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Abstract

It is well established that mitochondria play a critical role in the metabolic
and physiological adaptation of skeletal muscle to enhanced contractile
activity. Several redox-sensitive signaling pathways such as PGC-1aq,
AMPK, IGF/Akt/mTOR, SIRT, NFkB, and FoxO are involved with extensive
crosstalk to regulate vital cellular functions such as mitochondrial
biogenesis, mitochondrial fusion and fission dynamics,
autophagy/mitophagy, and apoptosis under altered demand and stress.
However, when muscles cease contraction, such as during immobilization
and denervation, mitochondria undergo a series of detrimental changes
characterized by downregulation of PGC-1a and antioxidant defense,
increased ROS generation, activated FoxO, NFkB, and inflammation,
enhanced ubiquitination, and finally mitophagy and apoptotic cascades.
The phenotypic outcome of the discord of mitochondrial homeostasis is
elevated proteolysis and muscle atrophy. The demonstration that PGC-1a
overexpression via transgene or in vivo DNA transfection can restore
mitochondrial homeostasis and reverse myocyte atrophy supports the
“mitostasis theory of muscle atrophy”.
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Introduction

In mammalian skeletal muscle, the role of mitochondria in
maintaining proper oxygen consumption and ATP produc-
tion, thereby fulfilling metabolic and contractile functions, is
well known'. Over the past several decades, overwhelming
evidence has revealed new cellular roles for this organelle, such
as to regulate redox homeostasis between ROS and antioxi-
dant defense as well as to control apoptosis™. Furthermore,
the mitochondrion itself undergoes morphological, structural,
and genetic alterations to accommodate the above-mentioned
changes, mainly via mitochondrial biogenesis and turnover’~.
The latter is controlled by mitochondrial fusion and fission dynam-
ics, ubiquitin proteolysis, and lysosomal-autophagy (mitophagy)
pathways®''. Within the past three decades, there have been
tremendous integrations of knowledge among biochemistry,
molecular biology, immunology, genetics, and cancer research
to elucidate the mechanisms for governing cell growth, dif-
ferentiation, adaptation, and death. Among these discoveries,
PGC-l1a has taken the front stage”’. Indeed, the multiple roles
of PGC-la. to control mitochondrial biogenesis and fusion—
fission dynamics, its interaction with NFkB and Forkhead box
class O family member proteins (FoxO), and its influences on
the Sirt pathway and apoptotic cascades have dominated muscle
physiology and exercise physiology'*'%. Instead of providing
an overview of mitochondria, this short communication will
focus on the role of this organelle in regulating muscle protein
degradation during disuse atrophy. Understanding the cellular
mechanisms of muscle atrophy may provide insights into the
development of therapeutic treatment for patients suffering from
muscle wasting.

A wealth of research has demonstrated that reduction, restric-
tion, or complete cessation of contractile activity of striated
muscle due to denervation, bed rest, microgravity, and senes-
cence can lead to the loss of muscle mass and function'’. The
primary outcome of muscle immobilization (IM) is increased
proteolysis, oxidative stress, inflammation, and functional
deterioration”*?!. During muscle IM, reduced stimulation from
the IGF-Akt-mTOR axis leads to lower protein synthesis, and
activation of the ubiquitin-proteolysis and autophagy-lysosomal
pathways that enhance protein degradation. The majority of
research suggests that increased proteolysis is the main reason for
muscle protein loss, although diminished protein synthesis also
plays a role™.

Atrogin-1 and MuRF1, muscle-specific E3 ubiquitin ligases,
activate protein degradation’>” by controlling the ubiquitina-
tion and degradation of regulatory (e.g. calcineurin and MyoD)
as well as structural (e.g. myosin and troponin I) proteins™'.
In particular, remobilization (RM) of a muscle that experi-
enced a prolonged period of IM does not undo the effects
of this IM immediately; rather, IM-RM has been shown to
promote ROS generation, activate the NFkB pathway, and
subsequently stimulate the expression of pro-inflammatory
cytokines such as TNFa, IL-18, and IL-6 as well as inflammatory
myokines and cause oxidative stress”.
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Critical role of mitochondria in muscle disuse
atrophy

Research over the past two decades suggests that loss of mito-
chondrial homeostasis (mitostasis) can be a primary reason for
observed muscle morphological and functional defects after
an extended period of disuse”. All experimental models of
muscle atrophy consistently revealed prominent reduction of
mitochondrial volume density. After two weeks of hindlimb
IM in mice, mitochondrial density was decreased by 50% in
several muscles™’!, with a further 25% loss in the third week™.
Considering the reduction of muscle fiber cross-section area
during the corresponding time, the total reduction of mito-
chondrial quantity is devastating. There is some evidence that
the majority of loss was the subsarcolemmal mitochondrial
subpopulation®**.

