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Abstract: Recent advances in artificial intelligence (AI) technology encourage the adoption of AI
systems for various applications. In most deployments, AI-based computing systems adopt the
architecture in which the central server processes most of the data. This characteristic makes the
system use a high amount of network bandwidth and can cause security issues. In order to overcome
these issues, a new AI model called federated learning was presented. Federated learning adopts an
architecture in which the clients take care of data training and transmit only the trained result to the
central server. As the data training from the client abstracts and reduces the original data, the system
operates with reduced network resources and reinforced data security. A system with federated
learning supports a variety of client systems. To build an AI system with resource-limited client
systems, composing the client system with multiple embedded AI processors is valid. For realizing
the system with this architecture, introducing a controller to arbitrate and utilize the AI processors
becomes a stringent requirement. In this paper, we propose an embedded AI system for federated
learning that can be composed flexibly with the AI core depending on the application. In order to
realize the proposed system, we designed a controller for multiple AI cores and implemented it
on a field-programmable gate array (FPGA). The operation of the designed controller was verified
through image and speech applications, and the performance was verified through a simulator.

Keywords: parallel recognition; federated learning; AI processor; embedded system; controller;
distributed learning; independent operation

1. Introduction

Recent advances in computer and semiconductor process technology have developed
artificial intelligence (AI) technology. Due to this trend, adopting AI systems for a variety
of applications such as speech recognition [1], medicine [2], and education [3] is widely
expanding. Processing large-scale data is one of the basic features of AI technology. As
using data centers to process these large-scale data is a widespread technique in AI systems,
the demand for data centers is growing because of the increasing expansion of AI systems.
Since the amount that the data centers are used is directly tied to the scale of the data, the
necessity for systematic exploitation of the data, which dramatically helps to optimize the
system to be smart, intelligent, and cost-effective [4], is emerging.

The general machine learning systems adopt the architecture in which the central
server processes and trains most of the data and delivers the result to the client [5]. As
the clients of this model rarely, if ever, perform the data preprocessing, the workloads of
the system are concentrated on the central server. This characteristic makes the system
use a high amount of network bandwidth due to sending a huge amount of data, which is
rarely preprocessed, from client to server [6]. Moreover, the data communication between
the clients and the server on these systems can cause security issues due to sending
large amounts of data [7]. Hence, adopting this model to security-sensitive applications
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leads the system to use an enormous amount of additional system resources to grant
security. In order to overcome these issues, a new AI model called federated learning was
recently presented.

The term federated learning was introduced by McMahan et al. [8]: “We term our
approach Federated Learning, since the learning task is solved by a loose federation of
participating devices (which we refer to as clients) which are coordinated by a central
server”. Unlike the previous model, federated learning adopts an architecture in which the
clients take care of data training and transmit only the trained result to the central server.
McMahan et al. [8] discuss an algorithm for federated learning, and Bonawitz et al. [9]
discuss considerations for applying systems and algorithms for federated learning. The
federated learning system repeats the training process which is typically driven by model
engineers to develop a model for an application [10]. The general training process is as
follows [10]:

1. Client selection: The server samples from a set of clients meeting eligibility require-
ments. For example, mobile phones might only check into the server if they are
plugged in, on an unmetered Wi-Fi connection, and idle, in order to avoid impacting
the user of the device.

2. Broadcast: The selected clients download the current model weights and a training
program from the server.

3. Client computation: Each selected device locally computes an update to the model by
executing the training program, which might, for example, run SGD on the local data
(as in federated averaging).

4. Aggregation: The server collects an aggregate of the device updates. For efficiency,
stragglers might be dropped at this point once a sufficient number of devices have
reported results. This stage is also the integration point for many other techniques that
will be discussed later, possibly including: a secure aggregation for added privacy,
lossy compression of aggregates for communication efficiency, and noise addition
and update clipping for differential privacy.

