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Shank3 is an abundant excitatory postsynaptic scaffolding protein implicated

in various neurodevelopmental disorders, including autism spectrum disorder

(ASD), Phelan-McDermid syndrome, intellectual disability, and schizophrenia.

Shank3-mutant mice show various molecular, synaptic, and behavioral

deficits, but little is known about how transcriptomic phenotypes vary

across different ages, brain regions, and gene dosages. Here, we

report transcriptomic patterns in the forebrains of juvenile and adult

homozygous Shank3-mutant mice that lack exons 14–16 and also the

prefrontal, hippocampal, and striatal transcriptomes in adult heterozygous

and homozygous Shank3-mutant mice. The juvenile and adult mutant

transcriptomes show patterns opposite from and similar to those observed

in ASD (termed reverse-ASD and ASD-like patterns), respectively. The juvenile

transcriptomic changes accompany synaptic upregulations and ribosomal

and mitochondrial downregulations, whereas the adult transcriptome show

opposite changes. The prefrontal, hippocampal, and striatal transcriptomes

show differential changes in ASD-related gene expressions and biological

functions associated with synapse, ribosome, mitochondria, and spliceosome.

These patterns also differ across heterozygous and homozygous Shank3-

mutant mice. These results suggest age, brain region, and gene dosage-

differential transcriptomic changes in Shank3-mutant mice.
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Introduction

The Shank family proteins are postsynaptic scaffolding
proteins that regulate excitatory synaptic development and
function (Boeckers et al., 1999; Naisbitt et al., 1999; Sheng
and Sala, 2001; Kim and Sheng, 2004; Sheng and Kim, 2011).
Among the three known Shank family proteins, Shank2 and
Shank3 have been associated with various brain disorders,
including autism spectrum disorder (ASD), Phelan-McDermid
syndrome, intellectual disability, and schizophrenia (Durand
et al., 2007; Moessner et al., 2007; Gauthier et al., 2009;
Berkel et al., 2010; Leblond et al., 2014; Phelan et al., 2022).
Numerous studies on the functions of Shank2 and Shank3,
including those using mouse genetic approaches, have provided
substantial insights into the mechanisms underlying Shank2-
or Shank3-related brain disorders (Bozdagi et al., 2010; Peca
et al., 2011; Schmeisser et al., 2012; Won et al., 2012; reviewed
in Sheng and Kim, 2000, 2011; Boeckers et al., 2002; Bourgeron,
2009; Grabrucker et al., 2011; Sala et al., 2015; Schmeisser,
2015; Monteiro and Feng, 2017; Mossa et al., 2017, 2018;
De Rubeis et al., 2018; Eltokhi et al., 2018; Ey et al., 2020;
Jung and Park, 2022). However, it remains unclear how the
mechanistic deviations observed in Shank3-mutant mice differ
by age or brain region under different gene-dosage conditions.
Investigating gene-dosage effects is important, considering that
there have been debates regarding whether heterozygous or
homozygous Shank3-mutant mice provide a better model for
human ASD conditions.

Here we compared transcriptomes of the forebrain regions
of juvenile (P25) and adult (P60) Shank3-homozygous (HM)
mice. In addition, we analyzed transcriptomic patterns in
the prefrontal cortex (termed cortex hereafter), hippocampus,
and striatum regions of adult (∼postnatal day 90 or P90)
Shank3 heterozygous (HT)- and homozygous (HM)-mutant
mice lacking exons 14–16 (Shank3-HT/HM mice). We also
compared these results with those previously reported from
Shank2-mutant mice (Lee et al., 2021; Yoo et al., 2022). Our
findings collectively indicate that there are age, brain region,
and gene dosage-differential transcriptomes within and between
Shank2- and Shank3-mutant mice, which may provide insight
into altered biological functions and ASD-related/risk gene
expression patterns.

Materials and methods

Animals

Shank3-mutant mice lacking exons 14–16 have been
reported previously (Yoo et al., 2018, 2019) and were generated
by Biocytogen. Mice were maintained at the mouse facility
of the Korea Advanced Institute of Science and Technology

(KAIST); they were fed ad libitum and maintained according to
the Animal Research Requirements of KAIST.

RNA-seq analysis

The abundance of the transcripts was quantified using
Salmon (v1.1.0) (Patro et al., 2017) via a quasi-mapping
approach with GC bias correction (–gcBias). The results were
imported to R (v.4.1.3) using Tximport (Soneson et al., 2015)
package, which was followed by the analysis of differential
gene expression using R/Bioconductor DEseq2 (v1.30.1) (Love
et al., 2014). Raw read counts were normalized to gene size
and fitted to a negative binomial distribution. The p values
were adjusted through multiple comparisons using Benjamini–
Hochberg correction to obtain adjusted p values. Genes with
adjusted p values less than 0.05 were considered as differentially
expressed genes (DEGs). Volcano plots were generated using R
ggplot2 (v.3.3.3) package.