In addition to the quantity change, mitochondrial quality also
severely deteriorates during muscle IM. Activities of mito-
chondrial metabolic enzymes such as citrate synthase (CS) and
cytochrome c¢ oxidase (COX) showed a severe reduction,
accompanied by a 50% decline of ATP production rate, indi-
cating the muscle was energy deficient”. The abundance of
mitochondrial DNA (in proportion to nuclear DNA) also
showed a reduction. It is not entirely clear whether the defects
shown in mitochondrial quantity and quality were the cause or
effect of muscle atrophy; however, there is evidence that the
occurrence of mitochondrial deterioration precedes the loss of
muscle mass™.

A skeletal muscle mitochondrion has a half-life of approxi-
mately two weeks; therefore, the decline of its volume can be
caused by a decrease of biosynthesis, an acceleration of degra-
dation, or both. Mitochondrial biogenesis is controlled primarily
by PGC-lo, co-activation of which promotes the expression
of Nrf-1 and Nrf-2, a key step for the gene expression of
nuclear-encoded mitochondrial proteins and of Tfam, the
key regulator of mitochondrial DNA (mtDNA) biosynthesis®.
PGC-1ao mRNA and protein levels have been shown to decrease
steadily during muscle IM for 1-3 weeks”***** along with
the reduction of Nrf-1 and Tfam®. Whether or not down-
regulation of PGC-lo is the primary trigger for the decline
of mitochondrial biogenesis still requires verification, as PGC-
lov itself is also subject to transcriptional and post-translational
regulation by other signaling pathways**.

In an atrophying muscle, decreased mitochondrial quality and
quantity is also influenced by its degradation, controlled by
mitophagy, as well as the fusion and fission dynamics® .
A decline of mitochondrial inner membrane potential (Ay )
may serve as the initial signal for the relocation of PINKI to
the mitochondrial membrane, which phosphorylates mito-
chondrial fusion protein-2 (Mfn2) as the docking point for
Parkin, a ubiquitin ligase’’. Beclin 1, BCL2/Adenovirus
E1B 19kDa Interacting Protein 3 (Bnip3), microtubule-associated
protein 1 light chain 3 (LC3), and the autophagy adaptor
protein p62/SQSTM1 (p62) are key players for forming the
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autophagosome, which engulfs mitochondria followed by lyso-
somal degradation”’. In skeletal muscle, Beclin 1 and Bnip3/nix
upregulation are controlled by FoxO™. Activation of this
PINK1-Mfn2—-Parkin axis facilitates the removal of dam-
aged mitochondria to maintain a healthier mitochondrial pool
but decreases overall mitochondrial population in the disused
muscle. After two weeks of IM followed by RM, both PINKI
and Parkin expression was increased severalfold’*. Increased
mitophagy during IM is a double-edged sword; it eliminates
damaged and dysfunctional mitochondria to keep a smaller but
healthier mitochondrial population but sacrifices mitochondrial
quantity and causes a deficit of energy production.