5. Model update: The server locally updates the shared model based on the aggregated
update computed from the clients that participated in the current round.

The data training from the client, i.e., client computation, has the effect of encrypting
the original data and reducing the amount of data [11,12]. This property makes it possible
for the system to operate with reduced network resources [8,13] and reinforced data
security [14–16]. According to these characteristics, federated learning is being applied to a
variety of applications such as smart factories [17], edge device applications [18,19], and
end user privacy-sensitive applications.

Figure 1 shows the concept of an AI system with federated learning. Federated learn-
ing supports a variety of client systems and is able to perform client computation. Some
of these client systems have resource limitations because of various factors. In order to
execute client computation with these resource-limited client systems, dealing with these
limitations is necessary. One of the applicable methods to solve these limitations is that of
composing the client system with multiple embedded AI cores. Although federated learn-
ing between heterogeneous devices is the ultimate goal, parallel processing for federated
learning among processors within a single device is prioritized, and the flexibility of the
system can be provided by adopting this architecture. For the purpose of realizing the
system with this architecture, the embedded AI cores need to be utilized and arbitrated
by applying an additional controller [20]. In this paper, we propose an embedded AI
system for federated learning that can be composed flexibly with AI cores depending
on the application. The proposed system requires a specific module to process multiple
AI cores in parallel. In order to verify the proposed system, we design a controller for a
processor with multiple AI cores.
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The designed controller manages the signals for communication with commercialized
AI chips and drives the states according to the learning/recognition commands. We
validated the feasibility of the proposed system by implementing the controller on a
field-programmable gate array (FPGA) and analyzed the performance of the controller by
two applications, image recognition and speech recognition. Furthermore, we confirmed
the validity of the controller and suitability of the application to the system through
performance analysis according to the memory size using a simulator.

The main contribution of this work is as follows:

• Designing and verifying the controller for parallel processing of multiple AI cores.
• Constructing the protocol to transfer the training data and recognition data between

the controller and the AI core.
• Performance analysis based on memory usage of the AI system with the k-NN algorithm.

As gathering recognition results from AI cores through the proposed controller, it
helps to deduce the proper recognition result for the embedded AI system.

The paper consists of the following. Section 2 introduces related works about the AI
system and simulator. Section 3 then turns to a detailed description about the AI algorithm
and AI system architecture. Section 4 presents the implementation results of the system
and analyzes the performance with the results. Section 5 compiles our entire work and
draws conclusions.

2. Related Work

The recent research related to federated learning is categorized as follows:

• Artificial Intelligence for Embedded Systems;
• Simulating and Performance Analysis for Hardware Implementation.

2.1. Artificial Intelligence for Embedded Systems

Due to the limitations of embedded systems, much research in adopting AI in embed-
ded systems concentrates on power and area optimization [21–24]. The research of [21]
is one of the cases. The authors of this paper proposed an AI processor for embedded
systems that was based on the k-nearest neighbor algorithm and operated by the coupled
architecture with a master processor. By adopting the k-nearest neighbor algorithm, which
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has relatively small computations compared to other algorithms, the implementation of
the AI processor was accomplished with a small area. The AI processor consists of memory
cells which store vectorized raw data and distance calculators for classification. The per-
formance and hardware specifications of the AI processor vary with the vector size of the
memory cell and the total count of the memory cells. Hence, a framework to reconfigure
these properties was built to provide the volatility of the hardware specifications. These
properties, such as reconfigurable architecture and coupled architecture, make the AI
processor applicable for a variety of applications. The research in [23] presents a dynamic
reconfigurable processor (DRP) for embedded AI. The AI processor is composed of an
array of processing elements (PE), multiply and accumulate unit (MAC) groups, and direct
memory access (DMA). Each MAC group can be equivalent to small tensors or one large
tensor in the deep neural network. The MAC supports the half-precision floating-point
(FP16) and binary arithmetic mode. Selecting the binary arithmetic mode reduces memory
usage but also degrades recognition performance. This architecture provides the flexibility
of memory resource usage. In order to verify the DRP, the authors of [23] designed the
system with the DRP, ARM CPU, and AXI interface and implemented it on a chip using
28 nm technology. The evaluation result of the chip shows that the DRP has acceptable
performance on arithmetic in deep neural networks.