Gene Set Enrichment Analysis (GSEA)1 (Subramanian
et al., 2005) was used to determine whether WT and Shank3-
mutant transcripts show significant enrichments for priori-
defined gene sets. GSEA was performed using GSEAPreranked
(gsea-3.0.jar) module on gene set collections downloaded from
Molecular Signature Database (MSigDB) v7.4.2 GSEAPreranked
was performed using the list of all genes expressed, ranked
by the fold changes multiplied by the inverse of the p values
with recommended default settings (1,000 permutations and a
classic scoring scheme). The False Discovery Rate (FDR) was
calculated to control for false positive outcomes by comparing
the tails of the observed and null distributions derived from the
1,000 gene set permutations for a given Normalized Enrichment
Score (NES). The gene sets with an FDR of less than 0.05
were considered as significant enrichment. Integration and
visualization of the GSEA results were performed using the
EnrichmentMap Cytoscape App (version 3.9.0) (Merico et al.,
2010; Isserlin et al., 2014).

Results

DEG analysis and GSEA of P25-Shank3
and P60-Shank3 transcripts

To explore age-dependent transcriptomic changes in
juvenile and adult Shank3-homozygous mutant mice
lacking exons 14–16 (Yoo et al., 2018, 2019) at P25 and
P60, respectively, we set out to perform RNA-Seq analysis
of transcripts from mouse forebrain lacking the olfactory
bulb (Figure 1A and Supplementary Table 1). The analysis

1 http://software.broadinstitute.org/gsea

2 http://software.broadinstitute.org/gsea/msigdb
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FIGURE 1

Differentially expressed gene (DEG) analysis and gene set enrichment analysis (GSEA) of P25-Shank3 and P60-Shank3 transcripts. (A) Summary
of the DEGs from the forebrain of homozygous Shank3-mutant mice at P25 and P60 (P25-Shank3 and P60-Shank3 mice), compared with
wild-type/WT mice at P25 and P60. DEGs were defined by transcript changes with adjusted p value < 0.05 (n = 3 mice for P25-WT, P25-Shank3,
P60-WT, and P60-Shank3). (B) Venn diagrams showing DEGs that overlap between P25-Shank3 and P60-Shank3 mice. (C,D) Volcano plots
showing DEGs from P25-Shank3 and P60-Shank3 mice. The DEGs (adjusted p value < 0.05) were further color-coded to indicate those with
stronger fold changes (>1.5) (see Supplementary Table 2 for full results). Genes with # labels indicate those with p values beyond the indicated
p-value ranges (n = 3 mice for P25-WT, P25-Shank3, P60-WT, and P60-Shank3). (E,F) GSEA of P25-Shank3 and P60-Shank3 transcripts were
performed using the gene sets of the cellular component (CC) domain. The results are shown as lists of the top-five positively/negatively
enriched gene sets (top; see Supplementary Table 3 for full results) and functional clustering of enriched gene sets, which was performed using
the EnrichmentMap Cytoscape App (bottom). The sizes and colors of the circles in the EnrichmentMap results indicate the sizes of gene sets
and the extents of positive/negative (red/blue) enrichments, respectively (n = 3 mice for P25-WT, P25-Shank3, P60-WT, and P60-Shank3).
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of DEGs revealed relatively small sets of DEGs that were
up- or downregulated in P25-Shank3 or P60-Shank3
mice (Figure 1A and Supplementary Table 2), and even
smaller sets that overlapped between P25-Shank3 and P60-
Shank3 mice (Shank3 and Ccdc40) (Figure 1B). In the
P25-Shank3 transcripts, the strongly upregulated DEGs
included Yy2 and Fancm and the strongly downregulated
DEGs included Shank3, as shown by the volcano plot
(Figure 1C). In the P60-Shank3 transcripts, the strongly
upregulated DEGs included Gstp1 and Lamb3 and the
strongly downregulated DEGs included Shank3, Pcdha11,
and Rpl10 (Figure 1D). CCDC40, a coiled-coil protein
whose transcript levels are increased in both P25-Shank3
and P60-Shank3 transcripts, is known to regulate motile cilia
function and left-right axis formation with implications in
the primary ciliary dyskinesia (Becker-Heck et al., 2011).
These results indicate that Shank3 deletion in juvenile
and adult mice is associated with relatively small sets of
DEGs.

The scarcity of DEGs from P25-Shank3 and P60-Shank3
mice prompted us to apply GSEA. The results of GSEA
performed using genes in the cellular component (CC) domain
of the C5 gene sets indicated that P25-Shank3 transcripts were
positively and moderately enriched for gene sets associated
with synaptic functions (synaptic membrane, glutamatergic
synapse, and postsynaptic membrane), as indicated by top-
five most strongly enriched gene sets (Figure 1E, top and
Supplementary Table 3). A similar conclusion was drawn
from our functional clustering of positively enriched gene
sets (postsynaptic membrane), which was performed using
EnrichmentMap Cytoscape App (Figure 1E, bottom). P25-
Shank3 transcripts were negatively and strongly enriched
for gene sets associated with ribosomes (ribosomal subunit,
ribosome, and large ribosomal subunit) and mitochondria
(organelle inner membrane, mitochondrial protein-containing
complex), as supported by the top-five gene sets and the
EnrichmentMap results (Figure 1E). GSEA performed using
the gene sets in the BP and MF domains of the C5 database
yielded partly similar results; positive enrichments for synapse-
related gene sets and negative enrichments for ribosome
(translation)/mitochondria (electron transport, oxidative
phosphorylation, and ATP synthesis)-related gene sets in
the BP domain, and negative enrichments of P25-Shank3
transcripts for ribosome/mitochondria-related gene sets in the
MF domain (Supplementary Figure 1 and Supplementary
Table 3).

