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ABSTRACT Daily practices put humans in close contact with the surrounding environ-
ment, and differences in these practices have an impact on human physiology, develop-
ment, and health. There is mounting evidence that the microbiome represents an inter-
face that mediates interactions between the human body and the environment. In
particular, the skin microbiome serves as the primary interface with the external environ-
ment and aids in host immune function by contributing as the first line of defense
against pathogens. Despite these important connections, we have only a basic under-
standing of how the skin microbiome is first established, or which environmental factors
contribute to its development. To this end, this study compared the skin bacterial com-
munities of infants (n � 47) living in four populations in Mexico and the United States
that span the socioeconomic gradient, where we predicted that variation in physical and
social environments would shape the infant skin microbiome. Results of 16S rRNA bacte-
rial gene sequencing on 119 samples (armpit, hand, and forehead) showed that infant
skin bacterial diversity and composition are shaped by population-level factors, including
those related to socioeconomic status and household composition, and vary by skin site
and infant age. Differences in infant-environment interactions, including with other peo-
ple, appear to vary across the populations, likely influencing infant microbial exposures
and, in turn, the composition of infant skin bacterial communities. These findings sug-
gest that variation in microbial exposures stemming from the local environment in in-
fancy can impact the establishment of the skin microbiome across body sites, with im-
plications for developmental and health outcomes.

IMPORTANCE This study contributes to the sparse literature on the infant skin micro-
biome in general, and the virtually nonexistent literature on the infant skin microbiome
in a field setting. While microbiome research often addresses patterns at a national
scale, this study addresses the influence of population-level factors, such as maternal so-
cioeconomic status and contact with caregivers, on infant skin bacterial communities.
This approach strengthens our understanding of how local variables influence the infant
skin microbiome, and paves the way for additional studies to combine biological sample
collection with questionnaires to adequately capture how specific behaviors dictate in-
fant microbial exposures. Work in this realm has implications for infant care and health,
as well as for investigating how the microbial communities of different body sites de-
velop over time, with applications to specific health outcomes associated with the skin
microbiome (e.g., immune system development or atopic dermatitis).
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Human-environment interactions have a marked impact on host physiology, devel-
opment, and health. There is mounting evidence that the human microbiome—

the vast collection of microorganisms (and their genes) that live in, on, and around us—

Citation Manus MB, Kuthyar S, Perroni-
Marañón AG, Núñez-de la Mora A, Amato KR.
2020. Infant skin bacterial communities vary by
skin site and infant age across populations in
Mexico and the United States. mSystems
5:e00834-20. https://doi.org/10.1128/
mSystems.00834-20.

Editor Tamia A. Harris-Tryon, UT Southwestern
Medical Center at Dallas

Copyright © 2020 Manus et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Melissa B. Manus,
melissamanus2023@u.northwestern.edu.

Received 24 August 2020
Accepted 9 October 2020
Published

RESEARCH ARTICLE
Host-Microbe Biology

crossm

November/December 2020 Volume 5 Issue 6 e00834-20 msystems.asm.org 1

3 November 2020

https://orcid.org/0000-0003-3640-1781
https://doi.org/10.1128/mSystems.00834-20
https://doi.org/10.1128/mSystems.00834-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:melissamanus2023@u.northwestern.edu
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00834-20&domain=pdf&date_stamp=2020-11-3
https://msystems.asm.org


represents one mechanism through which interactions with the environment impact
the human body. For example, the microbiome is shaped by exposure to external
factors, including antibiotics (1), diet (2), and social interactions (3–5). In turn, microbial
communities influence host nutrition (6, 7), play a vital role in proper immune system
development in early life (8, 9), and can influence mood and behavior (10).

However, the majority of microbiome research is conducted on the gut and over-
looks the organ that serves as the primary interface with the external environment—
the skin. Microbial communities on the skin aid host immune function by contributing
as the first line of defense against pathogens. For example, resident skin microbes, such
as Staphylococcus epidermidis, exhibit anti-inflammatory properties and help inhibit the
colonization of potential pathogens (11). Studies in mice highlight the role of com-
mensal skin microbes in cytokine production and normal immune functioning (12), and
these skin microbe-induced immune functions may have systemic effects on the body
via the skin-gut axis (13–15).

Despite the appreciation that the skin microbiome sits at the interface of human-
environment interactions and is linked to host physiology and health, we still have a
nascent understanding of its initial development. As the in-utero environment is largely
sterile, infants receive their first significant exposure to microbes at birth (16). By
adulthood, humans have distinct microbial communities across different body sites
(17). However, it is unclear how the relatively homogeneous newborn microbiome
diverges into body site-specific microbial communities in the first 1,000 days of life (8,
18). Here, an ecological perspective is useful for understanding how behaviors influence
how we acquire microbes from the environment. For example, microbes from the birth
environment, including from the mother’s body, are available for dispersal to the
newborn during delivery and initial physical contact between mothers and newborns
(16, 19–21). Further, the skin microbiome may aid in transferring microbes from the
environment to different sites across the body, including the gut. This may be especially
relevant for infants, where common behaviors such as putting objects and body parts
into their mouths may promote the skin’s role as a “microbial vector,” transmitting
microbes from the environment to the skin, and into the gut. Thus, the skin may be an
important, but currently underexplored, component of the developmental trajectory of
the overall infant microbiome.

While studies in nonhuman primates and human infants suggest that the environ-
ment, including the social environment, has marked impacts on the gut microbiome
(22–27), few studies have quantified the influential role of early life social environments
and their effects on infant skin microbial communities. Because the adult skin micro-
biome is affected by contact with other people (28, 29), nonhuman animals (30),
surfaces (31, 32), and hygiene product use (33, 34), it is likely that variation in these
factors during early life shapes the development of the infant skin microbiome (35).
However, early life environments differ across human populations, suggesting that an
infant’s exposure to environmentally sourced microbes, including those from the social
environment, may be highly variable across settings. For example, differences in
childcare practices across sociocultural contexts could contribute to differential micro-
bial exposures, including those related to attending daycare (36), hygiene practices
(34), and physical contact with siblings or other caretakers (37–42).

