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Abstract1

Cellular composition and anatomical organization influence normal and aberrant organ functions.2

Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and3

Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and4

organization by enabling high-throughput measurement of cells and their localization directly in5

intact tissues. However, annotation of cell types and quantification of their relative localization6

in tissues remain challenging. To address these unmet needs, we developed AnnoSpat7

(Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms8

to automatically identify cell types and quantify cell-cell proximity relationships. Our study of9

data from IMC and CODEX show the superior performance of AnnoSpat in rapid and accurate10

annotation of cell types compared to alternative approaches. Moreover, the application of11

AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor12

cohorts recapitulated known islet pathobiology and showed differential dynamics of pancreatic13

polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes14

progression.15

Introduction16

Tissues consist of diverse cell types whose functions are influenced by communication and17

interaction with surrounding cells. In addition to cell intrinsic aberrations, dysfunction in the18

cellular microenvironment impacts organ function and contributes to pathology of complex19

diseases, such as type 1 diabetes. The emergence of spatially resolved single-cell proteomic20

assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) has21

allowed high-throughput measurement of cellular composition and localization within intact22

tissues and advanced understanding of intricate cell-cell interactions. However, the unique23

characteristics of spatial proteomic assays, coupled with their ability to measure millions of cells,24

have created a need for efficient and automated computational tools that enable identification25

of cell-types and quantification of their spatial colocalization. To address this unmet need, we26

introduce AnnoSpat (Annotator and Spatial Pattern Finder) for rapid, scalable, and automated27

annotation of cell types and quantification of their spatial relationships.28

Despite the paucity of algorithms for cell-type annotation from IMC and CODEX data, several29

algorithms have been proposed to predict cell types from single-cell RNA sequencing (scRNA-30

seq) data1. Many of these methods, such as scmap and Garnett, use clustering to group31

together transcriptionally similar cells and then map each cluster to reference cell types from a32

priori annotated datasets using representative cells from each group2,3. These methods rely on33

accurate clustering and reference data annotation, which was previously characterized based34

on manual assessment of differential expression of selected marker genes. Another category35

of scRNA-seq cell-type annotators use supervised machine learning models such as support36

vector machines4, neural networks5, and random forests6,7. Similarity-based methods, such37
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as TooManyPeaks8, are the third category of methods that annotate cell types based on bulk38

measurement of purified reference cell populations. Training of supervised machine learning-39

and similarity-based methods require large sets of purified or expert-annotated cell populations,40

which are respectively lacking for in situ proteomic assays such as IMC and CODEX. Unique41

characteristics of IMC and CODEX data further limit the use of existing cell-type annotation42

methods developed for scRNA-seq. While scRNA-seq experiments provide expression of43

thousands of genes for cell type prediction, IMC and CODEX measure the expression of44

tens of proteins. Furthermore, IMC and CODEX readouts are continuous intensities that45

cannot be readily inputted to most scRNA-seq cell-type annotators, such as Garnett, that only46

accept scRNA-seq count readouts. To address such limitations, Astir was recently proposed47

specifically for cell-type annotation from IMC data9. This method uses deep recognition neural48

networks for inference of cell types based on known marker proteins. Benchmarking of Astir49

suggests that supervised- and marker-based cell-type annotation methods tend to outperform50

other approaches9. Guided by this observation, we developed AnnoSpat by combining semi-51

supervised and supervised learning methods for cell-type annotation of IMC and CODEX data52

in the absence of manually labeled cells for training.53

Cell-type annotation is an initial step in the analysis of most spatial proteomic data such as54

IMC and CODEX. To fully benefit from in situ single-cell assays and investigate tissue microen-55

vironment, methods are needed to quantify the spatial organization of cells in regions of interest.56

The current methods either measure cell density across distances7, use Bayesian models57

estimating cell types across locations10, or use Ripley statistics11. To create a comprehensive58

tool capable of automating annotation of cell types and quantifying their spatial relationships,59

we also equipped AnnoSpat with new point process-based algorithms that relate not only the60

distribution of a single cell type in a region of interest as with Ripley’s K function statistics, but61

also examine the interaction of multiple cell types.62

We assessed the accuracy and efficiency of AnnoSpat by benchmarking its ability to identify63

various cell types within pancreatic tissues. In addition to quantitative comparative benchmarking64

using IMC and CODEX data, we evaluated AnnoSpat performance based on expert annotated65

pancreata of type 1 diabetes (T1D) and non-diabetic donors. Given that pancreas is the site of66

T1D pathogenesis in which the host immune system mounts a response to insulin-secreting67

pancreatic beta cells, we further used AnnoSpat to study the microenvironment of pancreata68

from donors with autoantibodies towards pancreatic islet proteins in their blood but no clinical69

diagnosis of T1D (AAb+) to better understand T1D progression. Together, our comprehensive70

analysis of 1,170,000 cells from 143 slides of 19 Human Pancreas Analysis Program (HPAP)71

donors revealed the effectiveness of AnnoSpat in reliably identifying cell types and quantifying72

their spatial organization in complex tissues. AnnoSpat and its individual components are73

available through https://github.com/faryabiLab/AnnoSpat.74
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Results75

AnnoSpat identifies cell types and quantifies their relative localization.76

To predict the identity of individual cells and quantify their localization within tissues, we77

developed AnnoSpat for automated analysis of spatially aware single-cell proteomic data78

(Figure 1). AnnoSpat provides an end-to-end solution for analysis of IMC and CODEX data79

(Figure 1A) by implementing two distinct but complementary functionalities: “Annotator” (Figure80

1B) and “Spatial Pattern Finder” (Figure 1C).81

To address the unmet need for annotating individual IMC- or CODEX-measured cells, the82

Annotator module of AnnoSpat learns a cell-type predictor from the matrix of raw protein83

expression levels and a list of a priori cell-type marker proteins. To overcome the lack of84

manually annotated training data, AnnoSpat implements a two-step learning process (Figure85

1B). First, AnnoSpat deploys a constrained K-means semi-supervised clustering algorithm to86

create training data from a subset of cells in the dataset. Using this automatically generated87

training data, AnnoSpat then trains a classifier that will be used to predict the identity of additional88

cells. The number of clusters is set to the number of expected cell types within the tissue of89

interest along with an optional “Unknown” group that could account for cell types omitted from90

the marker protein list. To enhance the accuracy of K-means clustering, AnnoSpat initializes91

each cluster with cells that were annotated with high confidence based on distinct expression92

of marker proteins (Materials and Methods). This crucial step provides semi-supervision to93

the clustering algorithm, guiding AnnoSpat in grouping a subset of cells with similar protein94

expression levels into cell-type-labeled training cells. Taking this automatically generated95

training data, AnnoSpat then learns an extreme learning machine (ELM) classifier. ELM is96

a feed-forward neural network with non-iterative single step learning, which does not require97

tuning and backpropagation, and provides generalization performance and orders of magnitude98

faster learning compared to support vector machines and multi-layer perceptron12 (Materials99

and Methods). Together, the two-step learning algorithm equips AnnoSpat with an efficient and100

accurate cell annotation mechanism.101

To enable the study of tissue microenvironment, we equipped AnnoSpat with the Spatial102

Pattern Finder module, which takes as input the Annotator-predicted cell types and their physical103

coordinates on the tissue region of interest (ROI) and quantifies cellular localization patterns104

(Figure 1C). The Spatial Pattern Finder algorithm applies point process theory to summarize105

cell relationships across a range of distances, from local neighborhoods to remote cells. Briefly,106

AnnoSpat compares cell pairs based on their cell type to any randomly chosen cells at a given107

distance apart. This process returns a mark cross-correlation function, a measure of cell-type108

aggregation at different distances (see Materials and Methods). The application of the mark109

cross-correlation function across ROIs allows for systematic quantification and comparison of110

inter-cell-type proximity in different conditions (Figure 1C). In addition to AnnoSpat software,111

we implemented Spatial Pattern Finder within the TooManyCells single-cell analysis suite13.112