Gene set enrichment analysis of P60-Shank3 transcripts
revealed strong positive enrichments for gene sets associated
with ribosomes and mitochondria, as shown by the top-
five gene sets and EnrichmentMap results (Figure 1F and
Supplementary Table 3). In addition, P60-Shank3 transcripts
were negatively but moderately enriched for synapse-related
gene sets (receptor complex and synaptic membrane), as

shown by the top-five gene sets and EnrichmentMap results
(Figure 1F). GSEA using the gene sets in the BP and MF
domains of the C5 database also yielded similar results;
positive enrichments for ribosome/mitochondria-related
gene sets in the BP domain, and positive enrichments
for ribosome/mitochondria-related gene sets in the MF
domain (Supplementary Figure 2 and Supplementary
Table 3).

These findings indicate that Shank3 mice show age-
dependent and nearly opposite transcriptomic patterns at
juvenile and adult stages: Synaptic and ribosomal/mitochondrial
genes are up- and downregulated, respectively, at P25, whereas
opposite changes are observed at P60.

ASD-related patterns in P25-Shank3
and P60-Shank3 transcripts

We next tested if P25-Shank3 and P60-Shank3 transcripts
are enriched for ASD-related/risk gene sets. P25-Shank3
transcripts were negatively enriched for a gene set containing
genes that are upregulated in ASD (Co-Exp Up M16 Voineagu)
and positively enriched for gene sets containing genes that
are downregulated in ASD (DEG Down Voineagu, and Co-
Exp Down M12 Voineagu) (Voineagu et al., 2011; Werling
et al., 2016; Figure 2A, Supplementary Figure 3, and
Supplementary Table 4). In addition, P25-Shank3 transcripts
were positively enriched for the SFARI gene set, which is
usually downregulated in ASD, and other gene sets, such
as FMRP Targets, DeNovoMissense, DeNovoVariants, and
AutismKB (Figure 2A). These results suggest that P25-Shank3
transcripts display a transcriptomic pattern that is largely
opposite to those observed in ASD. In contrast, P60-Shank3
transcripts were negatively enriched for ASD-risk gene sets
(Figure 2A), and thus conformed to the pattern observed
in ASD. The opposite enrichments of P25-Shank3 and P60-
Shank3 transcripts for two gene sets (SFARI Genes [All] and
FMRP Targets) involved ∼50% of the genes in each gene set
and small correlative fold changes of co-up/down regulations
(Supplementary Figure 4). These results suggest that P25-
and P60-Shank3 transcripts show transcriptomic patterns that
are largely opposite to each other, with a reverse-ASD pattern
in juvenile stages converting to an ASD-like pattern in adult
stages.

In GSEA performed using cell type-specific gene sets
(Albright and Gonzalez-Scarano, 2004; Cahoy et al., 2008;
Kang et al., 2011; Zeisel et al., 2015; Werling et al., 2016;
Velmeshev et al., 2019, 2020; Supplementary Table 4),
P25-Shank3 transcripts were positively enriched for neuron-
related gene sets and negatively enriched for glia-related
gene sets (Figures 2B,C). This pattern is largely opposite
to that observed in ASD, which typically exhibits decreased
neuronal/oligodendrocytic gene expression and increased
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FIGURE 2

Autism spectrum disorder (ASD)-related patterns in P25-Shank3 and P60-Shank3 transcripts. (A) Gene set enrichment analysis (GSEA) results for
P25- and P60-Shank3 transcripts relative to ASD-related gene sets that are upregulated (DEG Up Voineagu and Co-Exp Up M16 Voineagu) and
downregulated (DEG Down Voineagu and Co-Exp Down M12 Voineagu) in ASD, as well as ASD-risk gene sets (SFARI Genes [All], SFARI Genes
[High Confidence], FMRP Targets, DeNovoMissense, DeNovoVariants, and AutismKB) (n = 3 mice [P25-Shank3 and P60-Shank3]) (n = 3 mice
[P25-Shank3 and P60-Shank3]). (B) GSEA results for P25- and P60-Shank3 transcripts for cell-type-specific gene sets (glutamate and GABA
neurons) (n = 3 mice [P25-Shank3 and P60-Shank3]). (C) GSEA results for P25- and P60-Shank3 transcripts for cell-type-specific gene sets (glial
cells) (n = 3 mice [P25-Shank3 and P60-Shank3]).

astrocytic/microglial gene expression (Voineagu et al.,
2011; Werling et al., 2016). The pattern in P60-Shank3
transcripts contrasted with that in P25-Shank3 transcripts by
being negatively enriched for neuron-related gene sets, but
resembled that in P25-Shank3 transcripts by being negatively
enriched for oligodendrocyte/microglia-related gene sets
(Figures 2B,C).

These GSEA results collectively suggest that P25- and
P60-Shank3 transcripts display reverse-ASD and ASD-like
transcriptomic patterns, respectively, based their enrichment
patterns for gene sets that are up/downregulated in ASD,
as well as those belonging to ASD-risk and cell type-
specific gene sets.