To address the gaps in the literature surrounding the early life skin microbiome, we
conducted a cross-sectional study that explored the relationship between early life
environments and the skin bacterial communities of infants. Here, we use the term
“bacterial” to refer directly to the results of this study, and use the terms “microbiome,”
“microbe,” and “microbial” when discussing trends in the literature. As geography often
serves as a proxy for dietary and lifestyle variation (43), we recruited participants in
Evanston, IL, USA and in three different populations in Veracruz, Mexico (Xalapa,
Coatepec, and Ocotepec) to capture lifestyle variation both within and between
populations. Details of each population can be found in the Materials and Methods
section. Moving forward, we will refer to the populations as follows: Evanston as “urban
USA”; Xalapa as “urban MEX”; Coatepec as “peri-urban MEX”; and Ocotepec as “rural
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MEX” (Table 1). By coupling skin bacterial samples with questionnaire data, we were
able to compare the effects of external variables, such as geography (43) and house-
hold composition (38), as well as intrinsic host factors, like age (8), on skin bacterial
communities in early life. To our knowledge, this is one of the few studies to collect skin
bacterial samples in a field setting (defined here as research outside a clinical or home
environment, without participant self-collection), and the first study to compare skin
bacterial samples from infants living in different geographic and socioeconomic con-
texts. Because geography is associated with lifestyle variation, we hypothesized (i) there
would be differences in infant skin bacterial communities across the populations. More
specifically, we expected that this variation would covary with variables related to
socioeconomic status and household environments (38, 40). Since different body sites
harbor distinct microbial communities (17), we also hypothesized that (ii) there would
be differences in the diversity of infant skin bacteria across the sampled skin sites.
Additionally, physiological properties of the skin change throughout infancy (e.g.,
hydration levels [44] and pH [45]), which likely affects which microbes persist at
particular body sites (8). Therefore, we also expected (iii) infant age to be positively
correlated with the diversity of skin bacterial communities, such that older infants will
harbor more bacterial diversity and heterogeneity across skin sites.

RESULTS

Analyses were conducted on a total of 119 skin bacterial samples from 47 infants
aged 0.5 to 33 months, with an average age of 11.8 months across the four populations
(Table 2). All participants were sampled outside their homes, either in an office space
in the United States or in an outdoor common area in Mexico. Despite the differences
in sampling location, swabs only contacted the participants’ skin, and control samples
of the ambient air returned no detectable bacterial signature. This makes an impact of
collection environment on our results unlikely. Household size ranged from 3 to 14
people (including the infant), and the number of alloparents (i.e., caregivers other than
the mother) ranged from 0 to 9, where the rural MEX population had the highest
household size and number of alloparents (Table 2). Responses to questionnaires
indicated that lifestyle factors likely to impact the infant skin microbiome differed
across the populations, including hygiene practices and delivery mode. For example,
infants were bathed less frequently in the rural MEX population compared to the other
populations. The majority of infants in the rural MEX population were delivered
vaginally (7 out of 8), while most in the urban MEX population were delivered via
Cesarean section (6 out of 7). Delivery mode was more variable in the other two
populations, with about half of the infants in the peri-urban MEX population (3 out of

TABLE 1 Population demographics

Population Profile Socioeconomic status No. infants sampled

Evanston Urban USA High 25
Xalapa Urban MEX Middle 7
Coatepec Peri-urban MEX Low 7
Ocotepec Rural MEX Low 8

TABLE 2 Samples used in statistical analyses, including the number of skin samples per
population, the age range of infants, the range of household size (including the infant),
and the range of alloparents reported per infant

Population
No. skin
samples Age (mo)

Mean age
(mo)

Household
size Alloparents

All populations combined 119 0.5–33 11.8 3–14 0–9
Urban USA 65 5–13 10.2 3–5 0–4
Urban MEX 18 3–33 15.7 3–4 1–3
Peri-urban MEX 14 0.5–18 8.8 3–7 1–3
Rural MEX 22 2.5–32 12.9 3–14 0–9
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7) and one-third in the urban USA population (7 out of 25) delivered by Cesarean
section.

Predictors of bacterial community composition. To identify characteristics that
predicted skin bacterial community composition, we conducted variance analyses on
UniFrac distances. In the overall models of both unweighted and weighted UniFrac
distances, we found that population, body site, infant age, household size, number of
alloparents, and delivery mode were all significantly associated with variation in skin
bacterial communities across all samples, though number of siblings was not (Table 3).
This held true for the subsetted models that isolated potentially correlated predictors
(e.g., household size and number of alloparents; see the Materials and Methods), with
the exception of delivery mode in certain models (Table S1 in the supplemental
material).

Nonmetric multidimensional scaling (NMDS) plots show that the samples cluster by
body site more clearly than by population (Fig. 1 and Fig. 2). Pairwise PERMANOVA of
unweighted UniFrac distances yielded significant differences between all comparisons
of populations, skin sites (armpits-foreheads, armpits-hands, foreheads-hands), and
infant age groups (Table 4). Tests of weighted UniFrac values showed significant
differences between rural MEX and urban USA, two of the three body site comparisons

TABLE 3 Results of PERMANOVA on unweighted and weighted UniFrac distances (all
samples combined)

Parameter df pseudo-F R2 P valuea

Unweighted UniFrac distance
Body site 2 3.703 0.052 <0.001
C-section 1 1.987 0.014 <0.01
Infant age 1 4.034 0.028 <0.001
Siblings 1 1.239 0.009 0.185
Household size 6 1.534 0.064 <0.001
Alloparents 6 1.598 0.066 <0.001
Population 3 1.888 0.039 <0.001

Weighted UniFrac distance
Body site 2 20.337 0.219 <0.001
C-section 1 2.334 0.013 <0.05
Infant age 1 3.105 0.017 <0.05
Siblings 1 1.670 0.009 0.113
Household size 6 1.972 0.064 <0.01
Alloparents 6 2.003 0.065 <0.01
Population 3 3.103 0.050 <0.001

aP values in boldface indicate significance.