This implementation includes the generation of interactive proximity plots that may be filtered113
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by protein expression to fine-tune cell-type annotation. These interactive features also assist114

with exploration of spatial cell relationships. AnnoSpat’s Annotator and Spatial Pattern Finder115

functionalities together provide a solution for rapid and accurate annotation of millions of cells to116

study tissue microenvironment and cellular organization.117

AnnoSpat accurately identifies cell types in complex pancreatic tissues.118

To assess AnnoSpat’s Annotator performance, we first used IMC experiments measuring 33119

proteins in pancreata from T1D and non-diabetic donors (Tables S1 and S2), and compared the120

ability of AnnoSpat, semi-supervised clustering (SSC), SCINA, AUCell, and Astir in identifying121

endocrine cell types. We considered these methods for comparative analysis since similar122

to AnnoSpat, they automate cell-type annotation and do not need training data. Astir uses a123

probabilistic Bayesian framework and is the only method developed for cell-type annotation124

from proteomics data9. SSC is a variant of AnnoSpat with its classifier replaced by centroids125

from the semi-supervised clustering step in Figure 1B. SCINA14 and AUCell15 use expectation-126

maximization and gene expression ranking for cell-type annotation from scRNA-seq count127

data, respectively. Default or suggested filters and parameters were used for all algorithms128

except AUCell, where size-factor normalization was disabled due to differences between the129

characteristics of discrete scRNA-seq count and continuous IMC data. Here, we used the130

canonical protein markers listed in Table S3 as an input to AnnoSpat and SCC.131

To examine the extent of protein expression homogeneity in cell types predicted by these132

cell-type annotation methods, we compared their performances on 10 sets of 50, 000 randomly133

selected cells using the Silhouette Index (SI) and Davies Bouldin (DB) metrics. While SI134

assesses how a cell’s protein expression differs from other cells assigned the same type versus135

those assigned other types, DB reports the average similarity of each cell type with its most136

similar cell type, where similarity is defined as the ratio of intra-cell-type to inter-cell-type protein137

expression distances. More accurate cell-type annotation results in higher SI and lower DB.138

Based on these metrics, we observed differential performance of algorithms that depended139

on both cell type and disease status (Figures 2A, 2B, and 2C row 1; Tables S4, S5, and S6;140

and Supplemental Notes for AnnoSpat Benchmarking). For instance, AnnoSpat and SSC more141

accurately detected delta cells in the control samples compared to other algorithms. Notably,142

Astir, developed for cell-type annotation from IMC data, showed lower accuracy in identifying143

many cell types in both control and T1D samples.144

To complement quantitative benchmarking and further evaluate the performance of cell-type145

annotation algorithms, we inspected protein expression profiles of cells labeled as alpha, beta,146

pancreatic polypeptide (PP), delta, and epsilon from IMC of T1D and non-diabetic donors. Com-147

pared to other cell types, these endocrine populations were particularly suitable for comparative148

analysis due to higher quality of their antibodies. We used a variant of term-frequency inverse149

document frequency (TF-IDF) normalization to reduce the effect of non-specific antibodies such150

as anti-CD99 and anti-beta actin on data visualization (Figure S1 and Materials and Methods).151

Inspection of endocrine canonical marker protein expression confirmed our quantitative bench-152
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marking (Figures 2A, 2B, and 2C row 1) and showed the higher performance of AnnoSpat153

compared to other algorithms (Figures 2A, 2B, and 2C, rows 2 to 6; and Supplemental Notes for154

AnnoSpat Benchmarking). In addition to endocrine cells, AnnoSpat effectively detected other155

cell types that had high quality antibodies and are commonly present in the pancreatic tissue156

(Figures S1C, S2, and Supplemental Notes for AnnoSpat Benchmarking).157

In addition to accuracy, we compared completeness and run-time of cell-type annotation.158

By using ELM, AnnoSpat annotated more than 90% of 1.1 million cells (Figure 2D and Table159

S7) in less than 2 minutes, a run-time only 3-times longer than SSC and notably faster than160

all other compared algorithms (Figure 2E and Table S8). Although SSC and AnnoSpat mostly161

exhibited comparable performance, close examination of data highlighted the additional ben-162

efit of AnnoSpat (Figures 2A, 2B, and 2C, rows 1 and 2, and S1). For instance, SSC- but163

not AnnoSpat-annotated delta cells expressed high levels of CD14, a protein expressed in164

macrophages and not delta cells (Figures 2B and 2C, rows 1 and 2). Notably, Astir failed to165

label nearly 50% of the cells (Figure 2D, Table S7) while took 40-times longer (Figure 2E, Table166

S8). Due to its bi-modal distribution model, SCINA assigned a label to almost all the cells167

in a reasonable time (Figures 2D and 2E, Tables S7 and S8) at the expense of diminished168

accuracy (Figures 2A, 2B, and 2C, rows 1, 2 and 5). Conversely, AUCell exhibited comparable169

performance to AnnoSpat (Figures 2A, 2B, and 2C, rows 1, 2 and 6), but it failed to annotate170

most cells included in the benchmarking analysis, potentially leading to information loss. Close171

examination of data revealed that AUCell more accurately labeled cell types with a larger num-172

ber of marker proteins such as ductal cells (Figure S2 and Table S3), a feature of scRNA-seq173

measuring thousands of transcripts but not spatial proteomics measuring tens of proteins.174

To assess the generalizability of our comparative analyses, we extended these analysis to175

CODEX measurements of 24 proteins in 220,155 cells from 30 islets in a non-diabetic donor176

(Tables S9 and S10). Similar to IMC results (Figures 2 and S2), qualitative and quantitative177

studies showed higher performance of AnnoSpat in predicting endocrine cell types with high178

quality antibodies from CODEX data compared to other algorithms (Figure S3 and Table S11,179

and Supplemental Notes for AnnoSpat Benchmarking). Together, these comparative analyses180

indicated the advantage of using AnnoSpat for accurate, comprehensive, and rapid cell-type181

annotation from IMC and CODEX spatial proteomic measurements.182

AnnoSpat improves accuracy of cell type identification in expert-annotated pan-183

creata.184

To further demonstrate AnnoSpat’s ability in accurate cell-type annotation, we compared An-185

noSpat and expert-annotated endocrine cell composition in pancreata of non-diabetic and186

diabetic donors16 (Figure 3 and Table S12). Comparison of AnnoSpat- and expert-annotated187

cells revealed concordance in endocrine cell composition in 12 out of 15 (80%) examined IMC188

samples (Figures 3A and 3B). Notably, our analysis revealed manual cell-type mislabeling189

in the remaining three discordant samples (Figures 3C, 3D and S4). Compared to expert190

annotation, AnnoSpat identified markedly higher and lower percentages of PP and delta cells in191
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(HPAP002, Head) and (HPAP015, Head), respectively (Figures 3A and 3B). Close examination192

of these samples confirmed the accuracy of AnnoSpat cell-type annotation and showed high193

expression of canonical PP cell marker protein, PPY, in AnnoSpat-annotated cells (Figures 3C,194

3D, S4A, and S4B). While AnnoSpat identified a high percentage of alpha cells in the body195

region of HPAP006 pancreas, manual annotation indicated a low percentage of alpha and a196

high percentage of delta cells (Figures 3A and 3B). In line with AnnoSpat cell-type annotation,197

we observed a higher percentage of cells with elevated levels of glucagon (a canonical marker198

of alpha cells) in HPAP006 pancreas body (Figures S4C and S4D).199

Given the single-cell resolution of IMC data, we next used various visualization methods200

to compare the AnnoSpat-assigned cell types with canonical marker protein expression levels201

in individual endocrine cells. Uniform manifold approximation and projection (UMAP) plots of202