Unlike the research of [21,23], some studies focus on optimizing the software deep
learning algorithm to fit existing embedded system-on-chip (SoC) [25–27]. Adopting the
deep learning algorithm with applicable performance to the embedded SoC is extremely
hard because of the critically limited memory and storage resources compared to cloud
AI or mobile AI devices [25–27]. In order to fix these problems, the authors of [25,27]
proposed frameworks for optimized neural network generation. Both frameworks pro-
vide quantization of floating-point arithmetic to integer arithmetic and applying memory
constants for scaling the neural network for each device. The framework of [28] has two
fundamental features. One is a neural architecture search (NAS). By providing an NAS
that works with a memory size constraint, the neural architecture which is suitable to the
microcontroller can be searched [25]. The other is a memory-efficient inference library.
In contrast to traditional inference libraries, which depend on a runtime interpreter, the
library adopts pre-runtime compilation to operate the system. This characteristic leads to
significantly reducing the memory and computing overhead caused by the management
of the metadata of variables. As a result, adopting the framework results in a remarkable
reduction in latency and maximum SRAM usage. The framework in [27] concentrates on
software optimization, which can be achieved by reflecting the configuration of mirror
layered memory architecture and DMA provided by the target hardware. The result shows
that the memory transferring overhead caused by cache memory is almost hidden. These
studies suggest the possibilities of applying AI to the embedded SoCs.

2.2. Simulating and Performance Analysis for Hardware Implementation

When applying either AI or other features in embedded systems, searching and select-
ing hardware specifications that meet the performance requirements of each application
are as important as designing the embedded system. Hence, many studies have been
performed to build a framework to simulate and design the system efficiently [21,28–30].
The research of [29] is a suitable example of this research category. This paper presents a
simulator to analyze the performance of the embedded AI to help to decide on the specifica-
tions of the embedded AI, such as the AI processor described in Section 2.1. The simulator
can be executed with the sample dataset which is used for certain applications to secure the
reliability of the results. As the specifications of the AI processor are related to memory size
and the number of categories, the simulator provides the configuration of these options.
As analyzing the performance after finishing the implementation of hardware is a far
more complex process than analyzing with simulations, using the simulator to decide the
attributes of the embedded AI before implementing the hardware increases the efficiency
of the design and verification process of the system.
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Many studies have been conducted that can be applied to federated learning as
explained above. The main contribution of this work is as follows: to design and verify the
controller of the embedded AI processors that is applicable to federated learning systems
using the methodology of the above studies.

3. System Architecture

The embedded AI system performs learning and reasoning by using various datasets
such as image or speech data. The embedded AI system allows the AI core selected by the
user to operate AI functions (e.g., learning or recognition operations) through parallelized
multiple AI cores. The AI core is a General Vision pattern recognition chip that performs
recognition through the k-NN algorithm. In order to perform pattern recognition, the
user should choose a method among the recognition stage and I2C slave controller and a
method of directly controlling the neuron register.

In the proposed system, for the daisy-chain connection of several AI cores and op-
timization of the controller, the neuron register is directly accessed to control the neuro
cell memory. For the purpose of utilizing the parallelized multiple AI cores efficiently, an
AI processor needs a controller for multiple AI cores. Additionally, an interface is required
to communicate data. The appropriate protocol for the AI core is used for the system to
facilitate the repetitive AI operation. The algorithm and microarchitecture of the embedded
AI system with operation flow are described below.

