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Since Human Genome Project (HGP) revealed the heterogeneity of individuals, precision
medicine that proposes the customized healthcare has become an intractable and
hot research. Meanwhile, as the Precision Medicine Initiative launched, precision drug
design which aims at maximizing therapeutic effects while minimizing undesired side
effects for an individual patient has entered a new stage. One of the key strategies
of precision drug design is target based drug design. Once a key pathogenic target
is identified, rational drug design which constitutes the major part of precision drug
design can be performed. Examples of rational drug design on novel druggable targets
and protein–protein interaction surfaces are summarized in this review. Besides, various
kinds of computational modeling and simulation approaches increasingly benefit for
the drug discovery progress. Molecular dynamic simulation, drug target prediction and
in silico clinical trials are discussed. Moreover, due to the powerful ability in handling
high-dimensional data and complex system, deep learning has efficiently promoted
the applications of artificial intelligence in drug discovery and design. In this review,
deep learning methods that tailor to precision drug design are carefully discussed.
When a drug molecule is discovered, the development of specific targeted drug delivery
system becomes another key aspect of precision drug design. Therefore, state-of-the-
art techniques of drug delivery system including antibody-drug conjugates (ADCs), and
ligand-targeted conjugates are also included in this review.

Keywords: precision medicine, precision drug design, computational modeling, deep learning, antibody-drug
conjugates, ligand-targeted conjugates

INTRODUCTION

In January 2015, President Obama announced the new Precision Medicine Initiative1 to bring
human closer to cure diseases like cancer and diabetes and to give all of us the ability to access
to the personalized information to keep ourselves and our families in good health. As this initiative
launched, precision drug design has entered a new stage. Cell-based HTS method has been widely
used to obtain drug candidates, however, the hits identified by this method are usually difficult

Abbreviations: ADCs, antibody-drug conjugates; ANN, artificial neural network; CA-4, combretastatin A-4; CNN,
convolutional neural network; CTD, C-terminal kinase domain; DFSA, 2,3-difluorosialic acid; DNN, deep neural network;
GPU, graphic processing units; HTS, high-throughput screening; NGS, next-generation sequencing; NTD, neural tube
defects; PCPA, trans-2-phenyl-cyclopropylamine; RNN, recurrent neural network; SBDD, structure-based drug design; SNP,
single nucleotide variants; WES, whole-exome sequencing; WGS, whole-genome sequencing.
1https://obamawhitehouse.archives.gov/node/333101
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to undergo further optimization because of their bad lipophilic
characteristic (Congreve et al., 2011). Since the first protein
structure was determined by X-ray crystallography in the 1960s,
medicinal chemists have made use of the three-dimensional
structures of therapeutically relevant targets to guide the
design of new therapeutic agents (Thomas et al., 2017). The
availability of three-dimensional structures of therapeutically
relevant proteins and protein–protein interaction surfaces allows
the characterization and identification of potential modulator
binding sites and lays the foundation for SBDD. In recent years,
SBDD has shed light on precision drug design and accelerated
the progress toward the new era of precision medicine. Medicinal
chemists and computational chemists have made great progress
in the field of SBDD since the early development of inhibitors
that target thymidylate synthase and viral neuraminidase for
the treatment of cancer and influenza disease in the 1980s
(Jaskolski et al., 2014). Besides, in the discovery of the four
United States Food and Drug Administration (FDA)-approved
antiviral protease inhibitors (saquinavir, nelfinavir, indinavir,
and ritonavir) for the treatment of Human immunodeficiency
virus infection and acquired immune deficiency syndrome
(HIV/AIDS), the contributions of the structure of HIV protease
cannot be ignored. With the exponential growth of the
therapeutically relevant target structures being deposited in
Protein Data Bank (PDB), precision drug design has entered a
new era.

Motivated by Precision Medicine Initiative, computational
modeling and simulation approaches have been widely used
to provide new biomarkers, predict potential intercellular
mechanisms, and decipher protein conformational changes and
cell behavior. Among them, molecular dynamics simulation is
a popular computational technique that could not only help to
understand the macromolecular conformational changes and the
correspondingly biological function which may indicate novel
pathogenic mechanisms but also help to characterize the flexible
binding sites and pathways, kinetics, and thermodynamics (Liu
et al., 2018; Śledź and Caflisch, 2018). Besides, computational
modeling, through analyzing and integrating numerous
biological data, has been successfully applied in basic science
and drug development which presents unique opportunities for
developing novel treatment options (Zhang and Brusic, 2014).
In this review, the application of computational modeling in
drug target prediction and in silico clinical trials, as well as
the application of molecular dynamics simulation in ligand
identification and optimization will be discussed.

Machine learning has been widely applied to drug discovery
and design, from the first use of ANN in classifying molecules as
active or inactive in the early 1970s, to the application of ANN for
quantitative structure-activity relationship analysis (Baskin et al.,
2016). Deep learning based machine learning algorithms are just
starting out on the journey to drug discovery and precision
drug design, though they have already swept across the areas
of image classification, distributed representations and language
processing (LeCun et al., 2015). Unlike conventional machine
learning algorithms which need specific experts to design good
feature extractors for subsequent analysis, deep learning could
automatically extract complex patterns among massive data,

which may be suitable for genomic data mining and other
biological problems (LeCun et al., 2015; Gawehn et al., 2016).
Thanks to the advances of different architectures for solving
potential deep learning optimization challenges and the enhanced
computing power especially GPU, deep learning has benefited
many hot fields, such as medical imaging for diagnosis of
diseases and precision medicine. Many companies like Atomwise,
IBM Watson, and Gritstone have initiated research programs
to implement artificial intelligence in drug development and
precision medicine (Mesko, 2017).

Antibody-drug conjugates have experienced rapid
development in recent years and their homogeneity, solubility,
stability, and efficacy have been improved owing to exquisite
design and iterative optimization. ADCs are considered as
precise weapons that direct against and kill the antigen expressed
cells while spare the healthy ones (Drachman and Senter,
2013). The development, characteristics and perspectives of the
three generation ADCs are reviewed. Besides, ligand-targeted
therapeutic or imaging conjugates are also summarized in this
review.

Overall, computational approaches have lowered the barriers
and provided unique opportunities in drug development. In this
review, current state-of-the-art technologies including target-
specific de novo drug design, computational modeling and
simulations, deep learning, and antibody-drug or ligand-targeted
conjugates are detailly discussed.

TARGET-SPECIFIC DE NOVO DRUG
DESIGN

Discovery of potent and selective modulators for therapeutically
relevant targets has been encouraged by a better understanding
of protein-ligand and protein–protein interactions as well
as detailed structural information of molecular recognition.
In recent years, various strategies and techniques have been
developed to facilitate de novo design of target-specific
modulators.

Virtual Screening
The past decade has witnessed rapid development and wide
applications of structure-based virtual screening, which has
become an attractive alternative to traditional HTS for early stage
of drug discovery in both academia and industry. Compared
with HTS, it is an effective, low-cost, labor-saving strategy for
drug discovery. The use of docking-based virtual screening
in the identification of DNA methyltransferases (DNMT1 and
DNMT3A) inhibitors has been well reviewed elsewhere (Lu
et al., 2018). In another case, to discover novel protein arginine
methyltransferase 5 (PRMT5) inhibitors, a pharmacophore
and molecular docking based virtual screening was performed
followed by bioactivity assay of an initial subset of top-
ranked molecules (116 members). Among the six compounds
that showed potent PRMT5 inhibitory activity, DC_P04 (1 in
Figure 1) was selected to undergo further structural optimization.
Its derivative 17 (2 in Figure 1) was then found to be the
most active one, which inhibited PRMT5 enzymatic activity at
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nanomolar concentration (IC50 = 330 nM) and displayed potent
anti-proliferative effects on MV4-11 cells (Mao et al., 2017). In
2016, by computational docking over 3 million molecules against
the µ-opioid-receptor (µOR) structure, Manglik et al. (2016)
identified new scaffolds dissimilar to known opioids. Structure-
based optimization yielded PZM21 (3 in Figure 1) that served
as a therapeutic lead which was devoid of many side effects of
current opioids (Manglik et al., 2016). To develop novel inhibitors
targeting the protein–protein interaction (PPI) between the
polycomb repressive complex 2 (PRC2) catalytic subunit EZH2
and EED, Kong et al. (2014) performed a molecular docking
based virtual screening on an in-house database containing
approximately 1000 known drugs, and found that the FDA-
approved drug astemizole (4 in Figure 1), could disrupt the
EZH2-EED interaction, destabilize the PRC2 complex and inhibit
its methyltransferase activity in cancer cell lines (Kong et al.,
2014). This study first proposed the therapeutic strategy for
PRC2-driven human cancers via destructing the EZH2-EED
complex (Kong et al., 2014). Identification modulators using
virtual screening methods targeting other PPI including WDR5-
MLL1, and Menin–MLL1 have been well reviewed (Lu et al.,
2018).