DEG analysis and GSEA of transcripts
from the cortex, hippocampus, and
striatum of Shank3-HT and Shank3-HM
mice

We next tested if different brain regions and gene deletion
dosages affect the transcriptomic patterns in adult (P90)
heterozygous and homozygous Shank3-mutant mice (Shank3-
HT and Shank3-HM mice, respectively; 5 mice per group) by
performing RNA-Seq analyses of transcripts from the prefrontal
cortex (termed cortex hereafter), hippocampus, and striatum
(Figure 3A and Supplementary Table 5). These brain regional
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FIGURE 3

Differentially expressed gene (DEG) analysis of transcripts from the cortex, hippocampus, and striatum of Shank3-HT and Shank3-HM mice.
(A) Outline of the DEGs from the cortex, hippocampus, and striatum of adult Shank3-heterozygous (HT) and Shank3-homozygous (HM) mutant
mice, compared with WT mice. DEGs were defined by transcriptional changes with adjusted p value < 0.05 (n = 5 mice for
cortex/hippocampus/striatum regions in WT, Shank3-HT, and Shank3-HM mice). (B–D) Volcano plots showing DEGs from the cortex,
hippocampus, and striatum of adult Shank3-heterozygous (HT) and Shank3-homozygous (HM) mutant mice. The DEGs (adjusted p
value < 0.05) were further color-coded to indicate those with stronger fold changes (>1.5). Shank3# in the Shank3-HM volcano plot indicates a
p value beyond the indicated p-value ranges (n = 5 mice for cortex/hippocampus/striatum regions in WT, Shank3-HT, and Shank3-HM mice).
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transcriptomes were well separated in a clustering analysis
(Supplementary Figure 5).

All three brain regions of the Shank3-HT and Shank3-
HM mice displayed small numbers of DEGs, except for the
striatal region of Shank3-HM mice (Figure 3A). In volcano
plots and the list of top DEGs, Shank3 was identified in all six
groups of downregulated DEGs (cortex/hippocampus/striatum
of Shank3-HT/HM mice) (Figures 3B–D and Supplementary
Table 6), indicating that the RNA-Seq results were generally
reliable. The most prominent identified DEGs included
Znf729 (Shank3-HT cortical, downregulated), Trh (Shank3-HM
hippocampal, upregulated), Mir670hg (Shank3-HM striatal,
upregulated), and Gpx6 (Shank3-HM striatal, downregulated).
DAVID analysis of the striatal DEGs (n = 101) did not yield any
significant biological GO term.

We next performed GSEA to examine whether the
cortical/hippocampal/striatal Shank3-HT and Shank3-HM
transcripts were associated with specific biological functions.
The cortical Shank3-HT transcripts were positively enriched for
gene sets associated with ribosome/mitochondrial functions,
as supported by the top-five gene sets and EnrichmentMap
gene set clustering (Figure 4A and Supplementary Table 7).
The cortical Shank3-HT transcripts were negatively enriched
for gene sets associated with synaptic functions (Figure 4A).
The cortical Shank3-HM transcripts were positively enriched
for gene sets associated with spliceosomes and ribosomes,
as supported by the top-five gene sets and EnrichmentMap
gene set clustering, and negatively enriched for gene sets
associated with synapses (neuronal synapse, presynapse, active
zone) (Figure 4B). These results indicate that Shank3-HT and
Shank3-HM cortical transcripts show similar upregulations of
ribosome-related genes and downregulations of synapse-related
genes.

The hippocampal Shank3-HT transcripts were
positively enriched for synapse (pre/postsynaptic
membrane)-related gene sets and negatively enriched
for ribosome/mitochondria/spliceosome-related gene sets
(Figure 4C). The hippocampal Shank3-HM transcripts were
positively and weakly enriched for synapse-related gene sets
and negatively enriched for ribosome/mitochondria, and
spliceosome-related gene sets (Figure 4D). These results
indicate that hippocampal Shank3-HT and Shank3-HM
show similar patterns of synapse-related gene upregulation
and ribosome/mitochondria- and spliceosome-related gene
downregulation. Interestingly, these patterns are largely
opposite those observed in the cortical Shank3-HT/HM
transcripts (Figures 4A,B).

The striatal Shank3-HT transcripts were positively enriched
for ribosome/mitochondria/ECM-related gene sets and
negatively enriched for chromosome/spliceosome/cilia-related
gene sets (Figure 4E). The striatal Shank3-HM transcripts were
positively enriched for ribosome-related gene sets and did not
exhibit any significant negative enrichment (Figure 4F). These
results indicate that the striatal Shank3-HT and Shank3-HM

transcript patterns are dissimilar to each other, except for the
ribosome-related gene upregulation, and also dissimilar to the
cortical and hippocampal patterns.

ASD-related patterns in cortical,
hippocampal, and striatal Shank3-HT
and Shank3-HM transcripts

We next tested whether the cortical, hippocampal, and
striatal transcripts from Shank3-HT and Shank3-HM mice
were enriched for ASD-related/risk gene sets. The cortical
Shank3-HT transcripts were negatively enriched for the gene
set downregulated in ASD (Co-Exp Down M12 Voineagu)
(Voineagu et al., 2011; Werling et al., 2016) and negatively
enriched for ASD-risk gene sets (SFARI Genes [All] and
FMRP Targets) (Figure 5A, Supplementary Figure 6, and
Supplementary Table 4). The cortical Shank3-HM transcripts
showed similar ASD-like patterns.

In contrast, the hippocampal Shank3-HT and Shank3-
HM transcripts displayed strong reverse-ASD patterns, as
the transcripts were positively enriched for all six ASD-risk
gene sets (SFARI Genes [All and High Confidence], FMRP
Targets, DeNovoMissense, DeNovoVariants, and AutismKB)
(Figure 5A). In contrast, the striatal Shank3-HT and Shank3-
HM transcripts displayed ASD-like patterns: The transcripts
were positively enriched for gene sets that are upregulated in
ASD (DEG Up Voineagu, and Co-Exp Up M16 Voineagu),
but no enrichment was observed for the ASD-risk gene sets
(Figure 5A).