3.1. k-NN Algorithm

The k-NN algorithm is a distance-based machine learning algorithm used for classify-
ing the category of the data. The basic concept of the k-NN algorithm is that of finding the
closest values between the input data and the trained dataset. The constant k in k-NN indi-
cates how many values the algorithm will find. A distance calculation method between the
trained data and input vector varies. In general, Euclidean distance or Manhattan distance
is used for distance calculation. To classify the data with maintaining the concept of the
k-NN algorithm, the information of the trained data and the input data, which contains a
variety of characteristics, needs to be expressed to a group of numerical values and a single
category of information. Thus, the data which is used for the algorithm is expressed as a
group of n-dimensional vectors and the category. Figure 2 presents the mechanism of the
k-NN algorithm when the data are expressed as a two-dimensional vector. The algorithm
operates by two key features. One is training the system with the algorithm by storing the
vector data with category information. The other is a classification of the input data.
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Algorithm 1 presents the classification process. During the classification, the k-NN
algorithm finds a k number of data with the shortest distance in the trained dataset. After
finding the nearest data, the algorithm extracts the most frequent category from a number
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of nearest data. Due to the architecture of these key features, the most frequent category can
be more than one when the k value is more than one. To avoid this problem, an additional
method to give proper weight to the found data or setting the k value to one is required.
As shown in Algorithm 1, an increase in the constant k leads the complexity and iteration
count of the algorithm to be higher. This attribute is not appropriate for the embedded
system which is sensitive to area usage and power consumption. Therefore, we set the k
value to one to minimize the area usage and power consumption of the system. Algorithm
2 shows the minimized algorithm by setting the constant k to one.

Algorithm 1: k-NN classification algorithm pseudo-code

Micromachines 2021, 12, x 6 of 17 
 

 

Algorithm 1 presents the classification process. During the classification, the k-NN 
algorithm finds a k number of data with the shortest distance in the trained dataset. After 
finding the nearest data, the algorithm extracts the most frequent category from a number 
of nearest data. Due to the architecture of these key features, the most frequent category 
can be more than one when the k value is more than one. To avoid this problem, an addi-
tional method to give proper weight to the found data or setting the k value to one is 
required. As shown in Algorithm 1, an increase in the constant k leads the complexity and 
iteration count of the algorithm to be higher. This attribute is not appropriate for the em-
bedded system which is sensitive to area usage and power consumption. Therefore, we 
set the k value to one to minimize the area usage and power consumption of the system. 
Algorithm 2 shows the minimized algorithm by setting the constant k to one. 

Algorithm 1: k-NN classification algorithm pseudo-code 
Input :  𝐷𝑎𝑡(𝑖, 𝑗): Vector of each data in trained dataset 
   𝐶𝑎𝑡 (𝑖): Category of each data in trained dataset 
   𝐼(𝑗):  Input vector 
Output :  𝐶𝐴𝑇:  Category of the input vector 
Variable :  𝐶𝑎𝑡 (𝑛): List of categories of the input vector 
   𝐷𝑖𝑠𝑡 (𝑛): List of distances between the nearest data and the input 
   𝐹𝑟𝑒𝑞(𝑛): List of frequency of categories 

1    𝐷𝑖𝑠𝑡 ← [∞, ∞, … ] 
2    𝐹𝑟𝑒𝑞 ← [0,0, … ]  
3    for 𝑖 = 0 𝐭𝐨 𝑡ℎ𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑡𝑟𝑎𝑖𝑛𝑒𝑑_𝑑𝑎𝑡𝑎 − 1  do 
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10     𝐶𝑎𝑡 (𝑛 + 1: 𝑘 − 1) = 𝐶𝑎𝑡 (𝑛: 𝑘 − 2) 
11     𝐶𝑎𝑡 (𝑛) = 𝐶𝑎𝑡 (𝑖) 