FIG 1 NMDS plots displaying samples by population: weighted UniFrac distances (left) and unweighted UniFrac distances (right).
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(hands-armpits and armpits-foreheads), and the age groups (Table 4). The effect sizes
of the significant body site comparisons using weighted UniFrac distances were
considerably larger than the same comparisons using unweighted UniFrac distances.

Differences in bacterial taxonomic richness by body site. Overall, we found that
samples from infants were dominated by four bacterial phyla (Firmicutes, Actinobacteria,
Proteobacteria, and Bacteroidetes; Fig. S1), and that the algorithm-based classifier

FIG 2 NMDS plots displaying samples by body site: weighted UniFrac distances (left) and unweighted UniFrac distances (right) (AP � armpit, FH � forehead,
HA � hand).

TABLE 4 Results of pairwise PERMANOVA tests (all samples combined)

Comparison df pseudo-F R2 P valuea

Between populations
Unweighted UniFrac

Peri-urban MEX versus urban USA 1 3.173 0.040 <0.01
Rural MEX versus peri-urban MEX 1 3.926 0.104 <0.01
Peri-urban MEX versus urban MEX 1 1.672 0.053 <0.05
Rural MEX versus urban USA 1 7.761 0.084 <0.01
Urban MEX versus urban USA 1 3.408 0.040 <0.01
Rural MEX versus urban MEX 1 2.173 0.054 <0.05

Weighted UniFrac
Peri-urban MEX versus urban USA 1 2.480 0.031 0.142
Rural MEX versus peri-urban MEX 1 2.388 0.066 0.142
Peri-urban MEX versus urban MEX 1 0.942 0.030 0.519
Rural MEX versus urban USA 1 4.532 0.051 <0.01
Urban MEX versus urban USA 1 2.769 0.033 0.113
Rural MEX versus urban MEX 1 1.242 0.066 0.512

Between body sitesb

Unweighted UniFrac
HA-AP 1 3.526 0.041 <0.001
HA-FH 1 2.095 0.027 <0.01
AP-FH 1 4.774 0.060 <0.001

Weighted UniFrac
HA-AP 1 23.598 0.223 <0.001
HA-FH 1 1.439 0.019 0.160
AP-FH 1 28.762 0.277 <0.001

Between infant age groupsc

Unweighted UniFrac
Older-younger 1 3.037 0.025 <0.001

Weighted UniFrac
Older-younger 1 3.966 0.033 <0.01

aP values in boldface indicate significance.
bHA � hands, AP � armpit, FH � forehead.
cOlder group � 7 to 33 months, younger group � 0 to 6 months.
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performed with an overall accuracy of 0.54 when classifying samples by body site
(Fig. 3). To further explore differences in bacterial diversity by skin site, we focused
subsequent analyses on models of alpha diversity at the amplicon sequence variant
(ASV) level (Faith’s phylogenetic distance [PD] is reported here; Shannon diversity is
reported in Table S2). We first ran ANOVA analysis on linear mixed effect models with
all samples combined, which showed that samples from infants in the rural MEX
population displayed significantly higher skin alpha diversity than those in the
peri-urban MEX population (estimate � 21.061, P � 0.001), the urban USA popula-
tion (estimate � 18.223, P � 0.001), and the urban MEX population (estimate � 11.859,
P � 0.05). Models of Shannon index yielded similar results (Table S2).

Due to the large effect of body site in the models of beta diversity, as well as the
variation in the accuracy of the classifier by each of the three body sites (Fig. 3), we ran
the same models of bacterial diversity on samples separated by body site. The trend of
elevated diversity in the rural MEX population persisted when the model was restricted
to only forehead samples (rural MEX/peri-urban MEX estimate � 39.274; rural MEX/
urban USA estimate � 33.282; rural MEX/urban MEX estimate � 30.449; all comparisons
P � 0.001). Models of alpha diversity (Faith’s PD) in hand samples yielded differences
between the rural and peri-urban MEX populations (estimate � 21.094, P � 0.05), the
rural MEX and urban USA populations (estimate � 20.742, P � 0.01), and the urban MEX
and urban USA populations (estimate � 19.341, P � 0.05), but not between the rural
MEX and urban MEX populations (estimate � 1.401, P � 0.998). Results of the same
models using Shannon index are reported in Table S2. All comparisons are illustrated
in Fig. 4. Results from linear discriminant analysis effect size (LEfSe analysis) indicate
that hand samples from infants in the urban MEX population harbored almost as many
discriminative bacterial ASVs as the infants from rural MEX (21 versus 31) (Table S3),
including soil-derived microbes (e.g., Massilia [46], Bacillus fumarioli [47], and Pseudomo-
nas nitroreducens [48]). Similarly, samples from infants in the rural MEX population
contained microbes associated with domesticated animals (e.g., Streptococcus alacto-
lyticus [49, 50]) as well as plants (e.g., Methylobacterium mesophilicum [51]). There were
no differences in armpit samples across the populations (using either index). Accord-
ingly, the algorithm-based classifier accurately classified armpits the most frequently
(�80%), followed by hands (�60%), and then foreheads (�14%) (Fig. 3).