When GSEA was performed using cell type-specific gene
sets, the results revealed that cortical Shank3-HT transcripts
were negatively enriched for neuron-related gene sets, indicative
of an ASD-like pattern. However, they were positively enriched
for oligodendrocyte-related gene sets, which weakened the ASD-
like pattern (Figures 5B,C). The cortical Shank3-HM transcripts
were negatively enriched for neuron-related gene sets, which
was similar to the ASD-like pattern seen in the cortical Shank3-
HT transcripts. However, they were positively enriched for
oligodendrocyte-related gene sets and negatively enriched for
astrocyte/microglia-related gene sets, which weakened the ASD-
like pattern.

The hippocampal Shank3-HT and Shank3-HM transcripts
were positively enriched for neuron/oligodendrocyte-related
gene sets, indicative of a reverse-ASD pattern. However, they
were positively enriched for astrocyte/microglia-related gene
sets, which weakened the reverse-ASD pattern (Figures 5B,C).
The striatal Shank3-HT and Shank3-HM transcripts were
negatively enriched for neuron-related gene sets and positively
enriched for astrocyte/microglia-related gene sets, albeit to
lesser extents in Shank3-HM transcripts, indicative of an
ASD-like pattern. However, they were positively enriched for
oligodendrocyte-related gene sets, which weakened the ASD-
like pattern (Figures 5B,C).
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FIGURE 4

Gene set enrichment analysis (GSEA) of transcripts from the cortex, hippocampus, and striatum of Shank3-HT and Shank3-HM mice. (A–F)
GSEA results obtained for cortical, hippocampal, and striatal Shank3-HT and Shank3-HM transcripts using the gene sets in the cellular
component (CC) domain, as represented by the list of top-five positively/negatively enriched gene sets (top; see Supplementary Table 7 for full
results) and functional clustering of enriched gene sets performed using the EnrichmentMap Cytoscape App (bottom). The sizes and colors of
the circles in the EnrichmentMap results indicate the extents and directions (positive/negative; red/blue) of the enrichments, respectively (n = 5
mice for cortex/hippocampus/striatum regions in WT, Shank3-HT, and Shank3-HM mice).
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FIGURE 5

Autism spectrum disorder (ASD)-related patterns in the transcripts from the cortex, hippocampus, and striatum of Shank3-HT and Shank3-HM
mice. (A) Gene set enrichment analysis (GSEA) results for the cortical, hippocampal, and striatal Shank3-HT and Shank3-HM transcripts:
Enrichment patterns for ASD-related gene sets that are upregulated (DEG Up Voineagu and Co-Exp Up M16 Voineagu) or downregulated (DEG
Down Voineagu and Co-Exp Down M12 Voineagu) in ASD, as well as for ASD-risk gene sets (SRARI Genes [All], SFARI Genes [High Confidence],
FMRP Targets, DeNovoMissense, DeNovoVariants, and AutismKB) (n = 5 mice for cortex/hippocampus/striatum regions in WT, Shank3-HT, and
Shank3-HM mice). (B) GSEA results for the cortical, hippocampal, and striatal Shank3-HT and Shank3-HM transcripts, indicating enrichment
patterns for cell type-specific gene sets (glutamate and GABA neurons) (n = 5 mice for cortex/hippocampus/striatum regions in WT, Shank3-HT,
and Shank3-HM mice). (C) GSEA results for the cortical, hippocampal, and striatal Shank3-HT and Shank3-HM transcripts, indicating enrichment
patterns for cell type-specific gene sets (glial cells) (n = 5 mice for cortex/hippocampus/striatum regions in WT, Shank3-HT, and Shank3-HM
mice).

These results from GSEA performed using ASD-related/risk
and cell type-specific gene sets collectively suggest that
cortical, hippocampal, and striatal Shank3-HT and Shank3-HM
transcripts show both shared and distinct patterns wherein: (1)
Shank3-HT and Shank3-HM show similar ASD-like patterns

(limited gene dosage effects). (2) The cortex and striatum show
ASD-like patterns, whereas the hippocampus shows a reverse-
ASD pattern. (3) The ASD-like patterns in the cortex and
striatum involve differential gene sets (the ASD-risk vs. ASD-
related gene sets, respectively).
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Discussion

Here we investigated transcriptomic changes in the
prefrontal cortex, hippocampus, and striatum regions of
adult Shank3-HT and Shank3-HM mice. In addition, we
compared the transcriptomes from juvenile and adult
Shank3-HM mice. The results point to age, brain region,
and gene dosage-differential transcriptomic changes
involving altered biological functions and expressions of
ASD-related/risk genes in Shank3-mutant mice, which
also differ from the overall patterns observed in Shank2-
mutant mice (comparisons summarized in Figures 6, 7 and
discussed below).