Fragment-Based Drug Design
Fragment-based drug design has become a powerful approach for
precision drug design and been successfully applied to develop
potent and selective inhibitors of protein kinases (Erlanson et al.,
2004; Howard et al., 2009; Bamborough et al., 2011). The first
step of fragment-based drug design is to establish libraries of
fragments consisting of low-molecular-weight compounds that
have specific interactions and high efficiency with the target
protein. The second step is to convert fragments into hits and
leads. Fragment optimization, fragment merging or linking,
and in situ fragment assembly are three broad strategies for
converting fragments into hits and leads (Erlanson et al., 2004).
Using the pyrazole-benzimidazole 5 (5 in Figure 2) as a fragment
starting point in the discovery of Aurora kinase inhibitors,
Howard et al. performed fragment-based drug design (Howard
et al., 2009). The clinical candidate AT9283 (6 in Figure 2)
for the treatment of cancer targeting on Aurora kinase was
finally identified after optimization of the cellular activity and
physicochemical properties of the initial fragment (Howard et al.,
2009).

Covalent Targeting of Non-catalytic
Cysteine Residues
Covalent targeting of non-catalytic cysteine residues is another
powerful strategy for improving pharmacological potency and

FIGURE 2 | Fragment-based approach for the design of Aurora kinase
inhibitors.

selectivity. Irreversible covalent and reversible covalent binding
are two covalent cysteine-targeting strategies. Guided by
structural analysis, goal-directed design of the covalent bond
formation between an electrophilic ligand and a conserved non-
catalytic cysteine of protein target has led to the discovery of
selective, irreversible protein kinases (Fry et al., 1998; Cohen
et al., 2005; Zhou et al., 2009, 2010; Honigberg et al., 2010) and
NS3/4A serine protease (Hagel et al., 2011) inhibitors, though it
is difficult to target protein kinases owing to the high sequential
and structural conservation of the active pocket. However, due
to the concern about unspecific modification of irreversible
strategy, the irreversible covalent adducts were currently avoided
in drug discovery process. Thus the development of reversible
cysteine-targeting strategy was motivated. Serafimova et al.
(2012) discovered a derivative of cyanoacrylamide 16 (7 in
Figure 3A) that inhibited the RSK2 CTD by forming a reversible
covalent bond with cysteine 436 (Figure 3B) found in only 11
of the 518 human protein kinase (Serafimova et al., 2012). In
2013, based on their previously identified heteroaryl-substituted
cyanoacrylamides that were shown to form reversible covalent
bonds with cysteine thiols, Miller et al. (2013) identified
electrophilic fragments with sufficient ligand efficiency and
selectivity to act as starting points for the first reported MSK1
CTD inhibitors. In this case, fragment-based drug design and
covalent targeting of non-catalytic cysteine were combined
to identify the reversible covalent inhibitor RMM-46 (8 in
Figure 3A) that exhibited high ligand efficiency and selectivity
for MSK/RSK-family kinases (Miller et al., 2013). This compound
was shown to block the activation of cellular MSK and RSK
activity at nanomolar levels, and inhibit the phosphorylation of
the critical transcription factor, CREB (Miller et al., 2013).

Small Molecule Prodrugs
Small molecule prodrugs strategy could help overcome
problems associated with conventional cancer-targeting
methods. Precision design of small molecule prodrugs that can

FIGURE 1 | Chemical structures of inhibitors discovered by virtual screening.
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FIGURE 3 | (A) Discovery of RSK2-CTD inhibitors via covalent targeting the non-catalytic cysteine residues. (B) Cocrystal structure of RSK2-CTD bound to
compound 7 (PDB code: 4D9U).

enzymatically or spontaneously spark a chemical reaction at a
target site and release a drug to execute an actual drug function
has become a novel method in anticancer drug design. As the
release of anticancer drugs can be controlled in cancer cells, it can
produce good clinical results in cancer therapy. Ota et al. (2016)
focused on the FAD-dependent lysine-specific demethylase 1
(LSD1) to trigger the controlled release of anticancer drugs in
cancer cells where LSD1 is highly expressed (Ota et al., 2016).
LSD1 inhibitor PCPA (9 in Figure 4) conjugates were employed
as small molecule prodrugs to selectively release anticancer drugs
under the mechanism of the PCPA-induced LSD1 inhibition.
PCPA-tamoxifen conjugates 1a (10 in Figure 4) and 1b (11
in Figure 4) that could release 4-hydroxytamoxifen (an anti-
estrogen agent for breast cancer treatment) in the presence of
LSD1 in vitro were designed as PCPA-drug conjugate prototypes.
As expected, 1a and 1b exhibited anticancer activity in LSD1
overexpressed breast cancer cells. Further analysis showed that
the simultaneous inhibition of LSD1 and the estrogen receptor
and the release of 4-hydroxytamoxifen triggered by the inhibition
of LSD1 together contributed to the anticancer effectiveness (Ota
et al., 2016).

Mechanism-Based Drug Design
Mechanism-based drug design relies on detailed understanding
of the interaction mechanism between the target protein and
its ligand, and provides a good basis for precision drug
design. This approach is well illustrated by the mechanism-
based covalent neuraminidase inhibitors with broad-spectrum

influenza antiviral activity and the computational design of a
time-dependent histone deacetylase 2 selective inhibitor.

The widely used anti-influenza drugs, zanamivir (12 in
Figure 5) and oseltamivir (13 in Figure 5) were designed to
mimic the transition state of the natural substrate sialic acid (14
in Figure 5), which leaded to the improved activity and specificity
on human neuraminidase (NA). To overcome drug resistance,
there is an urgent need for the development of novel scaffold of
NA inhibitors. Based on the finding that influenza NAs employ
a covalent mechanism by using DFSA (15 in Figure 5) as a
substrate, Kim et al. explored difluorosialic acids (DFSAs) as a
possible novel covalent mechanism-based influenza therapeutic
agent (Kim et al., 2013). The optimal derivative FeqGuDFSA
(16 in Figure 5) showed an IC50 value comparable to those
for zanamivir and oseltamivir. In addition, DFSAs showed
good inhibition of NAs for zanamivir or oseltamivir-resistant
influenza virus strains (Kim et al., 2013). Most importantly,
DFSAs function well in controlling influenza infections in
animal model, at levels comparable to those using zanamivir.
In another case, the high sequence similarity (97.8%) and the
highly conserved residues around the catalytic pocket present
difficulties in achieving isoform inhibition selectivity between
histone deacetylases HDAC1 and HDAC2. Zhou et al. (2015)
developed a de novo reaction-mechanism-based inhibitor design
strategy guided by their previously characterized HDAC reaction
mechanism (Wu et al., 2010), and found a time-dependent
HDAC2 selective inhibitor β-hydroxymethyl-chalcone (17 in
Figure 5) (Zhou et al., 2015). A potent CA-4 like tubulin
polymerization inhibitor 22b (18 in Figure 5) was found with

FIGURE 4 | Chemical structures of inhibitors designed by small molecule prodrugs strategy.
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FIGURE 5 | Chemical structures of inhibitors designed through mechanism-based drug design strategy.

strong antitumor activity but poor stability. Under natural light,
it is inclined to undergo cis–trans isomerization, resulting in
decreased activity. Jiang et al. (2015) elucidated the mechanism
of the cis–trans isomerization by performing quantum chemistry
calculation. Inspired by their quantum chemistry calculation
results, they designed a series of compounds with improved
stability and activity. Among them, compound 1 (19 in Figure 5)
displayed potent antitumor activity in human colon cancer HT-
29 xenograft model (Jiang et al., 2015).