Using linear mixed effects models to test for the relative abundance of particular
bacterial ASVs in the data set (n � 179 ASVs), we found that the relative abundance of
11 different ASVs varied significantly by population (corrected P value �0.01) (Table 5).

FIG 3 Heatmap of algorithm-based classifier results by body site. Accuracy of classification was 80% for
armpit samples, 60% for hand samples, and 14% for forehead samples.
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The relative abundance of 45 ASVs varied by body site, while number of alloparents and
household size were significantly associated with the relative abundance of 8 and 12
ASVs, respectively. The specific ASVs are listed in Table S4.

Differences in bacterial taxonomic richness emerge in the older age group.
Since age had a large effect in models of beta diversity, we also explored the effect of
age on alpha diversity. In the rural MEX population, there were no differences in alpha

FIG 4 Differences in bacterial diversity across the populations vary by body site (ANOVA on Faith’s PD). Clockwise from top left: all skin samples combined;
forehead samples; armpit samples; hand samples (* � P � 0.05, ** � P � 0.01, *** � P � 0.001).

TABLE 5 Results of ANOVA on linear mixed effects models testing the influence of
independent variables on the relative abundance of bacterial ASVs (all samples
combined)

Independent variable
(n � 119 samples)

No. of differentially abundant bacterial
ASVs (out of 179 total ASVs)a

Population 11 (6%)
Body site 45 (25%)
No. of alloparents 8 (5%)
Household size 12 (7%)
aModels were run on ASVs with relative abundance counts of �500 across the whole data set. Percentages
in the parentheses indicate the percentage of significantly variable ASVs out of the 179 total ASVs in the
data set.
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diversity across skin sites in the younger age group, while foreheads harbored more
bacterial taxa compared to armpits in the older infants (estimate � 27.929, P � 0.01). In
the peri-urban MEX population, there were no differences between skin sites within
either age group. A skewed age distribution toward older infants limited our ability to
model the younger age group on its own in both urban populations. However, the
hands of older infants in the urban MEX population were more diverse than their
armpits (estimate � 31.831, P � 0.001) and foreheads (estimate � 21.461, P � 0.01).
Finally, foreheads (estimate � 5.597, P � 0.001) of older infants harbored increased
bacterial diversity compared to armpits in the urban USA population. Table 6 illustrates
the results of linear mixed methods models on samples from infants in the older age
group (Shannon index data are in Table S5).

DISCUSSION

This study examined the relationship between infants’ early life environments and
the diversity and composition of their skin bacterial communities. In support of our
hypotheses, our results showed that differences in infant skin bacterial diversity based
on geography are population specific, and vary by skin site and infant age. Importantly,
our study probes deeper than the national level by including multiple Mexican popu-
lations, and thus highlights differences in the infant skin microbiome that emerge at
the population level. In contrast to previous studies (including on the microbiomes of
body sites other than the skin) that attribute differences in microbial communities to
lifestyle variation based on broad national, ethnic, or “racial” categories (43, 52–55), our
study quantified population-level factors that may influence early life microbial envi-
ronments. Our results highlight the need for a more nuanced approach in the bur-
geoning skin microbiome literature, including the consideration of particular behaviors
that put individuals in contact with the environment (and its microbes). For example,
significant predictors in our models, including household size and number of allopar-
ents, suggest routes by which infants differentially come into contact with microbes
from diverse physical and social environments, even within the same country. Moving
forward, studies across socioeconomic settings within a given geographical area are
well suited to capture variation in lifestyle factors that may impact the microbial
environment of infancy.

Skin bacterial diversity differs across populations. We found differences in skin
bacterial composition and diversity across the four populations. Samples from infants
in the rural MEX population displayed elevated bacterial diversity, which could be due
to increased exposure to microbes from the natural environment, including from soil,
plants, and other animals (56, 57). Samples from these infants harbored environmen-
tally derived taxa, including the freshwater bacterium Inhella inkyongensis (58), the soil
bacteria Parasegitibacter luojiensis (59) and Limnobacter spp. (60), and Acidovorax spp.,
a bacterial group known to cause disease in crops (61). Because our environmental
controls did not contain detectable levels of bacteria, these patterns are unlikely to be
a result of contamination. It may be that infants in this agricultural population are in
direct contact with these microbes (e.g., from soil and natural water sources), and/or
that caregivers transfer microbes from the environment to infants via physical contact
(38). In general, more work is needed to delineate between microbes that are true
residents of the skin versus those that reflect periodic exposures to microbes from the

TABLE 6 Results of ANOVA on linear mixed effects models comparing Faith’s PD across
body sites in the older age group (7 to 33 months)a

Population
FH-AP (test estimate,
P value)

HA-AP (test estimate,
P value)

HA-FH (test estimate,
P value)

Urban USA 5.597, P < 0.001 3.476, P � 0.060 �2.121, P � 0.325
Urban MEX 10.370, P � 0.230 31.831, P < 0.001 21.461, P < 0.01
Peri-urban MEX 5.813, P � 0.771 �0.068, P � 1.000 �5.881, P � 0.766
Rural MEX 27.929, P < 0.01 13.222, P � 0.186 �14.707, P � 0.153
aAP � armpit, FH � forehead, HA � hand. P values in boldface indicate significance.
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natural environment. In settings like the rural MEX population, frequent exposure to the
natural environment may result in “environmental” microbes acting as more persistent
community members on infant skin compared to settings where environmental expo-
sures are less frequent and/or hygiene practices are more stringent. Moreover, pro-
cesses like horizontal gene transfer may allow transient environmental microbes (i.e.,
those that do not successfully colonize infant skin) to alter the genetic and functional
properties of the existing skin bacterial community without changing the taxonomic
composition (62). Since the skin microbiome plays a role in regulating the immune
system (12), functional changes to skin microbial communities that arise via horizontal
gene transfer may affect early life immune system development and, in turn, lifelong
health. Further, if infant behaviors promote the spread of skin bacteria into the gut (e.g.,
putting fingers into the mouth), then the external microbial environment may indirectly
shape the infant gut bacterial community via the skin.