 12     𝐷𝑖𝑠𝑡 (𝑛 + 1: 𝑘 − 1) = 𝐷𝑖𝑠𝑡 (𝑛: 𝑘 − 2) 
 13     𝐷𝑖𝑠𝑡 (𝑛) = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
 14    break 
 15   end 
 16  end 
17   end 
18    for 𝑛 = 0 𝐭𝐨 𝑘 − 1  do 

 19   𝐹𝑟𝑒𝑞 𝐶𝑎𝑡 (𝑛) = 𝐹𝑟𝑒𝑞 𝐶𝑎𝑡 (𝑛) + 𝑤𝑒𝑖𝑔ℎ𝑡_𝑣𝑎𝑙𝑢𝑒(𝑛) 
20   end 
21   𝑡𝑒𝑚𝑝 = 0 
22    for 𝑚 = 0 𝐭𝐨 𝑡ℎ𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦_𝑡𝑦𝑝𝑒𝑠 − 1  do 

 23  if 𝑡𝑒𝑚𝑝 < 𝑓𝑟𝑒𝑞(𝑚)  then 
 24   𝑡𝑒𝑚𝑝 = 𝑓𝑟𝑒𝑞(𝑚) 
 25   𝐶𝐴𝑇 = 𝑚 
 26  end 
27   end 
28   return 𝐶𝐴𝑇 
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Algorithm 2: 1-NN classification algorithm pseudo-code
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The AI core performs key features of the k-NN algorithm except extracting from the
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of the shortest distance between the input vector and the data from the trained dataset. The
specifications, such as the constant k and number of dimensions, can be configured by an
external device. Additionally, the AI core applied the Manhattan distance method to lower
the complexity of calculation in order to operate with low power consumption. The AI
core can have 1024-byte vectors that are composed of up to 256 components of 8-bit value,
and vectors can include 15-bit of category information [31]. Each datum in the vector is
expressed as a 1-byte unsigned integer.

3.2. Microarchitecture

Figure 3 illustrates the block diagram of the embedded AI system. The embedded AI
system includes an interface for communication with other systems through an external data
transceiver and an AI processor with multiple AI cores for learning/recognition operations.
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The external data transceiver sends a certain dataset for learning and recognizing
operations, which is shaped to a protocol based on a serial peripheral interface (SPI)
protocol, to the interface. The AI processor includes the phase locked loop (PLL), instruction
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decoder, finite state machine (FSM), controller for efficient management of AI cores, and AI
cores. The PLL generates a 64MHz system clock for the controller and a 16MHz core clock
for the AI cores. The instruction decoder in the AI processor receives the dataset through the
interface by decoding a protocol for learning/recognition.

Figure 4 shows the protocol for learning and recognition. The protocol basically
contains a 1-byte setup value composed of configurations such as read/write select (RW
SEL), write mode, and register address (REG). RW SEL is required to distinguish between
learning and recognition operations by the FSM. After the division operation, the system
decides whether it is single-mode or not using write mode. In the case of learning in single-
mode, the setup value to configure the interface to single write mode and set the destination
to a certain address is first sent to the interface. Next, two bytes of the learning data are
sent. In the case of learning in sequential mode, the setup value to configure the interface to
sequential write mode and set the destination to a certain address is first sent to the interface.
After sending the setup value, the 2-byte length value of learning data and a number of
learning data are sent sequentially. When an AI core operates learning or recognition, a 5-bit
register address, data, and category value are transmitted via control lines [31] through
the FSM and the controller. Due to the protocol, the FSM and the controller generate control
signals and send data for AI cores without storing the dataset.
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The FSM is a module to provide well-ordered communication between the instruction
decoder and the controller. Figure 5 shows the FSM in detail, which operates according to
the active signal from the instruction decoder. The FSM performs learning and recognition
operations based on the serial interface and distinguishes between learning and recognition
operations. Furthermore, the FSM can discriminate between single and sequential modes.
In case of the single-mode, the FSM only needs 2-byte data to receive read data or transmit
write data. In the other case, the FSM requires 1-byte data for data length and continuous
data including category data. When the result data from the AI core are received through
the controller, the result data are sent to the instruction decoder. In order to perform the learn-
ing/recognition process or communication when the FSM transmits data to the controller
or instruction decoder, it receives a flag signal from each module to prevent data collision. In
addition, the FSM generates different signals according to the learning/recognition process
so that the user can control the neuron register of the AI core. The architecture of the FSM
allows the AI processor to perform continuous learning and recognition operations.