Bidentate-Binding (Bisubstrate)
Inhibitors Design
It is particularly challenging to discover isoform-selective
inhibitors of protein kinase family members, since they
share high sequential and structural similarities, especially the
conserved ATP binding pocket. Bidentate-binding (bisubstrate)
strategy in which a ligand simultaneously occupies the ATP
binding site and a unique pocket outside the ATP cleft has
been employed to identify selective kinase inhibitors as both

tool compounds and potent therapeutic candidates (Asaba et al.,
2009; Poot et al., 2009; Lavogina et al., 2010; Lamba and
Ghosh, 2012; van Wandelen et al., 2012, 2013; Ekambaram
et al., 2013; Rodrik-Outmezguine et al., 2016). The advantage of
bisubstrate inhibitors is their ability to generate more interactions
with the target protein, which could result in improved
affinity and selectivity compared with single-site inhibitors. The
availability of this approach will be elucidated by exemplifying
its application to the drug discovery of various targets, especially
kinase. A moderately active matrix metalloproteinase 13 (MMP-
13) inhibitor quinazoline-2-carboxamide (20 in Figure 6A)
(IC50 = 12 nM) was found by HTS (Fabre et al., 2014). The
structural basis for the high selectivity of this compound was
revealed by the cocrystal complex structure of 20 with MMP-13
(PDB code: 3WV2, Nara et al., 2014a,b). The S1′ pocket of MMPs
(Figure 6B) has been widely used to modulate ligand selectivity
as it displays higher variability in shape and length (Fabre et al.,
2014). A series of derivatives of 20 were designed to occupy the
distinct deep S1′ pocket and adjacent side pocket. Among them,
compound 21 (in Figure 6A) showed potent inhibitory activity

FIGURE 6 | (A) Chemical structures of highly potent and selective fused pyrimidine-based MMP-13 inhibitors. (B) Surface representation of MMP-13 illustrating the
binding cavity. The inhibitor (20) is buried deeply into the S1′ pocket.
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(IC50 = 0.0039 nM) and high selectivity over other MMPs (MMP-
1, -2, -3, -7, -8, -9, -10, -14, and TACE) (Nara et al., 2014b).
X-ray crystal structure (the PDB code was unreleased) analysis
of MMP-13 complexed with 21 confirmed that this compound
was indeed buried deep in the S1′ pocket and interacted with an
additional S1′ side pocket (S1′′ pocket) in MMP-13 (Nara et al.,
2014b). Besides, the preliminary repeated-dose oral toxicity study
of compound 21 in rats revealed that no overt toxicity was found.

Rodrik-Outmezguine et al. (2016) discovered the new-
generation mTOR inhibitor RapaLink-1 (22 in Figure 7A) that
could overcome mTOR resistance mutations by exploiting the
unique juxtaposition of two drug-binding pockets (Figure 7B) to
create a bivalent interaction. In order to simultaneously occupy
the ATP binding site and rapamycin-binding site, a bivalent
mTOR inhibitor which contained rapamycin, a linker and
MLN0128 (23 in Figure 7A, an mTOR kinase inhibitor, currently
in clinical trials) was designed and synthesized. This compound
could potently inhibit tumor growth and mTOR signaling in
wild-type mTOR-expressing cells as well as in cells that have
acquired resistance to rapalogs or ATP-competitive inhibitors,
or both (Rodrik-Outmezguine et al., 2016). This strategy has
also been used for the inhibitor discovery of G-protein-coupled
receptors, and has been well reviewed elsewhere (Valant et al.,
2012).

COMPUTATIONAL MODELING AND
SIMULATION APPROACHES

Given the complexity of biological process and life system,
computational approaches that deal with multifarious parameters
and features have played essential roles in analyzing systemic
response of agents, identifying drug targets, and predicting novel
therapeutic strategies (Pennisi et al., 2016). In addition, big
data analysis and comprehensive databases have greatly speeded
up the drug discovery process (Table 1). Here, we summarize
computational modeling and simulation approaches that give a
helping hand in various drug development process.

Molecular Dynamics (MD) Simulations
Molecular dynamics simulations have been long proposed
to unravel novel cryptic binding sites of the targets as

well as provide insight into protein dynamics beyond that
available crystallographic information. By performing MD
simulations on their constructed complex structures of M2
muscarinic acetylcholine receptor (M2 receptor) with its
allosteric modulators, Dror et al. (2013) revealed a new binding
site that was approximately 15 Å away from the classic
recognition site of the M2 receptor, and then validated this
novel binding site by radioligand binding experiments. The
rational design of allosteric modulators targeting M2 receptor
could benefit from these findings. Unbiased simulations of ligand
unbinding are useful in provide insight into affinity of the
complex (Huang and Caflisch, 2011). As drug efficacy has been
proposed to be related with the residence time than that of
affinity (Copeland et al., 2006), a lot of simulation protocols
have been developed to estimate the kinetic parameters of
drug binding/unbinding (Mollica et al., 2015). MD simulations
are frequently used to provide insight into hit optimization,
especially the hit was obtained from in virtual screening. Zhao
et al. (2012) discovered a novel chemotype of inhibitors of
the EphB4 tyrosine kinase by fragment-based high-throughput
docking followed by explicit solvent MD simulations for
assessment of the binding mode. MD simulation results indicated
that an additional hydroxyl group involved in two favorable

TABLE 1 | Databases that are useful in basic science and clinical research.

Database Abbreviation Website

Gene Expression
across Normal and
Tumor tissue

GNET http://medicalgenome.kribb.re.kr/
GENT/

The Cancer Genome
Atlas

TCGA https://cancergenome.nih.gov/

Kyoto Encyclopedia of
Genes and Genomes

KEGG http://www.genome.jp/kegg/

Online Mendelian
Inheritance in Man

OMIM http://omim.org/

National Cancer
Database

NCDB https://www.facs.org/quality-
programs/cancer/ncdb

Catalogue of Somatic
Mutations in Cancer

COSMIC http://cancer.sanger.ac.uk/cosmic

Immuno Polymorphism
Database

IPD https://www.ebi.ac.uk/ipd/

FIGURE 7 | (A) Chemical structures of mTOR inhibitor RapaLink-1 and MLN0128. (B) Design of bivalent mTOR inhibitor.
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hydrogen bonds may improve the affinity of the hit, thus a
single derivative of the hit was synthesized. The enzymatic results
showed that this derivative was a true EphB4 inhibitor with
nanomolar affinity.

Drug Target Prediction
Identification of new drug targets for specific cancer types
is crucial in drug research pipeline. Big data offers good
opportunities to integrate different kinds of data resources
and help in data modeling and data correction. In this field,
Tao et al. (2015) predicted 15 promising drug targets for
colorectal cancer (CRC) through ontology construction and
protein–protein interaction network analysis. Among the 15
potential targets, 3 of them have been approved as successful
drug targets, indicating that the combination approach of
datamining and network analysis could provide promising drug
targets for cancer treatment. In another work, Lu et al. (2015)
constructed a knowledge-based network revealing the underlying
mechanism of colitis-associated colon cancer development. In
addition, through Boolean dynamic simulation of the network
and in silico mutation studies, they identified an important
network module and a combinational anti-cancer strategy which
targeted ceramide and PI3K-AKT pathway consistently. They
further utilize chemical tools to experimentally validate their
prediction and successfully observed the synergistic effects in
colon cancer cells. Hopefully, the network model could further
assist researchers with mechanism studies and drug target
prediction. In addition to network analysis, there are many good
web servers that can be easily accessed to and be used to predict
the drug target and small molecule-protein interactions (Table 2).
SuperDrug2 provides comprehensive information of approved
and marketed drugs and allows similarity and substructure
search to obtain target information (Siramshetty et al., 2018).
PockDrug server focuses on the pocket druggability using serval
pocket estimation models, while PharmMapper identifies drug
target using pharmacophore mapping approach (Liu et al., 2010;
Hussein et al., 2015).