Transcriptomic changes in
Shank3-mutant mice

Juvenile (P25) and adult (P60) Shank3-HM mice
showed largely contrasting transcriptomic changes in the
forebrain. GSEA of P25 Shank3-HM transcripts revealed
upregulation of synapse-related genes and downregulation
of ribosome/mitochondria-related genes, corresponding to
reverse ASD-like transcriptomic changes (Figures 1, 2). In
contrast, P60 Shank3-HM transcripts showed downregulated
synapse-related genes and upregulated ribosome/mitochondria-
related genes, representing ASD-like transcriptomic patterns.
These results suggest that these mice undergo a strong age-
dependent transcriptomic change from a reverse-ASD pattern
to an ASD-like pattern through the alteration of synaptic
gene expression. A similar age-dependent change from a
reverse-ASD to ASD-like pattern was previously reported in
the mPFC region of Shank2-HM mice (exons 6–7), although
the altered biological functions and ASD-related/risk genes
were different (Lee et al., 2021). Despite this difference, the
results from Shank2 and Shank3 mice collectively indicate at the
minimum age-dependent transcriptomic inversion with respect
to ASD-related/risk gene expressions.

Whether this age-dependent change in Shank3 forebrain
transcriptomes correlates with altered neuronal and synaptic
functions remains to be determined. Notably, however,
the synaptic gene upregulations in the P25 Shank3-mutant
forebrain correlate with the increased frequency of excitatory
synaptic transmission in the juvenile Shank3-mutant mPFC
(Yoo et al., 2019), although it remains unclear whether the adult
Shank3-mutant mPFC would display suppressed excitatory
transmission at P60 in line with the transcriptomic changes.
It is possible that the early postnatal increase in excitatory
synaptic function in Shank3-mutant mice may lead to an
opposite change (excitatory synaptic depression) at adult stages.
In support of this possibility, early and excessive excitatory
synaptic functions have been shown to cause deleterious long-
lasting effects in other mouse models of ASD, including Shank3B
mice (exons 13–16 deletion) (Peixoto et al., 2016), Shank2 mice

(Chung et al., 2019), and SynGAP1 mice (Clement et al., 2012,
2013; Aceti et al., 2015; reviewed in Chung et al., 2021).

Gene Set Enrichment Analysis of transcripts from the
different brain regions of adult Shank3-HT and Shank3-HM
mice revealed the following notable patterns (Figures 3–5):
(1) The cortical, hippocampal, and striatal transcripts show
distinctly altered biological functions and ASD-related/risk gene
expression patterns. (2) Shank3-HT and Shank3-HM transcripts
in a given brain region display largely similar patterns in
biological functions and ASD-related/risk gene expression,
suggesting that the gene dosage effect is small. (3) Synapse-
and ribosome/mitochondria-related gene expression patterns
frequently change in opposite directions consistently across
all three brain regions. (4) Upregulated synapse-related genes
and downregulated ribosome/mitochondria-related genes are
frequently associated with reverse-ASD transcriptomic changes,
and vice versa. (5) The hippocampal HT/HM transcripts display
a reverse-ASD pattern, whereas the cortical and striatal HT/HM
transcripts display ASD-like patterns. These patterns are partly
similar to and distinct from those observed in Shank2-mutant
mice (see below).

Whether these brain region-differential transcriptomic
changes are associated with parallel changes in proteomes
remains to be determined. However, a previous proteomic study
on hippocampal and striatal postsynaptic density fractions from
Shank3111−/− mice reported enrichments of the differentially
expressed proteins for actin- and synapse-related GO functions,
respectively (Reim et al., 2017). This differs from our results in
that hippocampal and striatal transcripts from Shank3-HM mice
show enrichments for ribosome/mitochondria- and ribosome-
related functions, respectively. The reason for the discrepancy
could be that different Shank3 exons were deleted in the two
mouse lines.

Comparison of Shank2- and
Shank3-mutant transcriptomes

Differentially expressed gene analyses revealed an
interesting difference between Shank2- and Shank3-mutant
transcriptomes: More DEGs were identified in Shank2-HT/HM
transcriptomes than in Shank3-HT/HM transcriptomes
(Figure 3; Yoo et al., 2022). However, GSEA revealed
strong enrichments of both Shank2- and Shank3-mutant
transcriptomes for biological functions and ASD-related/risk
gene sets (Figures 4, 5; Yoo et al., 2022). Therefore, Shank2
deletion seems to induce two distinct types of transcriptomic
changes: large changes in a small number of top genes that
are readily detectable by DEG analyses, and small changes in
a large number of genes that are readily detectable by GSEA.
Meanwhile, Shank3 deletion appears to induce mainly small
changes in a large number of genes.

For Shank2- and Shank3-mutant transcriptomes, the GSEA
results for biological functions and ASD-related/risk gene
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FIGURE 6

Summary of all gene set enrichment analysis (GSEA) results for Shank2-HT/HM and Shank3-HT/HM transcripts. To summarize the GSEA results
for Shank2-HT/HM and Shank3-HT/HM transcripts in a single table, we selected the strongest gene-set cluster in the Cytoscape
EnrichmentMap results (for gene sets associated with biological functions) or combined relevant gene sets [for autism spectrum disorder
(ASD)-related/risk and single cell-type gene sets], and calculated comparative scores by summing the NES values of the gene sets in the
indicated gene-set clusters (for biological functions) and by averaging the NES × p values of gene sets in the indicated gene-set groups (for
ASD-related/risk and single-cell-specific gene sets) (see Supplementary Table 8 for the details).

expressions reveal notable similarities and differences (see
Figure 6 and Supplementary Table 8). Regarding similarities,
we note that: (1) The three brain regions show distinct
transcriptomic changes in both Shank2- and Shank3-mutant
mice. (2) Synapse- and ribosome/mitochondria-related genes
are frequently changed toward opposite directions in all
three brain regions. (3) Upregulated synapse-related genes
and downregulated ribosome/mitochondria-related genes are
frequently associated with reverse ASD-like transcriptomic
changes, and vice versa.