Although we did not directly measure infant bathing or ask about the time since last
bath on the questionnaire, we did capture basic information about bathing practices
across the populations that may affect bacterial skin communities. For example, while
infants in the rural MEX population are bathed less frequently than infants in the other
populations (a few days per week compared to every day), bathing in this setting may
actually expose infants to more environmentally sourced microbes through contact
with natural water sources (34). Further, we found some support that delivery mode
affects skin bacterial community composition (16), though this varied across models.
Future studies would benefit from repeatedly sampling infants in the first weeks to
months of life, as this would help elucidate the extent to which microbial exposures at
delivery are “counteracted” by exposures later in life (8).

Mothers in the rural MEX population reported the largest household sizes and the
greatest number of alloparents, suggesting that infants in this population are exposed
to microbially rich environments through contact with alloparents and/or other people
in the household, in addition to exposure to the physical environment. This trend is in
line with existing evidence for a relationship between household composition and
infant gut bacterial taxonomic composition, including bacterial taxa like Lactobacillus,
Klebsiella, Clostridium, and Enterobacter (38). Though this study did not directly test the
transfer of microbes from caregivers to infants, both household size and number of
alloparents were significant predictors of infant skin bacterial composition and were
significantly associated with the relative abundance of particular bacterial ASVs. While
the linear mixed effects models on the relative abundance of these ASVs do not
indicate the direction of the relationship (i.e., if infants in larger households harbor
more of a particular ASV), these trends are an important first step for additional studies
that make predictions about the relative abundance of certain microbes based on host
attributes, or to target specific bacterial taxa for strain-level analyses. Our study
contributes to the growing literature on social dynamics and the microbiome in both
nonhuman primates (4, 5, 23, 26) and humans (37–39, 63, 64), and highlights how
multiple socioeconomic factors, like mother’s education and number of alloparents,
may work in tandem to influence infants’ physical, social, and microbial environments.

Interestingly, the number of siblings in the household did not predict infant skin
bacterial composition, while other studies have found that having older siblings is
correlated with decreased bacterial diversity (40–42). However, our questionnaire did
not capture sibling age, making it difficult to infer how the infants in our study interact
with their siblings. For example, it may be that siblings of infants in our study were not
yet at the age to be contributing substantial allocare, which would limit the amount of
intersibling bacterial sharing. Further, our questionnaire did not quantify time spent
playing between siblings, which may serve as another route for bacterial sharing
between siblings. Additionally, older infants in our study may come into contact with
other children who are not siblings, though our questionnaire did not address these
interactions. Future work on the social transmission of microbes to infants would
benefit from documenting the frequency of contact with alloparents and other mem-
bers of the social environment, including siblings.
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Comparisons of skin bacterial diversity vary by skin site. Differences in skin
bacterial diversity across the populations varied by skin site, which is in line with the
robust literature on variation in microbial community diversity and composition across
sites on the skin (8, 17, 29, 52, 65, 66). For example, the elevated bacterial diversity in
the rural MEX population compared to the other populations was driven by forehead
samples. This may be a result of increased contact with microbes from caregivers (i.e.,
kissing and touching the forehead), as the largest number of alloparents per infant
were reported by mothers in this population. Moreover, it may be that as a sebaceous
skin site (67), the infant forehead is able to harbor skin bacteria that originate from the
faces of caregivers. In this scenario, behaviors that put caregivers into face-to-face
contact with infants, such as kissing and nestling heads, may promote bacterial sharing
and increase the taxonomic diversity of the infant forehead compared to body sites
that are less frequently contacted. If the combination of human behavior and ecological
properties of the skin results in increased bacterial diversity on the infant forehead, this
may drive greater interindividual bacterial variation in forehead samples. In turn, this
variability may explain why these samples were poorly identified by the algorithm-
based classifier.

In contrast, armpit samples did not display different levels of bacterial diversity
across the populations. As armpits are relatively protected from the outside environ-
ment— both by their anatomical position and the protection provided by clothing—
compared to other body sites, they may be less influenced by contact with environ-
mentally sourced microbes. Every infant in our study was clothed immediately prior to
sample collection, and many wore coats (e.g., infants from the rural MEX and urban USA
populations who were sampled in colder weather) or were wrapped in blankets (e.g.,
younger infants). Based on these observations, it is likely that the armpits of many
infants in our study are frequently protected from the outside environment, though
additional sampling during warmer weather would help to elucidate the role of
clothing as a barrier to microbial exposure. This reduction in environmental exposure
may promote decreased interindividual variation in armpit samples, enabling the
algorithm-based classifier to accurately identify armpit samples. Further, the armpit
harbors less diverse microbial communities compared to other body sites (57, 65), in
part due to the secretions of densely packed apocrine sweat glands that support the
growth of certain bacteria (68, 69). In our study, it may be that similar properties dictate
the reduced variation in armpit samples collected across the populations, though
further research is needed to characterize if processes that affect bacteria, like sweat
production, are as active in the infant armpit compared to the adult armpit. Addition-
ally, it is likely that other behaviors shape infant armpit bacterial communities, such as
being bathed or picked up by caregivers, which could increase opportunities for
bacterial sharing between caregiver hands and infant armpits.