In Silico Clinical Trials
Drug research pipeline, especially clinical trial, is a cost-intensive
and time-consuming process. In the past few years, the methods
of in silico clinical trials have been increasingly recommended in
drug development in purpose of predicting the safety and efficacy
of candidate drugs in an economic manner (Pappalardo et al.,
2018; Zhu et al., 2018).

TABLE 2 | Computational online resources used in various field.

Computational Website

resources

SuperDRUG2 http://cheminfo.charite.de/superdrug2/drug_
search.html

PockDrug http://pockdrug.rpbs.univ-paris-diderot.fr/cgi-bin/
index.py?page=home

PharmMapper http://lilab.ecust.edu.cn/pharmmapper/index.php

NetMHCpan 4.0 Server http://www.cbs.dtu.dk/services/NetMHCpan/

In the field of drug metabolism, glucuronidation by uridine
diphosphate-glucuronosyltransferases to the metabolically
potential sites of a drug is a critical step for detoxification in
living body. Moreover, the pharmacological profile of a drug
including systemic exposure and clearance will be affected
through this phase II metabolism. Various computational
models including classification model, naïve Bayes models
and other machine learning methods have been applied
in predicting possible sites of glucuronidation. In Peng
and coworkers’ work, they built four classification models
(aliphatic hydroxyl, carboxylic, aromatic hydroxyl and amino
nitrogen) based on support vector machine method and a
large chemical dataset (Peng et al., 2014). Model assessment
revealed good predicting performance on compound test
and they also suggested molecules with higher lipophilicity
and small size are more liable to glucuronidation. The
prediction among metabolic site and pharmacokinetic
properties using in silico approaches could accelerate the
process of lead optimization and help researchers make rational
decisions.

In the field of immunology, differential equation-based
models and agent-based model have been utilized in modeling
immune system. Differential equation-based approach is
a mathematical model that describes organism-wide cell
population dynamics in continuous time. Differential equation-
based models are usually more effective in grabbing the
dominating cellular and molecular change under bacterial or
viral attack (Regoes et al., 2007). However, when facing more
complicated scenarios, an equation-based model is often hard to
construct due to the tradeoff between mathematical feasibility
and realistic biology signatures (Pappalardo et al., 2014). In
another aspect, Kaufman first introduced automaton model in
immunology, and many efforts have been made to optimize
this technology (Kaufman et al., 1985). Of note, Celada and
Seiden successfully developed their simulator ImmSimm to
investigate immune receptor specific behaviors and since then
cellular automata and agent-based model have become popular
in modeling immune system (Celada and Seiden, 1992; Celada
and Seiden Philip, 1996; Figge et al., 2008). In contrast to
differential equation-based models, cellular automata and agent-
based models are discrete-time stochastic cellular automaton
and the global behaviors are integrated by all involved entities
(Pappalardo et al., 2014). Furthermore, its flexibility allows
researchers to add and delete certain entities and non-linear
interaction according to different issues. Recently, Pappalardo
et al. (2016) established a relatively comprehensive pipeline
framework for virtual screening of citrus-derived vaccine
adjuvants in the model of influenza A. Strikingly, their simulator
that based on agent-based model carefully considered the
crucial cellular interaction occurred in the influenza A affected
organism, and good consistency was obtained between in silico
prediction and in vivo validation. The above work is a good
attempt that utilizes agent-based models to help discover new
drug. Owing to the ideal flexibility and feasibility of agent-based
modeling approach in immunology, it is promising to further
design patient specific model for the prediction of immunology
treatment.
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DEEP LEARNING BASED GENETIC
VARIANT DISCOVERY AND
NEOANTIGEN PREDICTION

With the revival of deep learning based artificial intelligence,
different deep learning algorithms have been applied in the area
of drug design and precision medicine. Common deep learning
algorithms comprise DNN, CNN, and RNN, as illustrated in
Figure 8 (LeCun et al., 2015). Generative RNNs have been used
for de novo molecular design by Schneider’s group and they
utilized RNN with long short term memory (LSTM) cells to
construct a SMILES-based compound generation model (Gupta
et al., 2017). Matthew and coworkers trained and evaluated a
CNN model to score the docking poses generated by docking
program smina, and they used Caffe deep learning framework to
define the model (Ragoza et al., 2017). In addition, various deep
learning methods have been developed to investigate the potential
of artificial intelligence in drug discovery and precision medicine
design.

Genetic Variants
It has long been known that one of the most important
aspects of precision medicine is to accurately describe the
genomes of patients or their tumors from a single individual
level, since cancer is recognized as a mosaic genetic disorder

(Biesecker and Spinner, 2013). By systematic interrogation of
cancer genomes, it will eventually make great contributions to
targeted drug design, disease diagnosis and more impressive
clinical therapeutic decisions (Boehm and Hahn, 2011). It is
estimated that there are 3 billion base pairs of human genome,
of which only 1% represents the protein coding genes, however,
85% mutations are existing in the coding genes which could
result in diverse diseases (Choi et al., 2009). According to
Lauschke and Ingelman-Sundberg (2016), a single genome
could harbor 10,000–12,000 altered protein sequences owing
to the average 4.1–5 million SNP within each genome. All
these statistical data benefits from the giant leap of NGS
technologies and the steep decline of sequencing costs, which at
the same time demonstrates the heterogeneity and complexity of
cancer.

Currently, NGS mainly consists of genome-based high-
throughput sequencing platforms including but not limited
to WGS and WES, and transcriptome-based high-throughput
sequencing like RNA-seq (Carter and He, 2016; Goodwin et al.,
2016). RNA sequencing is used to sequence all transcripts within
cells to detect the specific expression levels of genes in a given
condition such as drug treatment. When compared with normal
control, the differentially expressed genes could be analyzed,
which is now widely implemented in biological studies (Han
et al., 2015). WGS, especially WES, has a great impact on
clinical prognosis and therapy, as well as clinical assessment.

FIGURE 8 | Several different frameworks of deep learning, including convolutional neural network (CNN), deep neural network (DNN), and recurrent neural network
(RNN).
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By incorporating patient’s full genome sequence analysis,
researchers could find the single nucleotide polymorphisms
and copy number variations in a patient to further predict
the genetic risk of diseases like cancer and metabolic diseases
(Euan et al., 2010). Moreover, molecular diagnosis based on
significant mutation sites within disease-related genes would
contribute to clinical practice, which is largely attributable to the
advancement of NGS (Choi et al., 2009). Routine framework for
genomic data processing comprises several procedures including
quality control based data preprocessing, sequencing reads
alignment, variant calling and variant annotation (Carter and He,
2016). For reads alignment, many programs such as Burrows-
Wheeler alignment tool, Bowtie2 and Novoalign, could align
the sequencing reads to the reference genome for subsequent
comparison (Li and Durbin, 2009; Langmead and Salzberg,
2012). Variant calling, the key step for detection mutations, has
proved challenging due to the complex source of errors not
only from sequencing biases introduced by instruments, but
also resulting from alignment and calculation algorithms (Li,
2014). Even state-of-the-art variant callers like GATK (McKenna
et al., 2010), which use statistical models to identify the possible
variants, could only achieve high accuracy to a certain extent (Li,
2014). In 2016, FDA launched the precision FDA Truth Challenge
for advancing the quality standards in the genomic community
and promoting better personalized care. DeepVariant, developed
by Google, outperformed the existing tools in terms of the
SNP-Fscore and was awarded the highest SNP performance,
which demonstrated the powerful ability of deep learning and
its potential applications in precision therapy (Poplin et al.,
2017).

DeepVariant is constructed based on the original Inception-
v2 architecture, a CNN framework commonly used in image
recognition developed by Google (Szegedy et al., 2015). Unlike
common image classification, of which the input features
are pixel values, DeepVariant utilizes the aligned sequencing
reads and reference genome to construct a pseudo image with
three channels including aligned bases, corresponding quality
scores and read features. After training the CNN model with
labeled variants, DeepVariant achieved excellent generalization
ability to accurately predict the genotype likelihoods for
given sites. Of note, variant callers are largely depended on
the sequencing platforms, and manual parameter retuning is
necessary when generalizing these statistical models to other
sequencing technologies (Goodwin et al., 2016). However,
because DeepVariant is only based on deep learning algorithms
and has no specialized genomic knowledge or prior NGS
knowledge, it has less restriction while more transferability
(Poplin et al., 2017). In addition to Google, Deep Genomics is
also dedicated to interrogate biological problems from the point
of artificial intelligence, for instance, identifying disease-related
mutations from large available data sets of genomics (Mesko,
2017).