AnnoSpat cell label and endocrine marker protein expression clearly visualized specificity of203

glucagon, c-peptide, somatostatin, ghrelin, and PPY expression in cells labeled as alpha, beta,204

delta, epsilon, and PP cells, respectively (Figure S5). A similar analysis using TooManyCells,205

which visualizes cell-cell protein expression relationships as a tree13, further confirmed our206

UMAP analysis and demonstrated a high association between AnnoSpat-predicted endocrine207

cell types and expression of their canonical marker proteins at cell clusters (Figure 3E).208

Finally, we used the locational information from the spatial proteomic data to directly compare209

AnnoSpat annotations and marker protein intensities of endocrine cells in situ. This analysis210

revealed a stark concordance between the position of cells predicted as alpha, beta, delta,211

epsilon, and PP and the intensity of glucagon, c-peptide, somatostatin, ghrelin, and PPY212

expression on randomly selected IMC and CODEX slides, respectively (Figures 3F, 3G, S3I,213

and S3J). This single-cell resolution analysis complemented benchmarking against expert-214

annotated samples and further demonstrated the accuracy of AnnoSpat in identifying the215

identity of individual cells in spatial proteomic data.216

AnnoSpat showed PP cell count increase during T1D progression.217

Linking expression of canonical protein markers with the predicated cell types demonstrated218

AnnoSpat’s superior ability to automatically identify various cell types within the heterogeneous219

pancreas tissue, the site of T1D pathogenesis (Figures 2 and 3). To further evaluate AnnoSpat220

functionality, we next examined whether it could correctly detect progressive changes in pan-221

creata during T1D progression. We thus compared IMC data of four non-diabetic (control) and222

four diabetic (T1D) donors with data of eight donors with autoantibodies towards islet proteins223

(AAbs) but without T1D medical history (AAb+) (Table S2). Given that many T1D patients harbor224

AAbs in their bloodstream prior to clinical diagnosis, we postulated that this analysis might225

elucidate pathogenic events prior to disease manifestation.226

Control, AAb+ and T1D donors demonstrated distinct total normalized protein expression227

patterns in cell types annotated by AnnoSpat (Figure 4A). Comparison of cell-type composition228

revealed marked decreases in beta-cell counts of T1D donors (Figure 4B), as expected17,18.229

This analysis further showed a notable increase in the number of cells labeled as PP in T1D230

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.524135doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.15.524135
http://creativecommons.org/licenses/by-nc-nd/4.0/


donors (Figure 4B).231

In contrast to beta cells, the role of PP cells in T1D etiology is less understood. Furthermore,232

there are conflicting reports regarding changes in the PP cell count during T1D development19–24.233

We thus compared the number of PP cells identified within the pancreata from control, AAb+,234

and T1D donors. This analysis showed a marked increase in the number of PP cells in T1D235

pancreata (Figure 4C), as reported16,21.236

To further scrutinize this observation, we examined the location of individual AnnoSpat-237

annotated endocrine cells (Figure 4D) on the TooManyCells tree of non-diabetic control and T1D238

pancreatic cells (Figure 4E). This single-cell resolution analysis further showed that AnnoSpat-239

annotated PP cells were disproportionately located at T1D pancreas heads (Figures 4E and 4F),240

with the exception of HPAP020. Given AAb+ donors also did not show elevated PP-cell counts241

(Figure 4C), we tested whether disease progression correlates with changes in PP-cell numbers.242

PP cell counts were comparable in control and T1D donors with less than 5 years of T1D, and243

were markedly lower than donors with a prolonged T1D (Figures 4G and S6). Notably, fewer PP244

cells were found in the head of HPAP020 pancreas, a 14-year-old donor who, with missed T1D245

diagnosis, passed away within days of T1D onset (Figures 4G and S6). To further substantiate246

this observation, we closely examined data from Damond et al.25. This data set confirmed our247

observation and showed enrichment of PP cells in the only donor with long-duration of T1D and248

available head section sample in this cohort (nPOD case 6,264). Together, these data showed249

the ability of AnnoSpat to identify rare PP cells, and further suggest changes in the PP cell250

count during T1D progression in our cohort, which could be absolute or relative, respectively,251

due to PP cell hyperplasia or PP-cell poor region atrophy impacting tissue sampling.252

In addition to tissue level analysis (Figure 4), IMC data can be used for single-cell resolution253

study of protein expression changes in T1D. To this end, we sought to identify the proliferating254

cell populations within pancreatic tissue using Ki67 as a protein marker. Average normalized255

protein levels showed high Ki67 expression in various immune populations (Figure 5A and256

Materials and Methods). To identify the proliferating cell types and their disease status, we257

used the TooManyCell tree to identify individual Ki67+ cells (Figure 5B). This analysis revealed258

that myeloid and regulatory T cells comprised most of the Ki67+ cells (Figure 5C). Examination259

of highly proliferating cells’ positions further revealed that these cells were disproportionately260

located in the tail region of AAb+ and T1D pancreata (Figure 5D). Although the role of these261

highly proliferating immune cells in T1D patients awaits further investigation, this analysis262

demonstrated the ability of AnnoSpat to simultaneously stratify multiple cell types enabling263

detailed molecular phenotyping to identify changes in the immune milieu of complex diseases264

such as T1D.265

AnnoSpat elucidates CD8+ T cell infiltration in islet during T1D development.266

Having identified composition of endocrine cells in control, AAb+, and T1D samples, we next267

sought to understand the spatial relationships between islets and immune cells (Figure 6). To268

quantify cell proximity, we used AnnoSpat’s ‘Spatial Pattern Finder’ functionality, which identifies269
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spatial patterns of cells by reporting cross-correlation functions from point process theory.270

Briefly, AnnoSpat interprets each cell as a point in space with the cell type as a discrete feature271

“mark”. In this space, AnnoSpat measures the expected number of cells per unit area. AnnoSpat272

compares this number, which is its null model, to the expected number of cells for a given273

cell-type pairing to find whether these cell types tended to aggregate across a range of distances274

(Figure 1C and Materials and Methods). To compare mark cross-correlation functions between275

distributions of ROIs, we proposed multiple measures to summarize mark cross-correlation276

functions into single values such as the distance at the maximum correlation value for each277

ROI.278

To verify the use of mark cross-correlation functions in IMC data, we first used AnnoSpat’s279

Spatial Pattern Finder to compare endocrine cell aggregation into islets with their aggregation280

with acinar cells in the ROIs of the control donors. As expected, endocrine cells aggregated281

more with each other (Figure 6A, median 2.26 distance at maximum correlation value) than282

with acinar cells (Figure 6B, median 149). These spatial relationships were confirmed by283

visual inspection of the samples present at the median values, where the endocrine cells284

were generally aggregated with each other while positioned more randomly with respect to285

acinar cells (Figures 6C and 6D). Using an alternative measure to summarize the mark cross-286

correlation functions, we observed similar spatial patterns confirming the use of both measures287

in comparison of cell-cell proximity patterns (Figures S7A-D and Materials and Methods).288

To further examine the utility of AnnoSpat’s Spatial Pattern Finder in studying T1D patho-289

genesis, we next quantified the spatial relationship between CD8+ T and islet cells. Given that290

the destruction of insulin-producing beta cells by cytotoxic CD8+ T cells contributes to T1D291

pathogenesis17,18, we tested the hypothesis that T1D progression would be characterized by292

different levels of cytotoxic CD8+ T cell infiltration in islets. Applying mark cross-correlation293

functions to all ROIs for four cohorts of control, AAb+, recent T1D (< 1 year), and prolonged294

T1D (≥ 1 year) revealed two distinct patterns of spatial relationships between islets and CD8+
295

T cells: AAb+ with recent T1D and control with prolonged T1D (Figures 6E-I). Non-diabetic296

control donors, as expected, had relatively low degrees of CD8+ T cell infiltration in islets297

(median 146). Similarly, we observed low levels of CD8+ T infiltration in islets of prolonged298