It is noteworthy that the effect sizes of the significant pairwise body site compari-
sons (hand-armpit and forehead-armpit) using weighted UniFrac distances were con-
siderably larger than the same comparisons using unweighted UniFrac distances.
Unlike unweighted UniFrac, the weighted metric does not bias toward “rare” or “minor”
bacterial community members (70). Thus, these results may reflect distinctions in
community composition driven by the more “major” microbes found in armpits versus
the other two body sites. While skin properties that impact microbes, such as hydration
levels (44) and pH (45), likely vary between infant and adult armpits (e.g., due to the
presence of sweat glands and body hair in adults), our finding of decreased bacterial
(alpha) diversity in armpit samples is in line with results of previous studies on adults
both within and outside the United States (57, 65, 68). Overall, these findings support
the idea that armpit samples are distinct and more homogeneous compared to the
other body sites, which may explain why the results of the algorithm-based classifier
were the most accurate for the armpit samples.

Variable patterns of environmental contact likely also explain why hand samples
taken from the rural and urban MEX populations displayed higher bacterial diversity
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than those from the peri-urban MEX and urban USA populations. Infants in the urban
MEX population have regular access to an outdoor play area, and were observed to be
playing in grass and soil prior to sample collection. Frequent contact with soil and plant
material may explain the similarity in bacterial diversity of hand samples in the rural and
urban MEX populations, as well as the fact that hand samples from these populations
harbored soil-derived microbes (albeit in relatively low abundances), including Massilia
(46), Bacillus fumarioli (47), and Pseudomonas nitroreducens (48), as well as microbes
associated with domesticated animals (e.g., Streptococcus alactolyticus [49, 50]) and
plants (e.g., Methylobacterium mesophilicum [51]). Taken together, these results suggest
that skin bacterial communities can reflect certain behaviors that put infants in contact
with environmental microbes though, as previously mentioned, further research is
needed to determine which environmentally derived taxa are transient members of the
human skin versus those that become stable residents.

Skin bacterial diversity is driven by older infants. In line with previous work on
the skin microbiome, samples from infants in both age groups in this study were
dominated by Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes (29, 52, 57,
65, 66, 71, 72). It is noteworthy that the differences in bacterial diversity across the skin
sites are driven by individuals in the older age group (7 to 33 months) compared to the
younger age group (0 to 6 months). This is in line with suggestions that newborns have
relatively homogeneous microbiomes (16), with body site-specific differences emerging
later in life (8). Because the current study was conducted on multiple populations, our
results expand upon this finding by comparing the influence of age across different
geographic and socioeconomic settings.

When restricting analyses to the group of older infants, the results of comparisons
of bacterial diversity between skin sites varied across the populations, suggesting that
patterns of skin site-specific bacterial communities unfold unequally in different envi-
ronmental settings. These differences may be due to a combination of endogenous
host properties and exogenous environmental factors. For example, changes in skin
physiology, including hydration levels (44) and pH (45), may alter local environmental
conditions that dictate which microbes are able to persist at particular body sites (17,
71). At the same time, behavioral and development changes in infancy (e.g., learning to
crawl or playing with siblings) likely alter patterns of contact between the skin and
environmentally sourced microbes, contributing to different environmental microbial
exposures at different ages. Future work is needed to identify both intrinsic and
extrinsic factors that affect skin microbial communities as infants grow older, and how
this varies by body site.

To our knowledge, this is one of the few studies to use next-generation sequencing
approaches to investigate the bacterial communities of the skin of healthy infants (8,
16, 73), and the first to collect skin samples in a field setting outside the United States.
Our combination of biological sample collection and qualitative survey data across
multiple populations, infant body sites, and infant ages allows for a more robust
exploration of the variables that influence early life skin microbial communities. This
study would benefit from more even sampling within each population, particularly in
relation to infant age, as a skew toward older individuals in two of the populations
limited certain analyses and restricted the distribution of the infant age groups. One
possible result of the wide age range of the older group (7 to 33 months) is that
behaviors of the eldest infants masked the behaviors, and associated microbial expo-
sures, of younger infants that were placed in the same age group. For example, older
toddlers who are learning to walk and feed themselves may be exposed to different
microbes than are less mobile infants who are still breastfeeding. Similarly, differences
in the frequency of washing clothing, both between age groups and populations, may
contribute to variation in microbial exposures of infant skin.

Additionally, we only utilized one population in the United States in this study,
which certainly did not capture the range of environmental and behavioral variation
within the country. Further, our questionnaire did not quantify the frequency of specific

Influences on Infant Skin Bacterial Communities

November/December 2020 Volume 5 Issue 6 e00834-20 msystems.asm.org 11

https://msystems.asm.org


behaviors that put infants into contact with the environment, including other people.
Future studies would benefit from a more formal evaluation of how certain behaviors,
like carrying, cosleeping, and breastfeeding, expose the infant skin to microbes. Finally,
while the biomass of microbes in the ambient air at our sampling locations was likely
low (74, 75), researchers should consider ways to better quantify environmental con-
trols in future work (e.g., the use of an air pump to collect ambient air control samples,
or collecting soil samples for comparison to skin samples), especially in field contexts
where samples cannot be collected indoors in a sterilized setting.

Moving forward, there is a need for more infant skin microbiome samples collected
across diverse geographic, socioeconomic, and cultural settings, particularly where
differences in behaviors, such as those related to childrearing and hygiene, may lead to
differential microbial exposures early in life. Continuing to incorporate cultural and
socioeconomic differences that may affect the infant skin microbiome will allow for a
more robust understanding of the range of “normal” microbial exposure and acquisi-
tion. Given calls for exploring the influence of the social environment on the micro-
biome (22, 76), our results suggest that future work in this area would benefit from
longitudinal sampling as well as direct participant observation in order to capture how
temporal, geographic, and behavioral variation impacts the development of the infant
skin microbiome. Finally, because our results differed depending on if analyses were
conducted with pooled samples or by each body site independently, we recommend
the continued sampling and analyses of different body sites. This will lead to improved
characterization of skin sites across the body, contributing to our understanding of the
skin microbiome as a collection of diverse ecological niches that harbor different
microbial communities (17).