Neoantigen Discovery
The precise description of precision medicine is “an emerging
approach for disease treatment and prevention that takes into
account the individual variability in genes, environment and

lifestyle for each person,” according to the Precision Medicine
Initiative. One of such therapeutic methods is neoantigen-
based immunotherapy. As the name suggests, neoantigens
are practically antigens which are encoded specifically by
the mutated genes in tumor cells (Lu and Robbins, 2016).
Currently, three major classifications of tumor antigens have
been recognized, they are separately tumor-specific antigens,
tumor-associated antigens and cancer-germline/cancer testis
antigens (Gubin et al., 2015). Among these different kinds
of tumor antigens, neoantigens belong to the tumor-specific
antigen class, which are only presented in tumor cells and thus
would circumvent on-target but off-tumor reactivity (Bethune
and Joglekar, 2017). What’s more, because neoantigens are
tumor-specific, the central thymic tolerance would be bypassed
(Ott et al., 2017). Back in 2003, Lawrence A. and co-
workers first provided the evidence that single malignant cell
within human tumors could harbor thousands of randomly
generated mutations and these mutations formed a mutator
phenotype, which finally resulted in the heterogeneity of human
tumors (Loeb et al., 2003). Nevertheless, not all random
mutations produced by tumor cells could finally become
neoantigens. Among human cancer types, three tumors with
the highest frequencies of somatic mutations are melanoma,
lung squamous and lung adenocarcinoma (Alexandrov et al.,
2013; Martincorena and Campbell, 2015). Strikingly, most
melanomas have up to 10 somatic mutations for every megabase
of coding DNA, which indicates approximately 150 non-
synonymous mutations for expressed genes (Schumacher and
Schreiber, 2015). From this point, it is sufficient to give
rise to frequent formation of neoantigens. However, only
part of the tumors could produce such high frequencies
of somatic mutations. Some cancers like acute myeloid
leukemia (AML) and acute lymphoblastic leukemia, have low
mutational frequencies (Alexandrov et al., 2013; Martincorena
and Campbell, 2015). Non-synonymous mutations within
tumor genome are prerequisite for successful response. The
corresponding mutated proteins translated by those mutations
were first processed by proteasome into short peptides with
8–11 residues, then these peptides were transported into
endoplasmic reticulum with the help of the transporter associated
with antigen processing (Editorial, 2017). Once shuttled into
the ER, these peptides would be possible to bind with the
major histocompatibility complex class I (MHC-I), hence
could be recognized by CD8+ T cells (Bethune and Joglekar,
2017). In brief, only those mutated peptides which could
bind with MHC with high affinity and be recognized by T
cells, and finally trigger immune response, can be termed as
neoantigens.

In the past two decades, most of the discovered unique
neoantigens were identified through cDNA library screening,
such as the majority of neoantigens for melanoma, which were
summarized by Lu and Robbins (2016). This classical labor-
intensive screening method with low throughput was gradually
giving way to the high-throughput sequencing methods, for
example, the WES and RNA sequencing, with the development
of computing power and sequencing technologies. A typical
genomics-based identification framework for neoantigens
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comprises four steps. Firstly, tumor cell samples, as well as
normal tissue, are subjected to the WES to identify those
non-synonymous mutations and sometimes are also subjected
to RNA sequencing to determine the antigen abundance. Then,
the specific MHC subtypes of patient’s T cells are determined
through PCR-based HLA sequencing (Hosomichi et al., 2015).
Once completed, the responding mutant epitopes are analyzed
and predicted for binding activity with specific MHC subtypes
using in silico approaches to prioritize a list of candidate
epitopes. Finally, the predicted peptides are synthesized and
tested for relating phenotypes using experimental assays. More
comprehensive descriptions could be found in many excellent
reviews (Gubin et al., 2015; Schumacher and Schreiber, 2015;
Hundal et al., 2016; Bethune and Joglekar, 2017). During the
process of developing neoantigens, the accurate prediction of
mutation associated neoantigens using computational methods
is of great significance, which could accelerate the whole process
and hence save much time and money. To embrace challenges
of current computer-based neoantigen prediction, up to 30
universities, companies and those non-profit institutions got
together, and co-founded an alliance called Tumor Neoantigen
Selection Alliance (Editorial, 2017). Once a better prediction
algorithm was established, neoantigen-based immunotherapy
would galvanize a new wave of precision medicine.

The human MHC is synonymous with human leukocyte
antigen complex (HLA), which can be divided into three classes.
Amongst, MHC-I can be recognized by CD8 co-receptors of
T cells, while MHC-II can be recognized by CD4 co-receptors
(Janeway et al., 2001). Moreover, MHC-I, also known as HLA-
I, is extremely polymorphic, with more than ten thousand
alleles been discovered2. As far back as 2003, Morten and co-
workers used ANN approach to quantitatively predict the binding
affinity of peptides with HLA-A∗0204 (Nielsen et al., 2003).
Then in 2007, with the accumulation of peptide-binding data
and the prevalence of machine learning, they also developed the
NetMHCpan, a prediction program for peptide binding to any
HLA of known sequences (Nielsen et al., 2007; Table 2). They
exploited both the information of peptide sequences and the
residues of HLAs within 4.0 Å of the binding nanomer peptides,
to construct an ANN with only one hidden layer. After training
and optimizing the ANN model, NetMHCpan could achieve
good prediction results. Of note, NetMHCpan was not intended
to predict possible neoantigens at that time, though it is now used
to perform peptide-binding prediction as part of the pipeline for
neoantigen discovery and design. The latest version can be found
here3. In 2017, a remarkable clinical research about personal
neoantigen vaccine reported that four out of six vaccinated
patients with melanoma had no recurrence within 25 months,
and the other two patients who underwent disease recurrence
then received anti-PD-1 therapy and finally achieved complete
tumor regression (Ott et al., 2017). This work demonstrated the
safety and feasibility of neoantigen-based vaccine, as well as the
high efficiency of high-throughput sequencing combined with
neoantigen prediction using in silico methods like NetMHCpan.

2https://www.ebi.ac.uk/ipd/imgt/hla
3http://www.cbs.dtu.dk/services/NetMHCpan/

With the renaissance of deep learning in recent years, whether
it could be used to predict peptide binding to MHCs has drawn
wide attention, especially because of the potential application of
tumor neoantigen. Researchers from Johns Hopkins University
have developed five machine learning approaches, including
MHCnuggets-GRU, MHCnuggets-LSTM and three CNN-based
prediction methods, to predict peptide binding affinity to MHC-
I (Bhattacharya et al., 2017). In the meantime, they conducted
a benchmark study to compare these methods with existing
peptide prediction approaches like NetMHC (Lundegaard et al.,
2008) and NetMHCpan (Nielsen et al., 2007). It turned out that
both GRU and LSTM-based models could achieve equivalent
accuracy. MHCnuggets-GRU and MHCnuggets-LSTM are RNN-
based deep learning algorithms. They both comprise a fully
connected layer with 64 hidden units and are regularized with
a recurrent dropout. Another research group from Stanford
University School of Medicine has trained a prediction program
named Maria for accurate prediction of peptide binding with
MHC-II through RNN-based deep learning algorithm (Chen
et al., 2017). During the training process, they incorporated
several features including peptide sequences, specific context
within each protein, gene expression data and patient MHC
alleles to build the datasets for training Maria.