The controller is connected in parallel with the multiple AI cores, and each AI core can
be operated independently through the controller. The controller generates control signals
that can directly control the operation of the AI core [31] and transmits it along with the
data. In the case of the learning process, the controller transmits the data to the selected
AI core when it receives the buffer data and the write enable signal from the FSM. In the
case of the recognition process, the controller transmits the data and read enable signal to
the selected AI core. After that, the controller receives a result of the distance calculation
and the category value from the selected AI core and transmits them to the FSM. When
the controller receives the result data from the AI cores, the sampling block is performed to
receive data reliably.
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The AI core needs to receive a dataset (vector) before performing learning or recognition.
The method of transmitting the vector to the AI core is called vector broadcasting [31]. In
vector broadcasting, the processes called the component (COMP), which stores 1-byte
data, and the last component (LCOMP), which is performed after COMP is finished, exist.
The COMP can be performed up to 255 times. In the case of learning, the state called the
CAT, which stores the category data, is performed after the vector broadcasting is finished.
After the learning operation, the AI core that receives the test vector calculates the distance
between learned and test data. The AI core reads the category value from the recognition
result of the READ state, which has the lowest distance value.

4. Implementation and Analysis

In order to evaluate the embedded AI system, we implemented an AI processor which
includes multiple AI cores. Figure 6 shows the hardware experiment environment in which
the controller and multiple AI cores are connected in parallel. We implemented the controller
on an Intel FPGA (Cyclone III) and used General Vision’s pattern recognition chip (CM1K)
for the AI core. Using the verified AI core helps to clarify the functional verification of
the designed controller. Previous to testing the implemented processor, we simulated the
processor using a simulator written in Python that has the same capability as the AI core
for performance analysis. Before applying the application to the embedded AI system,
the simulator that mimics the structure of the AI core can be used to check the suitability
of the application. We analyzed the performance according to the memory size of the
virtual AI core and performed functional verification of the system through image and
speech applications.

4.1. Implementation
4.1.1. Case Study 1: Image Recognition

The MNIST dataset of handwritten digits has a training set of 60,000 examples and
a test set of 10,000 examples. The digits are in a grayscale image, size-normalized, and
centered in a fixed-size image [32]. In order to uniformly learn the AI core by category, data
are evenly sampled from the MNIST dataset. The sampled training data are used for each
AI core to learn.
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With the purpose of verifying the functionality of the designed controller in the image
application and the parallel processing of multiple AI cores, we constructed the environment
of the implementation. Figure 7 shows the result of measuring the signals through the
logic analyzer for the distance result value and the category value of each AI core. The
recognition results from each AI core are collected to the controller. Each AI core learned the
same category (from 0 to 3) through different training data and received the same test data
for recognition.
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Each AI core outputted a result of distance calculation between the trained data and
test data through the k-NN classifier in the AI core and a category value accordingly. As a
result of the recognition, it was confirmed that the result values of the distances 0 × DC,
0 × 85, 0 × 75, and 0 × 12 are sequentially from the first AI core, and the category values
of all AI cores are 0 × 1, indicating the same value. The distance calculation results from
the AI cores were obtained by the k-NN algorithm in Section 3, and each AI core evaluates a
category value based on the distance calculation result. This meant that the trained data
of AI core (1) was furthest from the test data, and the trained data of AI core (4) was most
similar to the test data. The AI cores were operated independently by the controller as each
AI core outputted a difference distance value. As a result, the controller gathers the different
distance values and same category values from each AI core.
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4.1.2. Case Study 2: Speech Recognition

As speech technology advances, research of speech recognition is increasing, but the
availability of datasets has not widened [33]. In order to train and evaluate the embedded
AI system for a speech application, the speech command built in Google Brain [33] is used
as follows:

• Google Brain’s 2 categories Speech Command;
• Google Brain’s 3 categories Speech Command;
• Two categories of Recorded Voice Data.