More broadly, understanding how the early life environment shapes the infant skin
microbiome can set the stage for future work that connects early life microbial
communities to developmental and health outcomes. Because the skin microbiome is
linked to immune system functioning (12, 35, 77), early life microbial acquisition may
help prepare infants for both short- and long-term health challenges. Specifically,
variation in early life environments may lead to differences in infant skin microbial
acquisition within an early “critical window,” triggering unequal trajectories of immune
system development and associated health outcomes (78). Results from the current
study suggest that variation in microbial exposures during this period may stem from
differences in lifestyle and behavior, highlighting the need for additional studies across
diverse environmental settings. Such studies will help quantify the “microbial environ-
ment of infancy,” as well as identify the potential for disparities in health outcomes that
stem from variation in early life microbial exposures.

MATERIALS AND METHODS
Participants. This study was conducted between February and September 2019 in four different

populations across two countries, each with a distinct socioeconomic and geographic profile (Table 1).
Mothers and infants were recruited opportunistically at four locations: (i) an upper-middle class urban
population from Evanston, IL, US (“urban USA”), (ii) an upper-middle class urban population in Xalapa,
Veracruz, Mexico (“urban MEX”); (iii) a working-class peri-urban population in the town of Coatepec,
Veracruz, Mexico (“peri-urban MEX); and (iv) a rural agricultural population from Ocotepec, Veracruz,
Mexico (“rural MEX”). Evanston is a northern suburb of Chicago with a population of around 75,000
people. Xalapa is a major city with a population of almost 480,000 people. Coatepec, a peri-urban town
of approximately 92,000, lies 15 kilometers from Xalapa at 1,200 m above sea level, and Ocotepec, a rural
agricultural community of approximately 500 people, is 77 kilometers from Xalapa at 2,280 m above sea
level. Based on conversations with Mexican collaborators and the authors’ research experience in this
region, we anticipated higher environmental contact in infants in the rural MEX population (i.e., more
time spent outside) compared to peri-urban MEX, urban MEX, or urban USA. Participants were recruited
in the United States using established research registries that are shared between the departments of
Psychology and Anthropology at Northwestern University. Participants in Mexico were recruited through
word of mouth. All research procedures were approved by the Institutional Review Board of Northwest-
ern University (number STU00210184). Across all populations, consent was obtained by mothers for
themselves and their children (in English or Spanish), and verbal consent was acquired in instances where
the mother was unable to write. For consistency, we refer to all individuals in this study as “infants,”
though the upper end of the age range includes the early stages of toddlerhood.
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Sample collection. Skin microbiome samples were collected from 25 infants in Evanston, IL, US and
22 infants in Veracruz, Mexico. Exclusion criteria included illness at the time of sample collection (fever,
rash, or skin lesion) and current antibiotic use. Across all populations, skin samples were collected from
each infant’s right hand (palm), right armpit, and right side of the forehead by rubbing a dry, sterile,
dual-tipped cloth swab (Fisher BD BBL Media-free Sterile Swab) on each body site for 1 min. All skin
samples were collected by two authors of the study. The US skin samples were collected in an otherwise
unoccupied office at a Northwestern University research building in Evanston, IL. In Mexico, skin samples
were collected outdoors at three sites: at a school in the urban population, in the waiting area at a health
clinic in the peri-urban population, and at a community center in the rural population. To minimize
contamination from the sampling environment, swabs were immediately applied to the skin upon
removal from the sterile plastic containers. Swabs were returned to the plastic containers immediately
after the 1 min of sample collection, at which point the plastic container was stored in a cooler with ice.
Contamination of “air microbes” from the sampling areas is unlikely; the microbial biomass of air is low
(74, 75), such that studies of microbes in the ambient air typically use pumps to physically capture
microbes on filters (75, 79). Control samples were taken from each sample collection location by swirling
a swab in the air for 1 min, though without the use of an air pump, this method resulted in control
samples that did not amplify during PCR (see below). Samples were stored at �20˚C within a few hours
of collection. Samples from Mexico were shipped to Northwestern University on dry ice and immediately
stored at �80˚C until DNA extraction.

To supplement biological sample collection, each mother completed a questionnaire that addressed
lifestyle factors likely to impact the infant skin microbiome, including those related to delivery mode,
household composition, and contact with alloparents (caregivers other than the mother). Mothers also
provided data on socioeconomic factors, including age and highest level of education. In the United
States, all questionnaires were conducted in English, while in Mexico, all questionnaires were conducted
in Spanish. Data from these questionnaires were analyzed in models of infant skin bacterial composition
and diversity.

Microbiome analysis. DNA was extracted from the skin samples using the Qiagen Powersoil kit at
Northwestern University in Evanston, IL, US. Extraction modifications for skin samples included warming
the C1 solution, collecting a 750-�l volume of supernatant after incubation in C2, and incubating samples
at room temperature after the addition of prewarmed C6 solution. Full extraction protocols can be found
in the supplemental materials (Text S1). The V3-V4 region of the 16S rRNA gene was amplified using a
modified version of the Earth Microbiome Project protocol (80) and the 515 Fa/926R primer set (81, 82).
Skin samples from one infant from the peri-urban MEX population, as well as the three ambient air
control samples taken in the field, did not amplify and therefore were not sequenced. We barcoded and
pooled amplicons in equal concentrations for sequencing on the Illumina MiSeq V2 platform at the DNA
Services Facility at the University of Illinois at Chicago.