T1D (median 181). In contrast, both AAb+ (median 81.1) and recent T1D (median 55.7) had299

markedly higher aggregation of CD8+ T cells within islets relative to both control and prolonged300

T1D groups (Kruskal-Wallis p < 0.01), suggesting potential differences in immune responses301

during T1D progression (Figures 6E-I). Furthermore, AAb+ and recent T1D tissues showed302

similar levels of CD8+ T cells infiltration in islets (p > 0.05), suggesting similar autoimmune303

responses in early stages of T1D with and without clinical diagnosis (Figures 6E-I). These304

differential spatial relationships were confirmed using our alternative mark cross-correlation305

summarization measure (Figures S7E-I). Visual inspection of IMC images further supported306

these quantitative observations (Figure S7J-M), suggesting that CD8+ T cell infiltration in islets307

increases in early onset but not prolonged T1D.308
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Discussion309

Spatial profiling of cells in situ has enabled comprehensive exploration of cellular organization310

in tissues. Such high-throughput data has led to the need for automated cell-type annotation311

and methods to quantify cell-cell spatial relationships. However, current methods for cell-type312

annotation in spatial proteomic analysis either involve manual labeling, which prohibits scalability,313

or suffer from low accuracy as shown in our comparative studies. To address this unmet need314

and overcome these limitations, we developed AnnoSpat for efficient and accurate prediction of315

individual cell types and their relationships within spatial proteomic data. Using both quantitative316

and qualitative benchmarking, we demonstrated that AnnoSpat can rapidly and accurately317

predict the identity of millions of cells in complex human pancreata profiled with IMC and318

CODEX assays. Our comparative studies further showed that AnnoSpat can predict lineages of319

large fraction of cells with high accuracy, while other existing cell annotation algorithms failed320

to do so. AnnoSpat accuracy is further exemplified by identifying endocrine cell populations321

undetected by manual annotation.322

Using the unique capabilities of AnnoSpat, we accurately recapitulated known changes323

in the pancreas microenvironment during T1D progression such as depletion of beta cells324

with minimal manual intervention on a dataset of over a million cells. Moreover, our analysis325

supported the possibility of changes in the number of PP cells within the pancreas head region326

during T1D progression. We also observed proliferating immune cells were enriched within327

the tail region of pancreata from AAb+ and T1D donors. Differential immune-cell heterogeneity328

during T1D progression was not solely limited to cell count. By using AnnoSpat’s spatial329

relationship quantification functionality, we found different spatial patterns between immune and330

endocrine cells across donor types. Specifically, AnnoSpat reported marked changes in CD8+
331

T cell infiltration in islet during T1D progression, suggesting alternative disease categorizations332

– donors recently diagnosed along with AAb+ donors versus control donors and those with333

prolonged T1D, potentially due to a reduced autoimmunity response after beta cell depletion in334

prolonged T1D.335

AnnoSpat is generalized for spatial signle-cell proteomics, potentially applicable to many336

tissue types and disease conditions. Yet, the performance of AnnoSpat and other for automated337

cell type annotation algorithms could be impacted by IMC and CODEX antibody quality, such338

as the ones used for PPY and CD4 in CODEX and IMC experiments here. To enhance339

usability across domains, AnnoSpat is well documented and available as an easy-to-install340

standalone program through pip at https://github.com/faryabiLab/AnnoSpat. We also341

provided Annospat’s spatial pattern quantification functionality as part of the TooManyCells342

suite located at https://github.com/GregorySchwartz/too-many-cells.343
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Materials and Methods344

Supplemental Notes for AnnoSpat Benchmarking345

Our comparative analysis presented in Figures 2 and S2 highlighted the intricacy of differences346

in the ability of AnnoSpat, semi-supervised clustering (SSC), SCINA, AUCell, and Astir to347

identify endocrine cell types in pacreatic tissues. Here, we presented a more comprehensive348

description of these differences. Figures 2A, 2B, and 2C row 1; as well as Tables S4, S5,349

and S6 revealed the algorithms’ cell-type- and disease-status-related performance differences.350

Despite a comparable performance in detecting most cells, AUCell exhibited low accuracy in351

identifying beta cells in T1D samples, where immunological destruction of beta cells results in352

low beta-cell abundance. Most methods underperformed in detecting the epsilon cells, which is353

a rare endocrine cell type in islets. SCINA and AUCell more accurately detected PP compared354

to delta cells. AnnoSpat and SSC more accurately detected delta cells in the control samples355

compared to other algorithms. SCINA, designed for scRNA-seq count data, underperformed356

on both metrics and sample conditions, underscoring the need for cell-type calling algorithms357

specifically designed for spatial proteomics data that is fundamentally different from scRNA-seq358

count data. Importantly, Astir, developed for cell-type detection from IMC data, showed lower359

accuracy in identifying many cell types in both control and T1D samples.360

Inspection of protein expression profiles of cells annotated as alpha, beta, PP, delta, and361

epsilon from IMC of T1D and non-diabetic donors (Figures 2A, 2B, and 2C, rows 2 to 6) further362

confirmed our quantitative benchmarking and showed the higher performance of AnnoSpat363

compared to SCINA and Astir, the other method specifically designed for cell-type annotation364

from spatial proteomic data. AnnoSpat- and Astir-predicted beta cells from T1D samples,365

where beta cells are rare, showed high levels of immune cell-restricted proteins CD57 and366

HLA-ABC. Comparing the result of cell-type prediction from T1D alone with T1D plus control367

cohorts (i.e. Combined) showed that additional samples improved the performance of AnnoSpat368

more-so than Astir. Notably, Astir equally failed to detect epsilon cells in T1D, control, and369

combined data sets. CD11b, a marker of dendritic cells, was the highest expressed protein in370

the Astir-predicted delta cells. Furthermore, Astir-predicted alpha cells expressed high levels of371

somatostatin, a canonical marker of delta cells. Similar to Astir, SCINA failed to detect delta372

cells in samples from non-diabetic donors. Moreover, SCINA-annotated PP cells were less373

homogeneous compared to the AnnoSpat-labeled cells.374

In addition to endocrine cells, AnnoSpat effectively detected other cell types that had high375

quality antibodies and are commonly present in the pancreatic tissue (Figures S1C and S2).376

For instance, AnnoSpat clearly identified CD8+ T cells that had a specific antibody (Figures377

S1C and S2). Conversely, detection of helper and memory T cells was less accurate due to378

their less specific antibodies (Figures S1C and S2).379

We further extended our comparative studies to CODEX measurements of 24 proteins in380

220,155 cells from 30 islets in a non-diabetic donor (Tables S9 and S10). For this analysis, we381

focused on detection of alpha, beta, and delta cells due to lower quality of PPY and grehlin382
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antibodies (Figure S3A). SI and DB metrics suggested that AnnoSpat’s performance was383

comparable to AUCell and SCINA for most populations (Figure S3B, Table S11). Yet, a close384

examination of labeled cells revealed that in contrast to AnnoSpat, SCINA-annotated beta cells385

expressed high levels of somatostatin, a canonical marker of delta cells (Figures S3C and S3F).386

While AnnoSpat identified a pure delta cell population, SCINA-annotated delta cells lacked387

high levels of canonical marker SST. AUCell-annotated delta cells expressed high levels of388

CD206, ARG1, and CD4, canonical markers of macrophages and T helper cells, respectively389

(Figures S3C and S3G). In contrast to IMC analysis, AnnoSpat consistently outperformed SSC390

in predicting abundant endocrine cells from CODEX data. For instance, ghrelin, a canonical391

marker of epsilon cells, was highly expressed in SSC-labeled delta cells (Figure S3C and392

S3D), supporting advantage of ELM usage in AnnoSpat. Similar to benchmarking with IMC393

data (Figure 2), AnnoSpat outperformed Astir in predicting endocrine cells from CODEX data394