Crosstalk of signaling pathways during muscle
atrophy

There is strong evidence that alteration of mitochondrial mor-
phological changes due to fusion and fission protein expres-
sion affects many vital cellular functions and is critical to
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mitostasis*’. Mfn2 repression was shown to decrease the rate
of pyruvate and glucose oxidation, reduce mitochondrial
membrane potential (Ay ), and cause a dramatic disconti-
nuity of the mitochondrial network®. Interestingly, FoxO
activation during muscle atrophy promotes the expression of
mitochondrial E3 ubiquitin ligase (Mul-1), thus ubiquitinating
and degrading Mfn2*. Therefore, IM may promote mitochon-
drial fission and fragmentation partly because of the upregulation
of Mul-1 and the subsequent downregulation of Mfn2’'.
Furthermore, Mfnl and Mfn2 are also substrates for Parkin,
suggesting increased mitophagy favors a trend of fission®’.
Notably, Parkin’s substrates also include other important pro-
teins such as mitochondrial Pho GTPase, membrane translocase
(TOM70, TOM40 and TOM20), and voltage-dependent anion
channel proteins (VDAC)'. Decreased fusion and increased
fission protein expression can make mitochondria more frag-
mented and easier to be isolated for removal by mitophagy*.
Figure 1 is an illustration of the interactions of various
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Figure 1. lllustration of the effects of muscle immobilization on intracellular signaling pathways causing increased ubiquitin
proteolysis and mitophagy. Arrow-headed lines represent activation; dot-ended lines represent inhibition. 26S, 26 proteasome; Akt, protein
kinase B; ATF2, activating transcription factor 2; ATGs, autophagy related proteins; CaMK, Ca?*/calmodulin-dependent protein kinase; CaNR,
calcineurin; CAT, catalase; COX2, cytochrome ¢ oxidase 2; CREB, cyclic AMP response element-binding protein; Drp1, dynamin-related
protein 1; elF4E, eukaryotic translation initiation factor 4E; EP, epinephrine; ERRa, estrogen-related receptor alpha; ETC, electron transport
chain; Fis1, mitochondrial fission 1 protein; FoxO, Forkhead box class O family member proteins; GPx, glutathione peroxidase; IGF-1, insulin-
like growth factor 1; IkK, IkB-kinase; IL-1,6, interleukin-1,6; LC3, microtubule-associated protein 1 light chain 3; Mfn2, mitofusin-2; MnSOD,
manganese superoxide dismutase; mTOR, mammalian target of rapamycin; Mul-1, mitochondrial E3 ubiquitin ligase; MuRF-1, muscle
RING-finger protein-1; NADPHox, nicotinamide adenine dinucleotide phosphate oxidase; NEMP, nuclear-encoded mitochondrial proteins;
NRFs, nuclear respiratory factors; p, phosphate; p38, p38 mitogen-activated protein kinase; p50, p65, NFkB subunits; p62, sequestosome
1, p70S6K, ribosomal protein S6 kinase beta-1; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PI3K,
phosphatidylinositol 3-kinase; PINK1, PTEN-induced kinase 1; PKA, protein kinase A; ROS, reactive oxygen species; SIRTS, sirtuin-3; SOD2,
superoxide dismutase 2; Tfam, mitochondrial transcription factor A; TNFa, tumor necrosis factor alpha; Ub, ubiquitin.
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signaling pathways that regulate mitochondrial homeostasis and
muscle protein degradation.

FoxO signaling plays a number of important parts in skel-
etal muscle plasticity; these include energy metabolism, protein
degradation, and muscle regeneration, among others®. In the case
of muscle disuse atrophy, FoxO3 is in control of the ubiquitin—
proteasome and autophagy-lysosome pathways independently.
In actively contracting skeletal muscle, the PI3K-Akt-mTOR
pathway phosphorylates and inactivates FoxO, thereby inhibiting
excessive ubiquitin—proteolysis and mitophagy. Contraction-
mediated PGC-lo. signaling and mitochondrial biogenesis
maintain a healthy mitochondrial turnover and keep FoxO in
check via its phosphorylation”. Furthermore, PGC-lo. regu-
lates intracellular redox status by reducing ROS generation
(due to a healthier mitochondrial population) and upregulating
antioxidant enzymes'**’. This homeostatic balance can be dis-
rupted within the disused muscle because of mitochondrial
membrane damages shown by enhanced lipid peroxidation
and ubiquitination’”’. Reduced PI3K-Akt-mTOR pathway activ-
ity during muscle IM results in FoxO3 dephosphorylation,
which then leads to its nuclear sequestration and DNA
binding*’.  Furthermore, activated AMPK phosphorylates
serines 413 and 588 of FoxO3a, which supports its retention
in the nucleus’’. The activation of FoxO3 increases Atrogin-1
and MuRF-1 transcriptional activity’>. Moreover, prolonged
IM can activate NFxB signaling and increase the produc-
tion of pro-inflammatory cytokines and myokines such as
TNF-a, IL-1B, IL-6, and MCP*****. Both TNF-o. and IL-1fB
are known stimulators of ROS generation from the mito-
chondrial electron transport chain and other oxidases such as
NADPH oxidase, COX-2, and lipoxygenase, thus escalating
oxidative stress via a vicious cycle.

