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A Commentary on

Introduction to the Frontiers Research Topic: Optimization of Exercise Countermeasures for

Human Space Flight–Lessons From Terrestrial Physiology and Operational Considerations

by Scott, J. P. R., Weber, T., and Green, D. A. (2019). Front. Physiol. 10:173.
doi: 10.3389/fphys.2019.00173

This Commentary addresses the paper “Introduction to the Frontiers Research Topic: Optimization
of Exercise Countermeasures for Human Space Flight–Lessons from Terrestrial Physiology and
Operational Considerations” recently published by Scott et al. (2019). The authors of this well-
structured paper have addressed the efficacy of exercise countermeasure (CM) and the importance
of its optimization for all individuals. The authors considered the management of microgravity and
adaptation to this well-known environmental stressor in space. Despite numerous strengths, the
paper authored by Scott et al. has at least one shortcoming that comes from ignoring the key point
that physical exercise has the potential to increase free radical production and lead to oxidative
stress (Cooper et al., 2002). Given this consideration, as shown in Figure 1, while space flight can
also trigger oxidative stress (Tian et al., 2017), physical exercise can significantly amplify the level
of oxidative stress. Within a microgravity environment, it is possible to “overdo” the oxidative
stressors and quickly transition from a beneficial range into a harmful range (especially when
combination stressors coincide).

Moreover, it has been shown that low-dose rate radiation exposure (e.g., ∼100 mSv for half a
year on the International Space Station, dose rate∼0.6 mSv/d) can lead to oxidative stress “Results
from astronauts participating in 4- to 6-month missions reveal increased carotid intima-media
thickness (Arbeille et al., 2016) and vascular stiffness (Hughson et al., 2016) that are suggested to be
related to increased oxidative stress, inflammation, and insulin resistance” (Garrett-Bakelman et al.,
2019). Moreover, Pavlakou et al. (2018) state “Oxidative Stress in the environment of weightlessness
and space irradiation has been shown in several tissue types like ocular tissue (Mao et al., 2013),
neural stem cells (Tseng et al., 2014), as well as brain cortex and hippocampus (Mao et al., 2016),
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FIGURE 1 | Both physical exercise and Spaceflight Environmental Factors can

trigger oxidative stress. This combination can significantly amplify the level of

oxidative stress.

skin (Mao et al., 2014), and intestine (Datta et al., 2012). During
the ESA-SPHINX (European Space Agency’s-SPaceflight of Huvec:
an Integrated eXperiment) experiment, the induction of oxidative
stress response was shown after studying the impact of space
environment exposure on 12 cell-kits of human umbilical vein
endothelial cells (HUVECS).” However, in any space mission,
there are many variables besides radiation and microgravity
that can influence the experimental outcome. In addition,
spacecraft environmental conditions (e.g., atmospheric pressure
and composition, vibration, ambient lighting, and cabin non-
ionizing radiation) could potentially influence the results. It
may be possible to isolate the effects of a single variable (e.g.,
simulating gravity with a centrifuge), but the collective effects are
more difficult to determine. Attempting to isolate each individual
factor’s particular impact is a possible, but difficult approach.
Using that methodology, each of the effects of the numerous
variables might then be estimated. In addition, a key question
is when a specific level of exercise does not fit all astronauts,

wouldn’t it be logical that the same situation holds true for other
space factors which cause oxidative stress?

Exercise in space is complicated because the normal body
processes are perturbed by microgravity and the lack of
a preferred direction provided by the Earth’s gravitational
field. Although a muscle can be exercised, the physiological
processes associated with exercise are not directly comparable
to exercise on Earth. In addition, the ambient environment of
a space craft introduces additional factors (e.g., oxygen content,
lighting, restricted volume, and electromagnetic background)
that introduce additional perturbations.

Although exercise, in particular at high durations and
intensities can become potentially harmful in space environment
through increasing ROS/RNS production and negatively
affecting oxidative stress balance, more caution should
be considered in evaluation of low or moderate levels of
exercise. While substantial evidence shows that prolonged or
short-duration high intensity exercise can lead to increased
radical production in active skeletal muscles resulting in the
formation of oxidized lipids and proteins in the working
muscles (Powers et al., 2016), moderate to low intensity
exercise training is possibly beneficial for decreasing elevated
levels of oxidative stress induced independently or combined
by inactivity and hypoxia (Debevec et al., 2017). Regarding
the role of the pattern and duration of exercise, some
evidence also shows that high-intensity discontinuous exercise
does not cause higher levels of exercise-induced oxidative
stress compared to that of continuous moderate-intensity
training (Vezzoli et al., 2014). It has also been reported
that while very prolonged ultra-endurance exercise can lead
to increased levels of ROS production, the dose-response
curve always shows a linear relationship with the duration of
exercise (Vezzoli et al., 2016).

Other issues that should be fully addressed are the possible
interactions of physical exercise with other major stressors in
space such as radiation (i.e., induction of simple additive or
synergistic effects as a response to combined exposure to exercise
and radiation). The aforementioned factors should be considered
in assessing the conclusions of Scott et al. (2019).
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