In this experiment, the above speech commands were selected in consideration of the
embedded AI system. Each speech command is evenly sampled to train the AI core by
category. The sampled data is transformed into a two-dimensional (2D) signal through the
short-time Fourier transform (STFT). The 2D signal is resized to be used as an input to the
AI core and converted into a 1D signal. Finally, the converted data is used in the embedded
AI system. In order to verify the functionality of the controller in the speech application,
the experiment was implemented as in Case 1 (image application). Each AI core learned
Case 2-3 (two categories of recorded voice data) training data recorded in different voices
and recognized the test data. As the result, the controller for multiple AI cores operated
successfully in the speech application.

4.2. Analysis

Table 1 shows the power consumption and logic element usage of the controller on
the Intel EP3C25Q240C8N FPGA and the power consumption of the AI core, which is the
General Vision chip [31]. The synthesis of the controller was executed with Quartus II 13.1
version software. The power consumption of the controller was obtained with PowerPlay
Power Analyzer in Quartus II 13.1 version. The result presents that the proposed system is
suitable for an embedded device.

Table 1. Resource utilization of the AI processor.

Resource Synthesis

Controller
(Cyclone III: EP3C35Q240C8N)

Total logic elements 1 182 (<1%)

Core dynamic
power consumption 1.62 mW

Core static
power consumption 81.03 mW

AI Core
(CM1K 2)

Single chip
Idle mode 15 mW

Active mode ~275 mW

Multiple chip - ~500 mW
1 Total of 24,624; 2 referenced General Vision document.

The performance was verified by assuming a virtual AI core with a memory size
of 16 KB and 64 KB through a simulator. The experiment was conducted for each case
above, and learning was conducted using only the training data of each dataset. In order
to evaluate the performance of each case, the value of accuracy and recall, one of the
performance indicators of the AI algorithm, was measured. In addition, we used datasets
for learning and evaluation for performance evaluation. Case 1 (image application) trained
10 categories of the MNIST dataset, and Case 2-1 (speech application) trained two categories
of speech command data from Google Brain. Figure 8 shows the performance according to
the data size (vector size) and the number of neurons (# of neurons) in the AI core.



Micromachines 2021, 12, 852 12 of 16

Micromachines 2021, 12, x 12 of 17 
 

 

 

 
Figure 8. (a) Case 1 performance of recognition; (b) Case 2–1 performance of recognition. 

In Case 1, when the vector size is 64 bytes and the number of neurons is 1024, the AI 
core has both an accuracy and recall of 85%. In Case 2-1, when the vector size is 16 bytes 
and the number of neurons is 4098, the AI core has both an accuracy and recall of 87%. 
However, since the AI core experimented with has a maximum number of neurons of 1024, 
the maximum performance in Case 2-1 is 84%. Through this analysis, we confirmed that 
the minimum vector size required in both Cases is 64 bytes. Case 2-2 (speech application) 
trained three categories of speech command data from Google Brain. In Case 2-2, when 
the vector size is 64 bytes and the number of neurons is 1024, both accuracy and recall are 
73%. Case 2-2 is confirmed to have lower performance than Case 2-1 in the same simulator 
environment because there are more categories than Case 2-1. Figure 9 shows the accuracy 
of Case 1 and Case 2-2. When the vector size is 8, Case 2-2 shows higher performance than 
Case 1. However, when the vector size is 16 or higher, Case 1 shows better performance 
than Case 2-2. 