Paired-end sequences were joined and processed using QIIME2 v2019.7 (83). Twenty-three control
samples (a combination of PCR blanks and negative controls from DNA extraction) were included in the
initial data set. Quality filtering and the removal of chloroplast and mitochondria sequences resulted in
a total of 4,448,091 reads with an average of 34,622 reads per sample. The dada2 plug-in was used to
cluster amplicon sequence variants (ASVs), and taxonomy was assigned by comparing ASVs to the
GreenGenes reference database. All samples were rarefied to 10,000 reads per sample based on alpha
rarefaction curves, which resulted in the removal of six infant samples, including all three samples from
one infant from the peri-urban MEX population.

Twenty control samples were removed during rarefaction, suggesting they had low sequence quality.
Three of the control samples (from DNA extraction) remained in the data set after rarefaction, and were
dominated by Enterobacteriaceae and Bifidobacterium spp. The relative abundances of these ASVs in the
control samples were much greater than the relative abundances in the infant samples, suggesting that
any contamination of the control samples did not significantly skew the ASV abundances in the infant
samples. Further, we identified four infant samples in which the relative abundance of Enterobacteriaceae
was elevated. DNA from these samples was extracted on different days, meaning that any potential
contamination event during DNA extraction cannot explain the relative abundance of this ASV in the four
infant samples. While Bifidobacterium and Enterobacteriaceae are typically considered to be members of
the gut microbiome community, it is possible that they are also common inhabitants of the infant skin,
especially if behaviors like putting hands and objects into the mouth work to transfer microbes from the
infant skin to the infant gut (i.e., certain infant “gut microbes” may actually stem from infant skin). For
these reasons, we retained the two ASVs in the final data set used in subsequent analyses.

Finally, we also explored statistical trends in the full data set that included the control samples.
Nonmetric multidimensional scaling (NMDS) showed that the control samples clearly plotted away from
the infant samples and results of permutational analyses of variance (PERMANOVA) revealed significant
differences in the bacterial community composition between control and infant samples. For these
reasons, we excluded the control samples from subsequent analyses.

Alpha and beta diversity metrics were calculated in QIIME2 on the final data set, which included 119
infant skin samples with a total of 4,332,551 reads and an average of 34,660 reads per sample. Alpha
diversity metrics included Faith’s phylogenetic distance and Shannon diversity index, and beta diversity
metrics included both unweighted and weighted UniFrac. The full QIIME2 script can be found in Text S2
along with the sample metadata (Data Set S1).

Statistical analysis. All statistical analyses were performed in R (84) on the filtered relative abun-
dance table at the bacterial ASV taxonomic level, where an alpha level of 0.05 was used to determine
statistical significance. All models controlled for the individual infant. To identify predictors of infant skin
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bacterial community composition (i.e., beta diversity), we utilized permutational analyses of variance
(PERMANOVA) on the unweighted and weighted UniFrac distance matrices using adonis2 in R. We used
both unweighted and weighted UniFrac because the former may capture rare taxa more so than the
latter (61). We used pairwise PERMANOVA to identify significant differences in bacterial community
composition between the populations, infant skin sites (armpits-foreheads, armpits-hands, and foreheads-
hands), and infant ages. Finally, we visualized weighted UniFrac distances by constructing NMDS plots using
the vegan and ggplot2 packages.

Independent variables for models of bacterial community composition were chosen in part based on
previous studies, as well as our predictions about differences in lifestyle across populations. These
variables included: population, skin site, infant’s age (continuous), mother’s age (continuous), mother’s
education (categorical: primary, secondary, high school, Bachelor’s, or graduate), household size (con-
tinuous), siblings (yes/no), number of alloparents (continuous), and delivery mode (categorical: vaginal
or Cesarean section). We used the by�”margin” option in the adonis2 command, which reduces the
influence of the order of predictors in PERMANOVA tests. We first calculated the Spearman correlation
between predictors and found that mother’s education was correlated with number of alloparents
(�0.358) and number of siblings (�0.557). Because any effect of mother’s education was likely mediated
by the number of alloparents or siblings, we removed it from subsequent models. We found additional
correlations between household size and number alloparents (0.626); population and number of
alloparents (0.465); and siblings and household size (0.657), and therefore ran one model that included
all seven predictors, and then subsetted the models to tease apart the effects of potentially correlated
predictors related to the household (i.e., household size, siblings, and number of alloparents). Results
were unchanged when we applied a test to account for false-discovery rate.

We ran ANOVA and Tukey tests on linear mixed effects models, using the package nlme, to explore
differences in bacterial alpha diversity across populations, skin sites, and infant ages. We subsetted the
data into a group of younger infants (0 to 6 months) and a group of older infants (7 to 33 months). These
age groups were chosen based on previous observations regarding the development of the skin
microbiome (8), including skin physiology (44, 45), as well as to accommodate the uneven distribution
of infant ages across the populations in the data set. We ran similar models of ANOVA on linear mixed
effects models to test for the influence of particular independent variables on the relative abundance of
bacterial taxa at the ASV level. The models were restricted to ASVs with a total abundance count of at
least 500 across all samples, and a significance level of 0.01 (after correcting for false discovery) was used.
Because 16S rRNA sequencing does not differentiate between bacterial strains, and is limited in its ability
to differentiate between bacterial species, we inferred the presence of multiple ASVs of the same name
in the relative abundance table as evidence of different bacterial species. For example, if there were
multiple “Rhodobacter” in the relative abundance table, we manually changed the taxa names to
Rhodobacter1, Rhodobacter2, etc. to reflect the likely scenario that these are different bacterial species
and/or strains that are poorly annotated in QIIME2. We also conducted linear discriminant analysis effect
size (LEfSe analysis) (85) via the Galaxy web application at the bacterial ASV taxonomic level (LDA score �

3) to identify discriminative bacterial taxa across the populations. Finally, we utilized an algorithm-based
random forest classifier to predict the accuracy of classification of samples by body site (test size � 0.6;
72/119 total samples).

Data availability. Raw sequence data can be found through SRA using BioProject ID PRJNA669115.
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