(Figures S3C and S3E). Besides beta cells, Astir failed to annotate other major endocrine cell395

populations (Figure S3E). Close examination of data further showed high levels of non-beta-cell-396

associated proteins in Astir-labeled beta cells (Figures S3B and S3E). Notably, we observed397

high levels of canonical marker proteins in the nucleus and/or cytoplasm of AnnoSpat-labeled398

cells from high-resolution CODEX data, further supporting the accuracy of AnnoSpat in cell type399

annotation (Figure S3H). Together, these comprehensive analyses indicated the advantage400

of using AnnoSpat for accurate, comprehensive, and rapid cell-type annotation from IMC and401

CODEX spatial proteomic measurements.402

IMC and CODEX Data403

IMC data were obtained from Formalin-Fixed Paraffin-Embedded (FFPE) pancreatic tissues404

collected by the Human Pancreas Analysis Program (HPAP) as described previously16, and is405

available at the HPAP data repository https://hpap.pmacs.upenn.edu/. CODEX data were406

obtained from the same source, and will be deposited at the HPAP data repository. In IMC, cell407

segmentation of all images was performed with the Vis software package (Visiopharm). All408

image channels were pre-processed with a 3 × 3-pixel median filter. Afterwards, cells were409

segmented by applying a polynomial local linear parameter-based blob filter to the Iridium-193410

DNA channel of each image to select objects representing individual nuclei. Identified nuclear411

objects were restricted to those greater than 10 µm26. The detected objects were dilated up to412

seven pixels to approximate cell boundaries. For all proteins, the average pixel intensity of the413

channel per cell was exported from Visiopharm and used for AnnoSpat’s input. Cell locations414

on each ROI were also exported for AnnoSpat’s input.415

AnnoSpat Overview416

AnnoSpat is a tool to annotate single cells from their proteomic profiles and measure spatial417

cellular relationships using their in situ coordinates within the ROI. AnnoSpat takes as input418

a single-cell raw proteomic data with associated spatial information as well as a signature file419
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listing potentially both positive and negative protein signatures associated with desired cell420

types. The format of the signature file can be found in Tables S3 and S10.421

AnnoSpat first normalizes the protein channel intensity data to reduce the effect of outliers422

and varied protein intensity scales (Materials and Methods: Data Processing). AnnoSpat then423

randomly splits the normalized data into two partitions (training and testing sets). Cells from424

50% of each ROI are placed in the training set, while the remaining are used as the testing425

set. If the ROIs’ disease condition/status is available, AnnoSpat can split the ROIs by status to426

ensure that equal percentage of each type of ROIs are included in each set.427

AnnoSpat implements constrained K-means semi-supervised clustering27,28 to identify428

groups of cells in the training set that are similar in proteomic space. AnnoSpat’s constrained K-429

means clustering is initialized by “initial cluster centroids”, providing “cell-type aware” clustering430

(Materials and Methods: Generation of Initial Cluster Centroids). The number of clusters is431

deterministic and is equal to K + 1, where K denotes the number of expected cell types in the432

sample. The additional (K + 1)th cluster accounts for other cell types in the experiment that are433

not specified in the marker file, including “Unknown” ones. The output of constrained K-means434

produces the cells that are predicted to be related and thus are used by AnnoSpat as a training435

set to learn the label of the remaining cells by training an extreme learning machine classifier436

(ELM)12 (Materials and Methods: Training Extreme Learning Machine Classifier). The trained437

model is saved to label cells from other data sources, eliminating the need for re-clustering or438

re-training whenever new data is available.439

AnnoSpat can use the cell-type labels and cellular coordinates to quantify spatial relation-440

ships between each pair of cell types (Materials and Methods: AnnoSpat’s Spatial Pattern441

Finder). Briefly, AnnoSpats uses point process theory to quantify relationships (aggregation442

or repulsion) between any two cell types across a range of distances. This information is443

summarized with a variety of different metrics including the distance at the maximum correlation,444

the distance at which the correlation first becomes positive or negative, and more in order to445

quantify proximity relationships across ROIs. Interactive plots of each cell location with observed446

feature (protein expression) distributions are also outputted to facilitate data exploration (For447

example see Figures 6 and S7).448

AnnoSpat Data Processing449

To reduce the effect of outliers, AnnoSpat first calculates Data matrix D by log transforming450

cell-by-protein channel intensity (expression) after addition of pseudo-count 1. Specifically,451

dc×p = ec×p + 1, where ec×p is the expression of protein p channel in cell c. Then, AnnoSpat452

unit normalizes the log-transformed intensity matrix to scale each cell vector to unit length. This453

projects each cell to a unit sphere in the proteomic space. We denote the normalized proteomic454

matrix by X obtained from scaling each row di of D as follows:455
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xi =
di
||d||

, where||di|| = (

P∑
j=1

||dj ||2)1/2,

where, ||di|| denotes the l2 or Euclidean norm of i th cell. P is the number of measured proteins.456

This step accounts for variable expression across proteins and correlates the Euclidean457

distances (used for clustering) between cell vectors and cosine distances in the proteomic458

space. Compared to euclidean distance, the angle between the cell vectors in proteomic space459

better reflects cell-cell similarities/differences29.460

Generation of Initial Cluster Centroids461

As opposed to traditional K-means where the initial cluster centroids are randomly selected,462

AnnoSpat implements constrained K-means that follows a more “cell-type aware” approach27,28.463

Initial cluster centroids are obtained from representatives of each cluster (“cell-type” here).464

AnnoSpat calculates initial cluster centroids by taking the mean of representative cells Rk for465

each cluster k = 1, . . . ,K + 1. The number of clusters is one more than the number of cell466

types K; an extra (“Unknown”) cluster accounts for cell types not included in the marker file.467

468

AnnoSpat obtains the cluster representations R1, R2, . . . , RK+1 by:469

1. Obtaining positive and negative markers M+ and M− from the signature file.470

2. Calculating the score Mc for cth cell type by multiplying the protein intensities correspond-471

ing to positive markers and the compliment of protein intensities corresponding to negative472

markers as follows:473

Mc =
∏

i∈M+

Xi ∗
∏

j∈M−
(max(Xj)−Xj), c = 1, . . . ,K.

3. Selecting cell representatives R1, R2, . . . , RK of cell types c = 1, . . . ,K in the signature474

file such that they have475

Mc > Mc,high and Mc < Mc,max, where
476

Mc,high = percentile(Mc, qhigh) and Mc,max = percentile(Mc, qmax).

The value qhigh is adaptive and can be optionally chosen based on prior knowledge of the477

number of cells from the cell type present in the data (defaulting to the 95th percentile).478

Here, qhigh was set to 99 ≤ qhigh ≤ 99.9 and 99.5 ≤ qhigh ≤ 99.99 for various cell479

types in the analysis of pancreas IMC and CODEX data, respectively. Mc,high is the480

score cut-off to pick cluster representative cells as the ones having a very high score Mc481

corresponding to the cth cell type. The threshold qmax is set to 100 or a value slightly less482
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than that to make sure that assay artifacts are not included in the initial cluster centroid483

calculation. Here, qmax was set to 99.999 and 100 for the analysis of pancreas IMC and484

CODEX data, respectively.485

4. Assigning cell representatives RK+1 of the “Unknown” cluster such that they have Mc <486

Mc,low where487

Mc,low = percentile(Mc, qlow).