Crosstalk of catabolic signaling pathways can disrupt mitosta-
sis and elicit catastrophic cascades toward apoptosis in disuse
atrophy. During IM, PINKI-Mfn2—-Parkin axis-induced mito-
chondrial ubiquitination, fragmentation, and mitophagic degra-
dation leads to differential expression of Bcl2 family proteins
involved in both autophagy and apoptosis*'. Muscle IM has been
reported to increase the relative content of Bax (Bax/Bcl2 ratio),
which is associated with the activation of caspase-3*.
Bnip3, the pro-apoptotic protein, can be upregulated with
IM when increased ROS and inflammation prevail’’*. Bax
is required for Bnip3-induced loss of mitochondrial inner
membrane potential (Aym), which further destabilizes the mito-
chondrial membrane and enhances mitophagic tendency™.
Furthermore, Bnip3 can induce cell death through atypi-
cal apoptosis without caspase-3 and cytochrome c release™.
These findings suggest that mitochondrial dynamics change
and mitophagy is closely related to muscle cell death. Thus,
besides decreased myocyte cross-section area (sign of
atrophy), myocyte number may also decrease due to apoptosis,
although an unequivocal conclusion on this matter still requires
more investigation.

In vivo PGC-1a transfection inhibits muscle atrophy

Because of the critical role of mitostasis in the pathogen-
esis of muscle disuse atrophy, various experimental models
have been employed to boost mitochondrial biogenesis and to
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inhibit proteolytic, autophagic, and apoptotic pathways, such
as FoxO gene knockout™, inhibition of NFkB", antioxidant
intervention, and transgenic overexpression of PGC-lo/’-*.
Moreover, exercise has been consistently demonstrated to
be a very effective way to enhance mitochondrial biogenesis
mainly due to the upregulation of PGC-1c'”'**. These meth-
ods have been reviewed extensively in the past; therefore, the
following is a brief review of the efficacy of an in vivo DNA
transfection technique that overexpresses PGC-lot in mouse
muscle to reveal the mechanism of action™-”.

PGC-1a transfection in vivo was shown to effectively restore
PGC-1a content in the cytoplasm, nucleus, and mitochondria®,
and overexpression does not seem to be limited by
animal age’". As a result, mitochondrial density and
mtDNA content were both elevated in the transfected TA
muscle, along with higher levels of Tfam, suggesting these
improvements were due in part to increased mitochondrial pro-
liferation. Mitochondrial oxidative function showed significant
enhancement demonstrated by increased CS, COXIV activity, and
ATP production rate. These findings were in general agreement
with data obtained in transgenic animal studies overexpressing
PGC-1o7".

PGC-1a local transfection decreased muscle oxidative stress,
such as lipid and protein oxidative damage™. The protection may
stem from two events: reduced ROS generation in the mitochon-
dria and increased antioxidant defense®. Enhanced mitochondrial
biogenesis leads to a “younger” and healthier mitochondrial
population with fewer inner membrane defects, which is a
main source of ROS generation. Increased PGC-lo. reduced
acetylation of mitochondrial SOD (SOD2), making it more
active’. There is evidence that this protection is caused by
PGC-la-induced upregulation of SIRT3, a mitochondrial
deacetylase. Other key mitochondrial enzymes susceptible to
acetylation may also be protected by SIRT3 upregulation®'.
PGC-1a transfection also increased muscle glutathione peroxi-
dase (GPx) and catalase activities that control hydrogen peroxide
concentration in the IM muscle’’. Moreover, PGC-lo
overexpression inhibited NFxB and the expression of IM-
induced inflammatory cytokines such as TNFao, IL-1f, and IL-6,
which are important negative regulators of mitochondrial
homeostasis. Figure 2 summarizes the major effects of in vivo
PGC-1o transfection on muscle mitochondrial and protein
homeostasis.

