 
dendritic cells [109, 110]. VP6 tube/VLP structures, and 
even their aggregates lacking high structural order, were 
efficiently internalized by bone-marrow-derived dendritic 
cells (BMDCs). Interestingly, compared to VP6 tube/
VLP structures, an increased level of internalization was 
observed by the aggregates. Although the reasons behind 
these observations still remain to be explained, similar lev-
els of IFN-γ production by splenocytes of VP6-immunized 
mice were detected regardless of the structural assembly 
[109]. Finally, it is worth mentioning that similar adju-
vant effects were observed when plant-derived VP6 tubes 
were co-administered with plant-derived norovirus VLPs, 
indicating the independence of this adjuvant characteristic 
on the source of the cell/host used for vaccine production 
[78].

Overall, VP6 tubes/VLPs not only induce higher levels 
of immunogenicity compared to trimers or aggregates of 
VP6 but also have great potential to act as an adjuvant and 
to enhance prominent Ab and T-cell immune responses 
against foreign antigens.

VP6 tube/VLPs as immunological carriers

The strong immunogenicity and inherent immunostimula-
tory and immunomodulatory characteristics of VP6 tubes/
VLPs make this structured protein assembly an important 
candidate vaccine-delivery platform for foreign/heterolo-
gous Ag presentation. The first reports on applications of 
RV VP6 spherical VLPs as antigen carriers were in the early 
1990s, when heterologous peptides/proteins were efficiently 
coupled to these carriers and succssesfully used as strong 
immunogens to induce high titers of specific Abs against 
the coupled peptides/proteins without the use of adjuvants 
(Fig.  1B) [49, 102]. Since then, there have been many 
reports on the successful application of RV VP6 structured 
protein assemblies for chimeric Ag delivery, including inser-
tion of (i) a 14-amino-acid peptide derived from the simian 
paramyxovirus 5 (V5 epitope) by genetic fusion [96], (ii) 
three epitopes of poliovirus type 1 (PV1) [92], (iii) three 
epitopes derived from the VP4 of RV [114], (iv) two pep-
tides (23 and 140 amino acids) derived from the M2 and 
hemagglutinin (HA) genes of influenza A virus [53], and, 
more recently, (v) insertion of the receptor-binding domain 
(RBD) of the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) spike protein (S) to the surface loops or the 
N-terminus of VP6 without affecting protein conformation 
and immunogenicity [111]. The results of the immuniza-
tion studies using these VP6-based chimeric Ag delivery 
systems in animal models have demonstrated the potency of 
VP6-based structured protein assemblies (VP6 tubes/VLPs) 
for induction of high titers of Abs and strong T-cell immune 
responses against both VP6 and the inserted Ag, suggesting 
the conformational conservation of both Ags in the chimera.

VP6 tubes/VLPs as drug‑delivery tools

Besides serving as immunological carriers, RV VP6 struc-
tured protein assemblies in the form of nanotubes/VLPs are 
capable of encapsulating therapeutic reagents for the pur-
pose of drug delivery (Fig. 1B) [122, 126]. Indeed, owing to 
their biocompatibility, biodegradability, and encapsulation 
characteristics, such viral nanoparticles are suggested to act 
as carriers of targeted therapeutics and anticancer vehicles 
[122]. In this context, it has been reported that self-assem-
bled RV VP6 particles fused to the small ubiquitin modifier 
(SUMO) domain maintain their nanotube/VLP structure in 
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the gastrointestinal (GI) tract when administered orally and 
represent a suitable biodegradable carrier [5, 91, 122, 126]. 
These results suggest the potential application of self-assem-
bled RV VP6 particles for drug delivery to the GI tract.

VP6 tubes/VLPs as nano‑biomaterials

Biological molecules with the ability to self-assemble are 
highly ordered, symmetrical, homogeneous structures with 
various sizes and shapes [41]. Among the different biomol-
ecules (nucleic acids, proteins, peptides, and viral particles), 
viral protein assemblies, which are highly ordered complex 
structures with multifunctional binding properties and 
devoid of genetic material, would be ideal as a new platform 
for the synthesis of natural nano-materials [41, 42]. One pro-
tein with these features is RV VP6, which is ideal for obtain-
ing tubes/VLPs that can form multifunctional scaffolds for 
construction of organized nano-biomaterials (Fig. 1B) [23, 
97, 99]. It has also been shown that RV VP6 in the context of 
trimer and nanotube assembly can act as a scaffold to allow 
charge transfer processes and to create bio-electrochemical 
interfaces [50].

The selection of VP6 assemblies as scaffolds for the syn-
thesis of the metallic nanoparticles, functionalized in situ 
with metals such as silver (Ag), gold (Au), platinum (Pt), 
and palladium (Pd) was first reported in 2009 [99]. Although 
functionalization with metals usually results to the formation 
of nanotubes/particles with the metal attached to the external 
surface [97–99], reduction of the metal in situ to produce 
nanorods and nanowires inside the nanotubes has also been 
reported [23]. Finally, it is worth mentioning that molecular 
docking simulations have shown that exposed residues of 
RV VP6 are predicted to be able to bind to Pd (II) ions and 
to produce nucleation sites for the growth, stabilization, and 
control of Pd particles [24].

Overall, the accumulated data indicate that RV VP6 
tubes/VLPs can be used as scaffolds to generate nano-
tubes with metal on either the external or internal surface. 
These properties might find important applications in 
nano-biotechnology.

Conclusions

The highly conserved and abundant structural protein VP6 
of RV is an immunogen that is capable of self-assembling 
into nano-sized spherical and tubular forms when expressed 
in isolation under defined conditions. Different expression 
systems from prokaryotic E. coli to eukaryotic systems 
such as yeast, insect cell/baculovirus systems, mammalian 
cells, and plant cells have been used successfully to produce 
assembled VP6 structures such as VP6 tubes/VLPs. These 

structures have been shown to be stronger immunogens than 
VP6 monomers for protecting vaccinated animals from RV 
infection and thus might be appropriate alternatives for RV 
vaccine formulations. VP6 tubes/VLPs also show adjuvant 
activity when co-administered with other Ags such as noro-
virus VLPs. This adjuvant activity, which involves enhanced 
uptake of the Ag into APCs, has been shown to be strictly 
dependent on co-localization of VP6 with norovirus VLPs. 
The applicability of VP6-tubes/VLPs as immunological car-
riers has been shown by fusing them to heterologous Ags 
from several viruses, such as polio virus, influenza virus, and 
SARS-CoV-2, and the successful delivery of the chimeric 
Ags. VP6 tubes/VLPs are biocompatible and biodegradable 
nanocompounds that are capable of encapsulating therapeu-
tic reagents for treatment of diseases such as cancer. Finally, 
VP6 tubes/VLPs can form multifunctional scaffolds that can 
be used to create bio-electrochemical interfaces and for syn-
thesis of organized nano-biomaterials and metallic nanopar-
ticles. These properties of RV VP6 tubes/VLPs make them 
potentially suitable for various practical applications.
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