The threshold qlow defines the cut-offs to pick cells with expression < Mc,low in all cell488

types.489

AnnoSpat performs the above procedure to assign cluster representative cells in decreasing490

order of cell-type abundance (representative of more abundant cell types are selected first).491

Cell-type abundance acts as a proxy for the expected number of cells for each cell type and is492

obtained by summing cell intensities of the scale-normalized canonical protein markers.493

Once the cell representatives R1, R2, . . . , RK+1 have been assigned, AnnoSpat computes494

initial centroids xk for cluster k = 1, . . . ,K + 1 by taking the average across the representative495

cells Rk as follows:496

xkj =
1

|Rk|
∑

xi∈Rk

xij , for j = 1, . . . , P

where xij represents the intensity of the jth protein in ith cell.497

Cell Labeling with Semi-supervised Clustering498

AnnoSpat takes the cell representatives Rk ’s and initial cluster centroids xk ’s and iteratively499

runs constrained K-means algorithm on the cells from 50% of the ROIs included in the training500

set as shown in Algorithm 1. Li denotes the cluster label assigned to the ith cell and Ck denotes501

the set of cells in cluster k. The assigned cell labels are the predicted cell types of training data502

for the AnnoSpat’s Annotator.503

Training Extreme Learning Machine Classifier504

AnnoSpat uses the cell-type labels L predicted by its semi-supervised clustering algorithm505

as training labels YTR to then learn an ELM classifier12. The classifier predicts the label of506

remaining cells in new ROIs not included in the training data. We implemented ELM in AnnoSpat507

because it is a single-layer feed-forward neural network classifier and does not need to be508

iteratively tuned via backpropagation. This would enable AnnoSpat to learn accurate cell type509

prediction models markedly faster than gradient-based learning techniques. AnnoSpat’s ELM is510

implemented as follows:511
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Algorithm 1 Constrained K-means
1: Initialize K,n
2: Input: Normalized data X , initial centroids {x1, . . . , xK+1} and cell representatives {R1, R2.....RK+1}
3: For iter = 1, 2, . . . , n
4: Cluster assignment:
5:

Li =

{
k when xi ∈ Rk

argmink ||xi − xk||2, otherwise
6: Centroid computation
7: xk = 1

|Ck|
∑

xi∈Ck

xi

8: End For
9: Return: Labels L, Centroids x

• Assign input layer weights WI and bias bI randomly from normal distributions:512

WI ∼ N(0, I)
513

bI ∼ [N(0, 1)]

• Compute hidden layer output H :514

H = ϕ(WI ∗XTR + bI)

Here, ϕ denotes the activation function used at the hidden layer, and XTR is the normal-515

ized protein intensity of training set.516

• Compute the output layer weights WO517

WO = H† ∗ YTR

Here H† is the Moore–Penrose inverse of hidden layer output matrix H. The training518

labels YTR are transformed into a one-hot encoded format to avoid ordinal relationship519

interpretability between cell types by the model.520

Once the output weights are learned, the types (labels) of new cells YTS can be predicted from
their normalized protein expression XTS by the learned weights in ELM:

YTS = ϕ(WI ∗XTS + bI) ∗WO

Data Processing for Visualization521

Data for Heatmaps in Figures 2 and S1C have been normalized to penalize the expression522

of non-specific proteins using an analog variant of TF-IDF (term frequency-inverse document523
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frequency) normalization after min-max scaling of protein expression. The specificity of a protein524

can be quantified as an inverse function of the number of cell types in which it is expressed (its525

abundance across various cell types). Hence, the normalized value of protein pi is obtained by526

multiplying each value by the logarithm of ratio of total protein abundance ptotal in the data and527

the abundance of that protein across all cell types psum. If p is the expression of protein pi in528

cell cj , then the normalized value is calculated by:529

pTF,IDF
i,j = p ∗ log(ptotal

psum
).

In min-max normalization, min and max values are the 0.01th and 99.99th percentile expression,530

respectively.531

AnnoSpat’s Spatial Pattern Finder: Quantification of Cell Proximity Pattern532

In order to quantify the relationships between cell types in the T1D pancreas, we interpreted533

the cell locations and cell type labels as a marked point pattern. A point pattern provides the534

locations of observations; here, cell locations are represented as Cartesian coordinates. Each535

cell can have additional features known as marks; here, each cell’s mark is the predicted cell536

type. By realizing the marked point pattern as a random marked point process, we can quantify537

cell type spatial relationships. A point process is a random set of points, where the number of538

points and their locations are both random. Using point process theory, we can understand the539

relationship between cell types not as a single index, but rather as many values resulting in540

formulation of a given function of distance r.541

The standard model of a point process ≩ assumes that the process extends all space, but542

the observed region is bounded by a window W . Then we can define the data as an unordered543

set30
544

ψ = ψ1, . . . , ψn, ψi ∈W,n > 0,

the point pattern of Ψ.545

Now we can define our ROI within the context of marks. Consider the marked point pattern546

as an unordered set of cells observed within a window W with marks in M ,547

γ = (ψ1,m1), . . . , (ψn,mn), ψi ∈W,mi ∈M,

where ψi is the location and mi is the mark of cell i, respectively30. Marks may be continuous548

real numbers, such as cell size, or discrete, such as cell type. Our objective is to quantify the549

dependence between the marks of two cells of distance r apart in the marked point process Γ.550

This dependence, known as the mark correlation function kf (r), is informally defined as30,31
551

kf (r) =
Ei,j [f(Mi,Mj)]

E[f(M,M ′)]
,
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where Mi,Mj are marks of two cells separated by distance r, M,M ′ are independent real-552

izations of the marginal distribution of marks, and E is the intensity of a point process, or the553

average density of points (the expected number of points per unit area), and where Ei,j is the554

conditional expectation that there exist cells at locations i and j separated by distance r. While555

f is any function that returns a non-negative real value, we commonly use f(m1,m2) = m1m2556

for continuous marks and f(m1,m2) = ⊮(m1,m2) = 1 where m1 = m2 and = 0 for everything557

else for discrete (categorical) marks30. Then, kf (r) = 1 suggests a lack of correlation such558

that under random mark labeling, kf (r) ≡ 1. The interpretation of greater than or less than 1559

would be determined by the chosen function f , but throughout this study we interpret > 1 as560

correlated and < 1 as anti-correlated. This mark correlation function, however, assumes that561

cell type would be a single mark and does not specify the relationship between, for instance,562

CD8+ T cells and islet cells.563

To understand the relationship between any two cell types, we expand the mark correlation564

function kf (r) to define the mark cross-correlation function, kmm(r). Here, instead of mi ∈M565

as a single mark, we define ⋗ia ∈ M as the value of mark a in cell i from the row vector of566

marks ⋗i attached to cell i. Instead of a single mark for cell type, we convert the mark into a567

mark row vector mi for cell i containing c entries, where each index 0 < j ≤ c represents an568

indicator value for cell type a. In short, ⋗ia = 1 indicates that the cell i is of cell type a.569

Using this expanded mark vector, we can define the mark cross-correlation function30 as570

kmm(r) =
Ei,j [f(MiaMjb)]

E[f(Ma,Mb)]
,

where Mia and Mjb are the marks a and b attached to cells i and j, respectively, while Ma and571

Mb are independent random values drawn from all cells at mark indices a and b, respectively.572

Here, f is defined as with the mark correlation function. Using categorical marks for cell types,573

we then interpret kmm(r) > 1 as correlated, < 1 as anti-correlated, and = 1 as random. We574

carried out all mark cross-correlation analyses using the spatstat R package30.575

The output of each mark cross-correlation function on an ROI is a series of correlation576

values as a function of distance r. To compare across several ROIs, we summarized each curve577

by either the r at the maximum kmm(r) (maxr kmm(r)) (Figure 6) or the log-transformed ratio578

of the maximum kmm(r) to the r at the maximum kmm(r) (log maxr kmm(r)
argmaxr kmm(r) ) (Figure S7). The579

former value decreases with increasing aggregation (the highest correlation is with cells with580

smaller r) while the latter increases with increasing aggregation. To compare distributions, we581

used Kruskal-Wallis one-way analysis of variance for multiple hypotheses followed by pairwise582