The advancement of computing power especially accelerated
GPU as well as the great breakthrough of deep learning
algorithms has made artificial intelligence become an active
research area. Increasingly accumulated biological data like
clinical samples and high-throughput sequencing data provides
massive information while deep learning approaches could make
full use of these data to find potential connections, which could
be of great importance for precision medicine. In addition to
the analysis of genetic variants and neoantigen prediction, deep
learning could also be helpful in predicting possible metabolic
sites of drugs and the polymorphism of metabolic enzymes
to provide basis for clinical medication (Hughes et al., 2015;
Lauschke and Ingelman-Sundberg, 2016). Nevertheless, some
limitations still exist: current databases about systematic clinical
information are still deficient and public accessible data is unable
to completely satisfy the demand of artificial intelligence. In
addition, the complexity of biological system makes prediction of
potential function based on existing data more elusive. Whether
it is a hit-or-miss affair for using artificial intelligence to solve
biological problems remains to be seen.

ANTIBODY-DRUG CONJUGATES (ADC)

In the development of ADCs, a monoclonal antibody which
targets on a specific antigen expresses in certain cancer cells
is often conjugated by a highly potent cytotoxic payload via
a suitable linker (Chari et al., 2014). The binding of ADCs
to the antigen targets on the cell surface will initiate the
internalization of the ADC-antigen complex. Upon entering the
cell, the warheads bind to their target and disrupt the cellular
function, which lead to irreversible cell death. General processes
including antibody internalization, degradation or recycling and
drug release are illustrated as Figure 9.
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FIGURE 9 | Antibody-drug conjugates (ADC) and ligand-targeted drugs share similar mechanism in disrupting cellular functions.

First Generation ADCs
Gemtuzumab ozogamicin (Mylotarg, Wyeth/Pfizer) is a typical
example of the first generation ADCs that suffer from the
heterogeneity problem and toxicity issues (Parigger et al., 2016).
Mylotarg consists of a monoclonal antibody targeted against
the CD33 antigen present on myeloblastic leukemia cells and
a cytotoxic calicheamicin derivative with a cleavable hydrazone
linker. It had achieved market approval under an accelerated
approval program by FDA in 2000 (Zuboy, 2000). However,
it failed to demonstrate its clinical endpoint benefit and met
with worrisome fatal toxicity rate in post marketing surveillance
acquired by FDA. Therefore, Mylotarg was withdrawn from
the market in 2010 (Lancet, 2013). Strikingly, after three open-
label clinical studies which lowered the administration dose and
frequency that confirmed its clinical benefit, Mylotarg was back
to the market for treating patients with newly diagnosed CD33-
positive AML or relapsed or refractory CD33-positive AML in
September 1, 2017. The returning of Mylotarg brings hopes to
patients suffered from these notorious diseases. However, the
noticeable hepatotoxicity, especially venoocclusive disease should
also be seriously considered as a result of that FDA has required
a black box warning in the prescribing information of Mylotarg
(Hedrich et al., 2017).

The toxic side effects in patients treated with Mylotarg
may be partly owing to the fact that the CD33 antigen target
shares expression on myeloid progenitor cells, thus affecting the
normal function of these cells and causing myelosuppression,
such as neutropenia and thrombocytopenia (Lancet, 2013).
Moreover, patients with CD33-negative leukaemias also showed

response to Mylotarg. One reason may ascribe the CD33-
independent mechanism that internalizing drugs without antigen
and antibody reaction, and another may attribute to the unstable
hydrazone linker which is liable to hydrolysis and likely to release
of its warhead in blood circulations (Singh and Erickson, 2009).
In addition, since the drug-linker moiety is attached to the
random lysines on the mono antibody, Mylotarg comprises 1–
8 cytotoxic payloads per IgG molecule as well as ∼50% naked
antibody which fails to conjugate any warheads (Jawad et al.,
2010). Moreover, Mylotarg selects a humanized antibody of IgG4
isotype which is likely to form half antibodies (one heavy and
one light chain being linked) in vivo and has limited ability
to exhibiting secondary immune functions, such as antibody-
dependent cell-mediated cytotoxicity (ADCC) and complement-
dependent cytotoxicity (Villamor et al., 2003). These poor
characteristics in heterogeneity and quality control have made
Mylotarg a formidable and risky drug in the long-term clinical
development. However, the second approval of Mylotarg by FDA
has confirmed the clinical benefit for treatment of CD33-positive
AML, thus giving confidence to the whole field of ADCs (Daver
et al., 2016).

Second Generation ADCs
Trastuzumab emtansine (also known as T-DM1 and Kadcyla,
developed by Genentech/Roche) compromises a microtubule
polymerization inhibitor DM1 that is conjugated via a stable
thioether linker to a humanized IgG1 anti-HER2 mAbs
(Doroshow and LoRusso, 2017). In 2013, T-DM1 was granted
specifically by FDA for treatment of HER2-positive metastatic
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breast cancer (Amiri-Kordestani et al., 2014). HER2 is a member
of the human epidermal growth factor receptor family, and
its overexpression has been reported in various cancer types,
especially human breast cancers (∼15–30%) and gastric cancers
(7–34%) (Iqbal and Iqbal, 2014). In recent years, HER2 has
become an important biomarker and target for diagnosing
and treating HER2-positive breast cancer patients. The early
approved drug Trastuzumab (Herceptin, Roche) has shown
adequate activity against HER2 receptors and was then used
to develop Trastuzumab emtansine that linked to a derivative
of maytansine which was too toxic when used as a free
cytotoxic agent (Gemmete and Mukherji, 2011). As shown
from a Phase III clinical trial (EMILIA) that compared the
safety and efficacy of T-DM1 with the combination therapy of
Capecitabine and Lapatinib in participants whose conditions
could not be controlled by Trastuzumab alone, T-DM1 exhibited
promising clinical activity and could prolong the survival by
at least 5 months of patients with advanced breast cancer
(Welslau et al., 2014). However, in another 3-arm, phase III
study (MARIANNE) that compared T-DM1 with or without
Pertuzumab versus Trastuzumab and Taxane therapy showed
unsatisfied outcomes in consideration of taking T-DM1 as a
first-line treatment solution of HER2-positive, advanced breast
cancer [overall survival (OS): 50.86 months with trastuzumab
plus taxane, 53.68 months with T-DM1, and 51.78 months with
T-DM1 plus pertuzumab] (Perez et al., 2017). So far, T-DM1
is still active in several clinical trials, and most of them are
combination therapies including T-DM1 with Pembrolizumab,
Neratinib, or Tucatinib.

The main improvements of second generation ADCs are
preferable drug quality controls and minimal toxicity effects.
Though FDA has added a warning label including hepatotoxicity,
cardiac toxicity and embryo-fetal toxicity to T-DM1 packaging,
less patients suffered from severe toxic effects than who received
standard therapy (lapatinib + capecitabine) in clinical trials
(Sendur et al., 2013). The reason why T-DM1 shows less systemic
toxicity may be partly due to its rather stable thiosuccinimide
linker which is less prone to being cleaved under physiological
conditions (Mohamed et al., 2018). However, it should be noted
that the thiosuccinimide moiety could slowly undergo reversible
transformation to thiols and alkyl maleimides through retro-
Michael elimination reaction. This reaction may lead to cytotoxic
drug loss and eventually compromise the efficacy of T-DM1 as
well as cause off-target toxicity. In terms of the drug-to-antibody
ratio (DAR), T-DM1 has an average DAR of 3.5 (from 0 to
8 linker-drug molecules per antibody) in aqueous formulation,
while the unconjugated antibodies remain only 5% which is much
better than the first generation ADCs which contains 50% naked
antibodies (Kim et al., 2014).

Besides, most second generation ADCs select IgG1 isotype
as their mAbs owing to its cost-effective manufacture and the
ability to support ADCC (Marcoux et al., 2015). The targeted
drug Trastuzumab alone could bind to HER2 receptors and
recruit immune effector cells that actively lyse the target cells,
and T-DM1 shares the same mechanisms of action. Notably,
companies still argue about the ADCC effect, caused either by
the naked antibodies or the IgG1 isotype, on whether ADCC

enhances the efficacy or lowers the tolerance when in use
(Chen et al., 2016). Nevertheless, the approved drug T-DM1 has
provided a good example of balancing both the efficacy and safety
for HER2-positive breast cancer patients.