Figure 8. (a) Case 1 performance of recognition; (b) Case 2–1 performance of recognition.

In Case 1, when the vector size is 64 bytes and the number of neurons is 1024, the AI
core has both an accuracy and recall of 85%. In Case 2-1, when the vector size is 16 bytes
and the number of neurons is 4098, the AI core has both an accuracy and recall of 87%.
However, since the AI core experimented with has a maximum number of neurons of 1024,
the maximum performance in Case 2-1 is 84%. Through this analysis, we confirmed that
the minimum vector size required in both Cases is 64 bytes. Case 2-2 (speech application)
trained three categories of speech command data from Google Brain. In Case 2-2, when
the vector size is 64 bytes and the number of neurons is 1024, both accuracy and recall are
73%. Case 2-2 is confirmed to have lower performance than Case 2-1 in the same simulator
environment because there are more categories than Case 2-1. Figure 9 shows the accuracy
of Case 1 and Case 2-2. When the vector size is 8, Case 2-2 shows higher performance than
Case 1. However, when the vector size is 16 or higher, Case 1 shows better performance
than Case 2-2.
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Figure 10 shows accuracy analysis according to 16 KB and 64 KB memory size of the
AI core in Case 1 and Case 2-2. The number of neurons (# of neurons) changes according to
the memory size since the vector size is fixed. The accuracy of 64 KB memory shows higher
accuracy than 16 KB memory in both cases. In Case 1, the accuracy of 64 KB memory is up
to 17.87%p (percentage point) higher than 16 KB memory, and Case 2 is 10.09%p higher.

Through the experiment, the suitability of the application could be verified before
being applied to the hardware, and the validity of the controller was verified through
performance analysis according to the memory size. In addition, it was confirmed that
the controller of the proposed system operates successfully, and the parallel processing
functionality in the embedded AI system was determined.
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Since we used the k-NN algorithm, the time it takes to learn and infer data, except
preprocessing, is largely independent of the class of data. We measured the time taken for
learning and inference using the MNIST dataset, and the results are shown in Figure 11.
We used the simulator to measure the time, and the system specifications were an Intel
i9-11900K (Intel Corporation, Santa Clara, CA, USA), 94.2 GB Memory, and an Nvidia
RTX-3090 (Nvidia Corporation, Santa Clara, CA, USA). When the number of neurons is
8192, the training time is 1.071 s. As the vector size decreases, the time required for learning
decreases dramatically: 0.278 s when there are 4098 neurons. Thus, the case of 1024 neurons
shows the highest performance: it takes only 0.017 s for learning and 0.003 s for recognition.
The recognition times show less than 0.03 s regardless of the number of neurons.
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5. Conclusions 
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In future work, we will apply our controller for an embedded intelligence processor 
to various embedded devices and experiment with the association between heterogene-
ous embedded systems. 
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5. Conclusions

Federated learning enables distributed clients to learn prediction models while col-
lecting training data on the clients. For this, an embedded system that supports federated
learning is required. This paper proposed a controller for parallel recognition among AI
cores within an embedded AI system. The AI processor in the embedded AI system con-
tains several AI cores in parallel and a controller for efficient operation of the AI cores. The
controller independently operated multiple AI cores and flexibly configured the number
of AI cores according to the requirements of the application to be applied. In addition,
the performance and limitations were determined in advance through virtual artificial
intelligence cores and simulators. In order to verify the functionality of the designed
controller, image and voice recognition were performed in the FPGA, and the performance
according to the number of neurons and data size in the AI core was confirmed through
the simulator. According to hardware design and the analysis, it is possible to confirm the
potential of the embedded AI system in which multiple artificial intelligence cores can be
united. Furthermore, the embedded AI system can choose the proper recognition result
from gathered recognition results by the controller through polling or a comparison among
collected results.

In future work, we will apply our controller for an embedded intelligence processor
to various embedded devices and experiment with the association between heterogeneous
embedded systems.
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