IM-activated mitophagy was shown to be suppressed by PGC-1o
overexpression in both young and aged mouse muscles’ .
Major players of mitophagy such as PINKI, Parkin, Mul-1,
and LC3II were upregulated in mouse TA muscle after IM, but
these effects were mitigated by PGC-1o transfection. Suppres-
sion of FoxO signaling probably played a critical role in this
protection because it is the primary activator of mitophagy.
As strong supporting evidence, mitochondrial ubiquitination
level was attenuated by PGC-lov transfection. It is interesting
to note that PGC-1o also inhibited Fis-1 and Drp-1 expression
in the aged muscle”. This finding suggests that amelio-
rated changes in mitochondrial dynamics by PGC-lo. may
attenuate mitochondrial fragmentation, a main reason for higher
mitophagy rate in the IM muscle.
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Figure 2. lllustration of the effects of in vivo PGC-1a transfection on intracellular signaling pathways that promote mitochondrial
biogenesis and inhibit ubiquitin proteolysis and mitophagy. Arrow-headed lines represent activation; dot-ended lines represent inhibition.
Ac, acetate; Akt, protein kinase B; CaMK, Ca?‘/calmodulin-dependent protein kinase; CREB, cyclic AMP response element-binding
protein; PI3K, phosphatidylinositol 3-kinase; EP, epinephrine; ETC, electron transport chain; FoxO, Forkhead box class O family member
proteins; GPX1, glutathione peroxidase 1; IGF-1, insulin-like growth factor 1; IKK, IkB-kinase; IL-1,6, interleukin-1,6; IM-RM, immobilization—
remobilization; Mfn2, mitofusin-2; MTOR, mammalian target of rapamycin; MuRF1, muscle RING-finger protein-1; NEMP, nuclear-encoded
mitochondrial proteins; NRF 1/2, nuclear respiratory factors 1/2; p, phosphate; p50, p65, NFkB subunits; pcDNA-:f PGC, PGC-1a. plasmid;
PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; SIRT3, sirtuin-3; SOD2, superoxide dismutase 2; Tfam,
mitochondrial transcription factor A; TNFa, tumor necrosis factor alpha; Ub, ubiquitin; XO, xanthine oxidase.

Recent research indicates that an interplay between PGC-lo
and transcription factor EB (Tfeb) exists in skeletal muscle
that regulates the biological outcome of mitochondrial
biogenesis and mitophagy®. Tfeb is regarded as the master
regulator of lysosomal biogenesis in the autophagy process,
and exercise has been shown to induce Tfeb expression®. One
may speculate that high levels of PGC-1a may decrease Tfeb
expression, thereby attenuating mitophagy in an atrophying
muscle. Interestingly, several recent studies revealed an opposite
result. For example, Vainshtein er al.** showed that Tfeb pro-
tein level was elevated in denervation-induced muscle atrophy,
whereas transcriptional PGC-1o. overexpression increased mus-
cle Tfeb and most mitophagy-related proteins. Thus, whether
or not Tfeb played a role in accounting for the decreased
mitophagy in IM muscle is unclear and requires further
investigation.

Conclusion
Skeletal muscle atrophy caused by IM represents a patho-
physiological disorder characterized by excessive proteolysis

and associated functional defects. Overwhelming evidence
suggests that loss of mitochondrial homeostasis plays a criti-
cal role wherein decreased mitochondrial biogenesis, disrupted
fusion—fission dynamics, and increased ROS generation and
inflammation lead to enhanced mitophagy and eventually apop-
tosis. PGC-1a is a key transfection cofactor that crosstalks
with all major signaling pathways to protect against catabolic
signals. Muscle disuse atrophy can be caused by other experi-
mental conditions such as denervation, bedrest, hindlimb
unloading, and microgravity. They may share similar molecu-
lar mechanisms that cause IM-induced atrophy but may be
governed by separate and unique etiological events, which are
beyond this short review. It should also be mentioned that
the conclusions of this review are primarily drawn from ani-
mal, mainly rodent, studies. The outcome and mechanism of
human muscle disuse atrophy could be different. Nevertheless,
all research to this date emphasizes the role of mitochondria
as the most important organelle that controls the progress of
muscle disuse atrophy, thus providing a potential target for
intervention and treatment.
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