Mann-Whitney U tests.583
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Figure 1: Overview of IMC or CODEX data analysis with AnnoSpat (Annotator and Spatial
Pattern Finder). (A) From left to right: A tissue’s region of interest (ROI) (e.g. from the pancreas)
is measured using a spatial single-cell proteomics assay such as IMC or CODEX, reporting
position and protein expression levels of individual cells in situ. (B) To overcome lack of
manually annotated training data, AnnoSpat’s Annotator module learns a cell-type predictor
by first processing protein expression data with a semi-supervised clustering algorithm, which
creates a training dataset from a subset of cells in the overall dataset (e.g. 50% in matrix
A). Using this automatically generated training data, AnnoSpat then trains and applies an
extreme learning machine classifier to label the remaining cells (e.g. 50% in matrix B). (C)
AnnoSpat’s Spatial Pattern Finder component interprets cell locations as point processes to
quantify relationships between cell types using distance-dependent (r) mark cross-correlation
function (k(r)). Mark cross-correlation functions across ROIs are systematically summarized
using different features of them such as the distance where the function is maximal.
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Figure 2: Comparative analysis of AnnoSpat cell-type annotation from IMC data. (A) From top
to bottom: bar plots with error bars showing average and standard deviation Silhouette Index
(SI), heatmaps showing marker proteins’ normalized average expressions for cells annotated
as alpha, beta, delta, epsilon, and PP by AnnoSpat, semi-supervised clustering (SSC), Astir,
SCINA, and AUCell from T1D pancreas IMC data (n = 374, 397 measured cells). (B) Similar to
(A) from non-diabetic (control) pancreas IMC data (n = 795, 604 measured cells). (C) Similar
to (A) from combined T1D and control pancreas IMC data (n = 1, 170, 001 measured cells).
m = 10 sets of n = 50, 000 randomly selected cells are used for evaluation using SI in each
bar plot in top panel of A-C. (D) Bar plots showing the fraction of n = 374, 397, n = 795, 604,
and n = 1, 170, 001 IMC-measured cells form T1D, control, and combined T1D and control
pancreata, respectively, annotated by AnnoSpat, SSC, Astir, SCINA, and AUCell. (E) Bar plots
with error bars showing mean and standard deviation of run-time for the listed algorithms to
annotate cells as in (D). Each algorithm was run three times on a machine with Ubuntu 20.04,
1.05TB Memory, Intel Xeon Gold CPU 6230R @ 2.1GHz, 2 physical processors 52 cores, and
104 threads.
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Figure 3: Comparison of expert and AnnoSpat endocrine cell-type annotation. (A, B) Proportion
of expert-annotated (A) and AnnoSpat-annotated (B) endocrine cell types from the IMC of
different pancreas regions of donors studied in16. (C, D) Representative protein channel
intensities (expression levels) from IMC images of donors with discordant expert and AnnoSpat
cell-type annotation is overlaid with AnnoSpat predicted cell types (C) or endocrine canonical
marker protein channels (D). (E) From left to right, top to bottom: TooManyCells tree overlaid
by AnnoSpat-predicted cell types, and expression levels of c-peptide, glucagon, somatostatin,
pancreatic polypeptide protein (PPY), and ghrelin marking beta, alpha, delta, PP, and epsilon
cells, respectively in n = 65, 643 cells across m = 141 slides of 16 pancreas donors. (F, G) Six
representative IMC images from m = 141 slides of 16 donors overlaid by AnnoSpat-predicted
cell types (F) or endocrine canonical marker protein channels (G).
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Figure 4: PP cell count increases in the pancreas head during T1D progression. (A) Heatmap
showing total normalized protein expression for each pancreas region across non-diabetic
control, T1D and AAb+ donors. Normalized protein expression for each cell type is calculated
by scaling for ROI count per donor pancreas region (3/ROIcount) of min-max and TF-IDF
normalized expression levels. (B) Bar plots showing percentage of each AnnoSpat-annotated
cell type across pancreata of control, T1D, and AAb+ donors. (C) Plots showing PP cell
counts in pancreata from control, T1D, and AAb+ donors. (D, E) TooManyCells tree overlaid
with AnnoSpat-predicted cell types (D), as well as disease status and pancreas region (E).
TooManyCells default parameters (quartile normalization and filter threshold of channel intensity
< 250 and marker protein intensity <1) were used. (F) Pie chart showing fraction of PP cells
from different pancreas regions across control, T1D, and AAb+ cohorts. (G) Box-and-whisker
plots quantifying PP cell counts in control and T1D donors stratified by disease duration. **
p-value <0.01, *** p-value<0.001, **** p-value<0.0001, n.s. not significant (p-value ≥ 0.05).
Box-and-whisker plots: center line, median; box limits, upper (75th) and lower (25th) percentiles;
whiskers, 1.5 · interquartile range; points, outliers.
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Figure 5
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Figure 5: Myeloid and regulatory T cells are hyper-proliferative in T1D pancreata. (A) Heatmap
showing normalized average expression of 33 IMC-measured proteins across AnnoSpat-
annotated cell types. Dash-lined box marking Ki67 column. (B) TooManyCells sub-tree colored
by Ki67 expression. (C) Bar plots showing cell-type count of n = 190 cells within the TooMany-
Cells sub-tree in (B). (D) Pie chart showing fraction of Ki67+ cells from different regions of
pancreata of control, T1D, and AAb+ donors (p-value: chi-square test).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.524135doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.15.524135
http://creativecommons.org/licenses/by-nc-nd/4.0/


A) B)

Figure 6

Islets
Control

Median = 2.26

D
en

si
ty

r at Maximum k(r)
0 5 10 15

0.00

0.05

0.10

0.15

0.20

HPAP006_Head_ROI3

−600 −200 200 600

X Axis

−400

−200

0

200

400

Y
 A

xi
s

Islets and Acinar
Control

Median = 149

D
en

si
ty

r at Maximum k(r)
0 50 100 150 200

0.000

0.005

0.010

0.015

ICRH100_ROI5

−300 −100 100 300

X Axis

−400

−200

0

200

400

Y
 A

xi
s

C) D)

AAB+

Control

T1DM<1

T1DM>=1

Cohort

0 50 100 150 200 250
0.000

0.002

0.004

0.006

0.008

r at Maximum k(r)

D
en

si
ty

E)

Islets and CD8+
Progressed T1D

Median = 181

HPAP023_Tail_ROI3

−400 −200 0 200 400

X Axis

−400

−200

0

200

400

Y
 A

xi
s

Islets and CD8+
Control

Median = 146

HPAP036_Body_ROI2

−400 −200 0 200 400

X Axis

−400

−200

0

200

400

Y
 A

xi
s

Islets and CD8+
AAB+

Median = 81.1

HPAP019_ROI3

−400 −200 0 200 400

X Axis

−400

−200

0

200

400

Y
 A

xi
s

Islets and CD8+
Recent T1D

Median = 55.7

HPAP020_Body_ROI3

−400 −200 0 200 400

X Axis

−400

−200

0

200

400

Y
 A

xi
s

F) G)

H) I)