Another second generation ADC that has been approved is
Brentuximab vedotin (Adcetris, Seattle Genetics). Brentuximab
vedotin has the same antibody isotype (IgG1) and shares
the properties of heterogeneity as T-DM1 but differs in its
protease-cleavable linker and the cytotoxic warheads which
contains monomethyl auristatin E (MMAE) moieties (Gualberto,
2012). Brentuximab vedotin was designed to target the cell-
membrane protein CD30 which often occurs on the surface of
malignant lymphoma cells but rarely on that of normal cells.
In November 2017, Brentuximab vedotin was granted approval
for the treatment of adult patients with CD30-expressing
mycosis fungoides (MF) or primary cutaneous anaplastic large
cell lymphoma (pcALCL) who have received prior systemic
therapy (Duvic et al., 2015). One of the main characteristics of
Brentuximab vedotin is the peptide-based linker that attached to
the hinge cysteines of the antibody. Once Brentuximab vedotin is
internalized by the targeted cells, the vesicle fuses with lysosomes
and the valine-citrulline linker is gradually cleaved by lysosomal
cysteine proteases, especially cathepsin B (van de Donk and
Dhimolea, 2012). As a result, the released drugs (MMAE) bind to
the tubulin protein and disrupt the normal microtubule function,
which leads to the final cancer cell death.

In summary, the second generation ADCs have improved
stability and showed better CMC (chemistry, manufacturing and
controls) characteristics owing to the improved linkers and the
change of IgG1 isotype, but are still in a dilemma about the
heterogeneity and systemic toxicity.

Third Generation ADCS
Vadastuximab talirine (Seattle Genetics) delivers the cytotoxic
payload specifically to malignant cells bearing CD33 antigens
(Stein et al., 2017). Just like the first generation ADC gemtuzumab
ozogamicin, it is designed for the treatment of AML or other
hematological cancer including myelodysplastic syndrome. So
far, there are five studies concerning the safety and efficacy
of vadastuximab talirine with three studies terminated and
no results posted. Compared with the second generation
ADC Brentuximab vedotin, Vadastuximab talirine also contains
a humanized IgG1 mAb and a protease-cleavable linker.
However, it differs in the warhead structure which contains a
pyrrolobenzodiazepine dimer that is optimized for overcoming
multidrug resistance via the efflux pumps (Kung Sutherland
et al., 2013). Notably, a breakthrough of Vadastuximab talirine
is making use of site-specific technologies to engineer residue
serine to residue cysteine (S239C) on both heavy chains. This
site-specific conjugation significantly increases the homogeneity
of Vadastuximab talirine, making it a uniform product with
average DAR of 2 in aqueous solution. Vadastuximab talirine has
demonstrated the efficacy and tolerability in AML animal models,
while the clinical benefit is yet to be seen (Borthakur, 2013).

In addition to the site-specific technologies, other state-of-
the-art technologies have also been used in the development
of third generation ADCs (Beck et al., 2017). Technologies
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including unnatural amino acid engineering, native cysteine
rebridging, glycoconjugation, enzyme-assisted ligation have been
well discussed in several recent reviews. A summary of the first,
second and third ADCs characteristics are illustrated in Table 3.

However, whether the aforementioned novel technologies
could assist in the development of more potent, stable,
homogenous and tolerable ADCs is eagerly expected by both
academia and industry as well as doctors and patients who count
on novel treatment methods and technologies to extend their
lives.

LIGAND-TARGETED DRUGS

Unlike antibody drug conjugates, ligand-targeted drugs employ
a target ligand with an appropriate linker to deliver the attached
payloads to the desired pathologic cell (Figure 9). Many aspects
have to be considered in design of ligand-targeted drugs
including the targeting ligand (concerning an appropriate cell
target), the proper linker and the toxic payloads (Srinivasarao and
Low, 2017).

Firstly, the target should be specific to the chosen conditions
relative to normal cells so that it can guarantee the safety of
the conjugates and control the toxicity from the unspecific
binding (Muro, 2012). Besides, the absolute number of targets
(usually receptors) should be adequate for the conjugates to
bind so that the potency can be assured. In addition, in terms
of ligand selection, the most important factor is the binding

affinity. The dissociation constant (Kd) of a ligand for its receptor
should be approximately 10 nM or lower so that a desired
therapeutic effect may be achieved. Also, the coupling between
the ligand and the linker should have little influence on the
ability of ligands to bind to their receptors (Leamon et al.,
2014).

Secondly, an optimal linker should attach both the ligand
and the payload in a steric proper manner. In addition, the
linker should have good properties of both pharmacokinetics
and pharmacodynamics and it is even better to be efficiently
cleavable within cells (Kurzrock et al., 2012). Especially for
the therapeutic agents, linkers that contain disulphide bond
(reduced by intracellular glutathione (GSH)) or peptide-based
linker (cleaved by cathepsin B in lysosomes) or even self-cleaving
linkers, including hydrazones and ester linkers (hydrolysed at low
pH in endosomes) are very popular in designing intracellular
release drugs (Vlahov and Leamon, 2012).

Thirdly, the cytotoxic payloads should have a high potency
with an IC50 of at least 10 nM, and preferably pM. In addition to
the high potency, the drugs should have a low molecular weight,
and easy derivatizability as well as good membrane permeability
(Erez et al., 2009). Although the ligand-drug conjugates enter
the cell via receptor-mediated endocytosis, the drugs upon being
cleaved within endosomes still have to pass across lipid bilayers.

All in all, the requirements for each part of ligand-targeted
drugs are very strict. Several key factors related to potency,
selectivity and physicochemical properties should be carefully
optimized in order to achieve a successful conjugate (Table 3).

TABLE 3 | Detailed information on antibody-drug conjugates (ADCs) and ligand-targeted drugs.

Name Target Linker Payload Indication Current stage

Antibody–drug conjugates (ADCs)

Gemtuzumab ozogamicin CD33 Cleavable hydrazone linker
attached to random lysines

Calicheamicin Acute myeloid leukemia Approved by FDA for the treatment
of newly diagnosed CD33-positive
acute myeloid leukemia in 2017

Trastuzumab emtansine HER2 Non-cleavable thioether linker
attached to random lysines

DM1 HER2+ metastatic breast
cancer

Entered market in 2013

Brentuximab vedotin CD30 Protease-cleavable linker
attached to hinge cysteines

MMAE Anaplastic large-cell lymphoma
and Hodgkin lymphoma

Entered market in 2013

Vadastuximab talirine CD33 Protease-cleavable linker
attached to engineered
heavy-chain cysteine (S239C)

SGD-1882 Acute myeloid leukemia PhaseIII for acute myeloid leukemia

Ligand-targeted therapeutic agents

177Lu-PSMA617 PSMA By labeling 177Lu Prostate cancer PhaseII in progressive metastatic
castration resistant prostate cancer

Vintafolide FR Disulphide bond linker Vinblastine Ovarian cancer; endometrial
cancer; adenocarcinoma of the
lung; solid tumor; non-small
cell lung cancer

PhaseI for ovarian cancer,
endometrial cancer has been
completed; Phases I and II for
non-small cell lung cancer, solid
tumor have been completed

Ligand-targeted imaging agents

Etarfolatide FR Peptide linker Technetium-99m FR-positive malignant diseases
(e.g., lung, kidney, brain or
ovarian cancer); autoimmune
diseases

Phase III in FR-positive cancer

OTL38 FR peptide linker NIR dye Fluorescence-guided surgery PhaseIII for fluorescence-guided
surgery of ovarian, breast, lung and
kidney cancers
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Following are several typical examples of ligand-targeted drugs
both for treatment and diagnosis application.