Regarding dissimilarities, we find that: (1) Shank2-HT/HM
and Shank3-HT/HM transcripts show different gene dosage
effects, in that Shank2-HT and Shank2-HM transcripts show
largely opposite patterns with regard to altered biological
functions and ASD-related/risk gene expressions, whereas
Shank3-HT and Shank3-HM transcripts are largely similar
in these aspects. (2) Stronger similarities across Shank2
and Shank3 mice are observed in HM conditions mice,
whereas stronger dissimilarities are observed in HT conditions;
i.e., Shank2-HM and Shank3-HM cortical transcripts show
similar ASD-like patterns, and Shank2-HM and Shank3-HM
hippocampal transcripts show similar reverse-ASD patterns,
whereas Shank2-HT and Shank3-HT cortical transcripts, or
Shank2-HT and Shank3-HT hippocampal transcripts, show
opposite ASD-like patterns. (3) Opposite ASD-like patterns are
observed in the striatal regions of Shank2-HT and Shank3-HT

mice (reverse-ASD and ASD-like, respectively), similar to
cortical and hippocampal regions, although the difference
becomes less clear in Shank2/3-HM striatal transcripts, unlike
cortical and hippocampal regions in which Shank2/3-HM
transcripts become similar.

Additional similarities and differences between Shank2-
and Shank3-mutant mice were also evident in detailed
comparisons of ASD-related/risk GSEA patterns (Figure 7),
as follows: (1) The changes observed in the ASD-related/risk
gene expression patterns of Shank2-HT/HM transcripts
involved both ASD-related and ASD-risk changes, whereas
those in Shank3-HT/HM transcriptomes involved largely
either ASD-related or ASD-risk changes. (2) The changes
observed in neuronal gene expression patterns involved
both excitatory and inhibitory neurons in both Shank2-
HT/HM and Shank3-HT/HM transcripts. (3) Although
ASD usually induces opposite changes in two groups of
glial cell transcripts that are frequently observed in ASD
(oligodendrocytic downregulations and astrocytic/microglial
upregulations), we frequently observed exceptions to
this (i.e., similar oligodendrocytic/astrocytic/microglial
upregulations or downregulations) in both Shank2-HT/HM
and Shank3-HT/HM transcriptomes (i.e., in that of Shank3-HT
striatum).

Interpretations of the largely opposite changes
in the expression patterns of synaptic genes and
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FIGURE 7

Summary of the gene set enrichment analysis (GSEA) results obtained using autism spectrum disorder (ASD)-related/risk and cell type-specific
gene sets for Shank2-HT/HM and Shank3-HT/HM transcripts. (A–C) GSEA results for Shank2-HT/HM and Shank3-HT/HM transcripts obtained
using ASD-related/risk and cell type-specific gene sets (Yoo et al., 2022; Figure 5) are combined here to enable better visualization of the
similarities and differences.
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ribosomal/mitochondrial genes could differ in different
brain regions and gene dosage conditions. For instance, the
upregulation of synaptic genes in the Shank2-HM hippocampal
transcriptome (Yoo et al., 2022), which coincides with the
decreased synaptic transmission in the mutant hippocampus
(Won et al., 2012), might reflect compensatory increases in
synaptic gene expression. Meanwhile, the decreased synaptic
transmission in Shank2-mutant mice might have suppressed
ribosomal/mitochondrial gene expression to minimize energy
production and expenditure (for protein synthesis) (Morita
et al., 2015) in the absence of synaptic activity. In support
of this possibility, synaptic activity has been functionally
coupled with mitochondrial activity (Li et al., 2004; Vos
et al., 2010; Sheng and Cai, 2012; Santini and Klann, 2014;
Lee et al., 2018). In addition, ASD has been associated with
mitochondrial deficits (Hollis et al., 2017; Frye, 2020; Rojas-
Charry et al., 2021) and altered levels of ribosomal proteins
in post-mortem brains and human neural progenitor cells
(Lombardo, 2021).

Our observation that strong gene dosage differences are seen
in Shank2 transcriptomes but not in Shank3 transcriptomes
could reflect that Shank2 heterozygous and homozygous
deletions fall in a range where they could induce quantitively
different disruptions of biological functions. The lack of dosage
responses in the Shank3 transcriptomes could indicate that
Shank3 heterozygous deletion is sufficient to yield the full
spectrum of phenotypic deficits. This might suggest the stronger
impacts of Shank3 mutations relative to Shank2 mutations in
animal models of ASD, and might be in line with the greater
prevalence of Shank3 mutations in ASD, relative to Shank2
mutations (Leblond et al., 2014).