Cell type

Acinar

Alpha

Beta

Delta

PP

CD8+T

Cell type

Acinar

Alpha

Beta

Delta

PP

CD8+T

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 18, 2023. ; https://doi.org/10.1101/2023.01.15.524135doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.15.524135
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: The extent of CD8+ T cell infiltration in islets changes during T1D progression. (A,
B) Distributions with box-and-whisker plot overlays of distance r at the maximum value of k(r)
across all ROIs for endocrine cells with respect to themselves (A) or with respect to acinar
cells (B). (C, D) Scatter plots showing location of cells within ROIs at the median of (A) and (B)
distributions are plotted at (C) and (D), respectively. Cells are colored by AnnoSpat-predicted
cell types. Endocrine cells tend to aggregate around themselves more often than with acinar
cells. (E) The distributions with box-and-whisker plot overlays of the distance at the maximal
point in the mark cross-correlation functions across control, AAb+, recent T1D, and prolonged
T1D. AAb+ and recent T1D tend to have greater aggregation of islets with CD8+ T cells than
control and prolonged T1D cohorts. (F-I) Scatter plots showing location of cells within ROIs
at the median of each cohort in (E). From lowest to highest aggregation: prolonged T1D (F),
control (G), AAb+ (H), and recent T1D (I). Cells are colored by AnnoSpat-predicted cell types.
Box-and-whisker plots: center line, median; box limits, upper (75th) and lower (25th) percentiles;
whiskers, 1.5 · interquartile range; points, outliers.
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Figure S1
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Figure S1: Comparison of various IMC data normalization methods. Heatmaps showing
average unnormalized (A), protein-wise z-score normalized (B), and a variant of TF-IDF nor-
malized (C) expression levels of 33 IMC-measured proteins across AnnoSpat-annotated cell
types. Heatmaps comparison indicates the benefit of a variant of TF-IDF for normalization in
visualizing continuous protein expression readouts. Note: TF-IDF variant normalization is only
used for data visualization and not cell-type annotation.
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Figure S2: Comparison of AnnoSpat and AUCell cell-type annotation. (A-C) Randomly
selected IMC images of ROIs from pancreas head, body, tail comparing CD4 (A), CD8 (B) and
CD45RO (C) staining quality showing higher quality of CD8 compared to CD4 and CD45RO
staining. (D) Bar plots showing percentage of AnnoSpat-annotated cell types that AUCell failed
to annotate. (E) Yellow pseudo-color marking AnnoSpat-annotated cells that AUCell failed to
annotate on randomly selected IMC images. Other cell types are colored as before (e.g. refer
to Figure 3C).
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Figure S3
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Figure S3: Comparative analysis of AnnoSpat cell-type annotation from CODEX data. (A)
From top to bottom: raw images of glucagon, c-peptide, somatostatin, PPY, and ghrelin showing
non-specificity of PP and epsilon markers in CODEX experiments. (B) Bar plots with error bars
showing average and standard deviation Silhouette Index (SI) for cells annotated as alpha,
beta, and delta by AnnoSpat, semi-supervised clustering (SSC), Astir, SCINA, and AUCell
from non-diabetic pancreas CODEX data (m = 10 sets of n = 50, 000 cells randomly selected
from n = 220, 155 measured cells). (C-G) Heatmaps showing marker proteins’ normalized
average expression levels for cells labeled as alpha, beta, and delta by AnnoSpat, SSC, Astir,
SCINA, and AUCell from non-diabetic pancreas CODEX data (n = 220, 155 measured cells).
(H) Heatmap showing marker proteins’ normalized average expression levels separately for the
nucleus and cytoplasm of the cells annotated as alpha, beta, and delta by AnnoSpat based
on protein intensity in the entire cells from non-diabetic pancreas CODEX data (n = 220, 155
measured cells). (I, J) CODEX image is overlaid by AnnoSpat predicted cell types (I) or alpha
(glucagon), beta (c-peptide), and delta (somatostatin) marker protein channels (J).
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Figure S4
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Figure S4: Comparison of AnnoSpat and expert annotation of pancreatic endocrine cell types.
(A-D) Representative IMC images from donors with discordant expert and AnnoSpat cell-type
annotation in Figures 3A and 3B are overlaid with AnnoSpat-predicted cell types (A and C) or
endocrine canonical marker protein channels (B and D). C-peptide, glucagon, somatostatin,
PPY, and ghrelin marking beta, alpha, delta, PP, and epsilon cells, respectively.
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Figure S5
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Figure S5: Comparison of protein marker expression levels and AnnoSpat annotations across
pancreatic endocrine cell types. (A-F) UMAP plots overlaid by AnnoSpat-predicted cell types
(A), and expression levels of c-peptide (B), glucagon (C), somatostatin (D), PPY (E), and ghrelin
(F) in n = 65, 643 cells across m = 141 slides of 16 pancreas donors.
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Figure S6
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Figure S6: PP cell count increases in the pancreas head during T1D progression. (A-D) IMC
images from pancreatic head ROIs overlaid with expression levels of canonical protein markers
of alpha (glucagon), beta (c-peptide), PP (PPY), helper T (CD4), and cytotoxic T (CD8) cells.
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Figure S7
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Figure S7: The extent of CD8+ T cell infiltration in islets changes during T1D progression.
Analysis corresponding to Figure 6 but with an alternative summarization measure of mark
cross-correlation function, which takes into account correlation value as well as distance (r):
ω(r) = log maxr kmm(r)

argmaxr kmm(r) . (A, B) Distributions with box-and-whisker plot overlays of ω(r)
across all ROIs for endocrine cells with respect to themselves (A) or with respect to acinar
cells (B). (C, D) Scatter plots showing location of cells within ROIs at the median of (A) and (B)
distributions are plotted in (C) and (D), respectively. Cells are colored by AnnoSpat-predicted
cell types. Endocrine cells tend to aggregate around themselves more often than with acinar
cells. (E) The distributions with box-and-whisker plot overlays of ω(r) across control, AAb+,
recent T1D, and prolonged T1D. AAb+ and recent T1D tend to have greater aggregation of islets
with CD8+ T cells than control and prolonged T1D cohorts. (F-I) Scatter plots showing location
of cells within ROIs at the median of each cohort in (E). From lowest to highest aggregation:
prolonged T1D (F), control (G), AAb+ (H), and recent T1D (I). Cells are colored by AnnoSpat-
predicted cell types. (J-M) IMC images from pancreatic ROIs overlaid with expression levels of
canonical protein markers of alpha (glucagon), beta (c-peptide), PP (PPY), helper T (CD4), and
cytotoxic T (CD8) cells confirming changes in the CD8+ T cell infiltration in islets during T1D
progression. Images in (J) to (M) correspond to scatter plots in Figures 6F to 6I, respectively.
Box-and-whisker plots: center line, median; box limits, upper (75th) and lower (25th) percentiles;
whiskers, 1.5 · interquartile range; points, outliers.
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Supplementary Tables

Table S1

IMC antibody panel.

Table S2

HPAP pancreas donor information.

Table S3

AnnoSpat’s marker file input for annotating the listed cell types from IMC antibodies.

Table S4

SI and DB scores for labeling endocrine cells from IMC samples of T1D donors’ pancreata.
Numbers in parentheses: standard deviation. NA: no cell was annotated.

Table S5

SI and DB scores for labeling endocrine cells from IMC samples of non-diabetic (control) donors’
pancreata. Numbers in parentheses: standard deviation. NA: no cell was annotated.

Table S6

SI and DB scores for labeling endocrine cells from IMC samples of combined non-diabetic and
T1D (Combined) donors’ pancreata. Numbers in parentheses: standard deviation. NA: no cell
was annotated.

Table S7

Fraction of endocrine cells labeled by each algorithm from IMC samples of T1D, non-diabetic
(control), and combined T1D and control (Combined) donors’ pancreata.

Table S8

Mean and standard deviation of run-time for listed algorithms to annotate cells from IMC
samples of T1D, non-diabetic (control), and combined T1D and control (Combined) donors’
pancreata. Each algorithm was run three times on data sets of n = 374, 397, n = 795, 604, and
n = 1, 170, 001 cells from IMC samples of T1D, control, and combined T1D and control donors
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using a machine with Ubuntu 20.04, 1.05TB Memory, Intel Xeon Gold CPU 6230R @ 2.1GHz, 2
physical processors 52 cores, and 104 threads.

Table S9

CODEX antibody panel.

Table S10

AnnoSpat’s marker file input for annotating the listed cell types from CODEX antibodies.

Table S11

SI and DB scores for labeling alpha, beta, and delta cells from a non-diabetic donor pancreas
CODEX. Numbers in parentheses: standard deviation. NA: no cell was annotated.

Table S12

Fraction of expert-annotated endocrine cell types in different regions of pancreata from donors
studied in16.
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