LIGAND-TARGETED THERAPEUTIC
AGENTS

177Lu-PSMA617
177Lu-PSMA617 represents as a novel radioligand therapy
for treatment of metastatic castration resistant prostate cancer
(Afshar-Oromieh et al., 2015). Traditional beam radiation
therapy often prevents tumor growth or its recurrence after
surgery by using ionizing radiation through a linear accelerator.
The ionizing radiation can damage the DNA of cancer cells
which finally results in cellular death, however, it hard to bypass
the surrounding healthy tissues. 177Lu-PSMA617 provides an
approach via linkage of a radioisotope to a targeting ligand that
can deliver the radioactive element specifically to the cancerous
cells. The ligand of 177Lu-PSMA617 anchors on prostate specific
membrane antigen (PSMA), which is a type II transmembrane
protein that expressed highly on most prostate cancer cells but
absent on most normal tissues (Afshar-Oromieh et al., 2016).
It serves as an important biomarker in clinic and versatile
diagnostic tools that are commercially available. 177Lu-PSMA617
utilizes a highly affinity ligand targeting on PSMA and directing
the radioactive atom Lutetium 177 to kill prostate cancer cells
(Kratochwil et al., 2016). Lutetium-177 (177Lu) delivers energetic
beta particles to the targeting cells that express PSMA while
sparing the healthy ones (Chakraborty et al., 2016). It should be
noted that once 177Lu-PSMA617 is injected, it travels through
the blood circulation and could target multiple sites of prostate
cancer cells, even including the metastatic cells. So far, 177Lu-
PSMA617 has been allowed to an open-label, phase 2 trial which
aims to determine the efficacy and safety of 177Lu-PSMA617
compared to cabazitaxel in patients with progressive metastatic
castration resistant prostate cancer (Das et al., 2016). Prostate-
specific antigen response rate, progression free survival, pain
response and adverse events will be recorded and the correlation
between positron-emission tomography (PET) imaging and
clinical benefit will be investigated.

Vintafolide
177Lu-PSMA617 is developed by a biopharmaceutical company,
Endocyte, which makes great efforts in building platform for
small molecule drug conjugates. Several ligand-targeted drugs
developed by Endocyte have entered clinical trials. Most of
the drugs aim at treating solid tumors and are constructed
of a small molecule targeting folate receptor. Vintafolide is a
typical example and it consists of a ligand targeting the folate
receptor and a cytotoxic chemotherapy payload, vinblastine.
Folate receptor is overexpressed on certain aggressively growing
cancers including ovarian cancers, non-small lung cancers, and
renal cell carcinoma (Graybill and Coleman, 2014). Folate, also
known as vitamin B9, has already been approved by FDA to
treat anemia and to prevent NTD during pregnancy. Once
folate-vinblastine binds to the folate receptor, it is subsequently
internalized through endocytosis process and releases the drug

to kill cancer cells (Vergote and Leamon, 2015). Vintafolide has
been tried in several aggressive cancers but failed to meet with
primary endpoint of progression-free survival (Luyckx et al.,
2014). The poor metabolic stability may contribute to the low
efficacy in clinical trials, and since there is no disclosed data
concerning safety problems, cautions should be held for such
types of conjugated drugs. In fact, most of the ligand-targeted
therapeutic agents developed have been questioned by clinical
trials. Agents include EC0225 (folate-mitomycin C), EC0489
(folate-vinblastine), EC17 (folate-FITC-hapten) have been halted
owing to the unsatisfied clinical outcomes (Amato et al.,
2013). However, an exploratory study of the folate-tubulysin
drug conjugates EC1456 in ovarian cancer and a phase IA/B
study in patients with advanced solid tumors are still ongoing
(Vergote et al., 2015). Taken together, whether the ligand-targeted
therapeutic agents could play a role in future precision medicine
remains to be seen.

LIGAND-TARGETED IMAGING AGENTS

In the era of individualized medicine, ligand-targeted imaging
agents have been appropriately matched with various kinds of
therapeutic targeting drugs. Several agents have shown promising
clinical outcomes in diagnosis thus benefiting both doctors and
patients for choosing the appropriate targeting drugs. Following
is two typical ligand-targeted agents that developed to diagnose
cancers or arthritis diseases.

Technetium (99mTc) Etarfolatide
Unlike ligand-targeted therapeutic agents, the imaging agents
from Endocyte company consist of a small molecule targeting
the folate receptor and an imaging item named technetium-99m
(Maurer et al., 2014). Technetium-99m (99mTc) is a commonly
used radioactive tracer which can emit detectable gamma rays
acquired by the medical equipment. Of note, the physical half-life
of 99mTc is relative short, which restricts its role in therapeutic
use but highlights its application in diagnosis.

Strikingly, in addition to the cancers that have high levels of
folate expression, autoimmune diseases such as arthritis, multiple
sclerosis and psoriasis which harbor activated macrophages
can also be detected by 99mTc etarfolatide. This utilization is
based on the principle that the expression of folate receptor is
selectively elevated on activated macrophages but not dormant
ones (Xia et al., 2009). And macrophages are only activated
at the site of inflammation owing to autoimmune disease or
injury. Technetium (99mTc) etarfolatide was originally designed
to be a companion of ligand-targeted therapeutic agents, and
has been investigated in several clinical trials for identification
of its biodistribution as well as its safety and efficacy (Morris
et al., 2014). In a clinical trial that aimed to determine whether
99mTc etarfolatide could target sites of inflammation in the joints
or organs in patients with autoimmune diseases, several patients
showed obvious 99mTc etarfolatide uptake in their multiple joints
of hands and feet (Xia et al., 2009). This clinical trial has provided
the evidence that folate-conjugated imaging agents could detect
the inflammation area where activated macrophages
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are enriched in patients with rheumatoid., since the ligand-
targeted therapeutic agents have failed to confirm its efficacy in
clinic, the further development of 99mTc etarfolatide has also
been halted.

OTL38
OTL38, like Technetium (99mTc) etarfolatide, contains a folate
receptor-targeting ligand which is specially used for imaging
of folate receptor overexpressing tumors (Kelderhouse et al.,
2013). OTL38 consists of a fluorescent near infrared (NIR) dye
which allows for the easy visualization of fluorescent tumor cells
(Lee et al., 2017). This folate receptor-targeted NIR probe is
aimed at assisting surgeons in identification of the malignant
lesions and increasing the successful rate when performing
complete surgical resection (Predina et al., 2017b). OTL38 is
currently being developed in several clinical trials, including a
phase 3 ovarian cancer study (with safety already be tested in a
phase 2 study), and a phase 2 exploratory study of identifying
pulmonary nodules (van Dam et al., 2011; Hoogstins et al.,
2016). Moreover, treatments of additional cancer types including
pituitary neoplasms, renal cell carcinoma, bladder cancer and
gastric cancer are also undergoing clinical trial for testing OLT38’s
safety and efficacy (Predina et al., 2017a, 2018).

In summary, although currently no product of ligand-targeted
drugs has entered into the market, it still holds great hope for
the development of these conjugates for treatment and especially
diagnosis of patients with specific biomarker (Assaraf et al., 2014).
Together with ADCs, they will serve as precise powerful weapons
for certain diseases, especially cancer.

FURTHER PERSPECTIVE

The discovery of potent and selective modulators will continue
to be central to revealing the physiological functions of isozymes
and to the development of new therapeutic or diagnostic agents
for many diseases. In this review, we focused on strategies and
applications for precision drug design. SBDD, computational
modeling and simulation approaches, deep learning based
genetic variant discovery and neoantigen prediction, ADCs,
and ligand-targeted conjugate drugs, as well as ligand-targeted
imaging agents are discussed in detail. Through combination of
various kinds of strategies, novel therapeutic strategies based on

precision drug design are highly expected. Recently, screening
for inhibitor specificity using multiprotein complexes rather than
purified proteins or the addition of requisite protein-protein
interaction assay is advocated. Strikingly, a comprehensive
understanding of the complex physiological function of isoforms
and cell-type specific protein complexes with their substrates and
modulators becomes essentially important in the design of highly
potent and selective inhibitors.

With the increasingly fundamental role of precision medicine
in drug discovery and development, it could benefit for
both targeted drug design and clinical trial design. In the
meantime, personalized approach provides new challenges for
better consideration of biomarker related clinical indication. In
addition to the various targeted drug design strategies, precision
immunotherapy approaches especially monoclonal antibodies
targeted tumor-specific antigens, cell-based therapy like chimeric
antigen receptor (CAR) T cell therapy, and vaccines are also
important for precision therapies. In addition, various drug
combinations could make great contributes to overcoming drug
resistance and providing better efficacy. We believe that by
integrating all kinds of strategies, it is promising to design highly
selective bioactive molecules for specific molecular recognition in
complex biological systems and will ultimately provide precision
medicine beneficial for human.
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