The current RNA-Seq results do not give clear answers
on whether the observed transcriptomic changes represent
molecular pathophysiology or responses that arise to
compensate for the gene deletion. In addition, it would be
difficult to functionally validate the identified biological
functions and pathways, given the known and expected
complexity of synaptic, ribosomal, and mitochondrial systems
in different brain cell types. However, RNA-Seq analyses can
provide unbiased clues on altered biological functions and hints
on whether the overall transcriptomic changes in our systems
mimic those observed in ASD (ASD-like vs. reverse-ASD).
For instance, regardless of whether certain transcriptomic
changes represent pathophysiology or responses, the absence
of ASD-like transcriptomic changes indicate the absence or
normalization of ASD-related phenotypes, i.e., at neuronal,
synaptic, circuit, or behavioral levels. In addition, RNA-Seq
analyses are useful in that they can be attempted in various
in vivo contexts, including in different mouse ages, brain
regions, gene dosages (heterozygous and homozygous), and
pathological/rescue environments. The results may facilitate
the design and data interpretation of future experiments. For
instance, the results obtained in our setting suggest that Shank3-

and Shank2-mutant mice may exhibit distinct gene dosage-
related shifts in phenotypes (heterozygous vs. homozygous).
In addition, other studies showed that RNA-Seq can be used
to monitor ASD-related transcriptomic phenotypes when
Shank2-mutant mice were treated with memantine at early
postnatal stages, which corrected the synaptic and behavioral
phenotypes at adult stages (Chung et al., 2019, 2021; Yoo et al.,
2021).

The RNA-Seq results in the present study were obtained
specifically from Shank2- and Shank3-mutant mouse lines
lacking exons 6–7 and 14–16, respectively (Won et al., 2012; Yoo
et al., 2018, 2019, 2021; Chung et al., 2019). Given that different
mutations in the same Shank genes can lead to different mouse
phenotypes (Sheng and Kim, 2000, 2011; Boeckers et al., 2002;
Bourgeron, 2009; Grabrucker et al., 2011; Jiang and Ehlers, 2013;
Sala et al., 2015; Schmeisser, 2015; Monteiro and Feng, 2017;
Mossa et al., 2017, 2018; De Rubeis et al., 2018; Eltokhi et al.,
2018; Ey et al., 2020), further work is warranted to examine
whether convergent transcriptomic changes are be observed in
additional Shank2- and Shank3-mutant mouse lines.

In summary, our results, together with the previous
transcriptomic results from Shank2 mice, indicate that Shank2
and Shank3 deletions lead to age-, brain region-, and
gene dosage-differential transcriptomic changes associated
with altered biological functions and ASD-related/risk gene
expression patterns. These results provide unbiased clues on
the mechanisms underlying the ASD-related phenotypes in
Shank2/3-mutant mice and will be useful in designing future
experiments using these mice and interpreting the results.
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SUPPLEMENTARY FIGURE 1

Gene set enrichment analysis (GSEA) of P25-Shank3 transcripts using
the gene sets in the biological process (BP) and molecular function (MF)
domains. (A,B) Results of GSEA performed for P25-Shank3 forebrain

transcripts using gene sets in the BP and MF domains, represented by
the list of top-five positively/negatively enriched gene sets (top; see
Supplementary Table 3 for full results) and functional clustering of
enriched gene sets performed using the EnrichmentMap Cytoscape App
(bottom) (n = 3 mice [P25-Shank3]).

SUPPLEMENTARY FIGURE 2

Gene set enrichment analysis (GSEA) for P60-Shank3 transcripts using
the gene sets in the biological process (BP) and molecular function (MF)
domains. (A,B) Results of GSEA for P60-Shank3 forebrain transcripts
performed using gene sets in the BP and MF domains, represented by
the list of top-five positively/negatively enriched gene sets (top; see
Supplementary Table 3 for full results) and functional clustering of
enriched gene sets performed using the EnrichmentMap Cytoscape App
(bottom) (n = 3 mice [P60-Shank3]).

SUPPLEMENTARY FIGURE 3

Autism spectrum disorder (ASD)-related patterns in P25-Shank3 and
P60-Shank3 transcripts. (A–C) The GSEA results in Figure 2 are shown
here again with the insignificantly enriched gene sets indicated by
square dots, together with the significant enrichments indicated by
circular dots, to show that the insignificant enrichments have generally
smaller NES scores compared with those of significant enrichments.

SUPPLEMENTARY FIGURE 4

Individual gene expression patterns for the opposite enrichments of
P25-Shank3 and P60-Shank3 forebrain transcripts for two select autism
spectrum disorder (ASD)-risk gene sets. (A,B) The opposite enrichments
of P25-Shank3 and P60-Shank3 forebrain transcripts for two select
ASD-risk gene sets (SFARI Genes [All] and FMRP Targets) were mediated
by ∼50% of the genes in the gene sets (A) and are further supported by
correlative fold changes for co-up/down regulations (B) [n = 3 mice
(P25-Shank3 and P60-Shank3), Pearson test].

SUPPLEMENTARY FIGURE 5

Distinct clustering of three brain regional transcriptomes from
Shank3-HT/HM mice. Clustering of cortical, hippocampal, and striatal
transcriptomes from Shank3-WT, Shank3-HT, and Shank3-HM mice
shown by heatmaps (13 weeks; male; n = 5 mice [WT], 5
[HT], and 5 [HM]).

SUPPLEMENTARY FIGURE 6

ASD-related patterns in the transcripts from the cortex, hippocampus,
and striatum of Shank3-HT and Shank3-HM mice. (A–C) The GSEA
results in Figure 5 are shown here again with the insignificantly enriched
gene sets indicated by square dots, together with the significant
enrichments indicated by circular dots, to show that the insignificant
enrichments have generally smaller NES scores compared with those of
significant enrichments.
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