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Visual Abstract

The development of validated algorithms for automated handling of artifacts is essential for reliable and fast
processing of EEG signals. Recently, there have been methodological advances in designing machine-learning
algorithms to improve artifact detection of trained professionals who usually meticulously inspect and manually
annotate EEG signals. However, validation of these methods is hindered by the lack of a gold standard as
data are mostly private and data annotation is time consuming and error prone. In the effort to circumvent
these issues, we propose an iterative learning model to speed up and reduce errors of manual annotation of
EEG. We use a convolutional neural network (CNN) to train on expert-annotated eyes-open and eyes-closed
resting-state EEG data from typically developing children (n = 30) and children with neurodevelopmental disor-
ders (n = 141). To overcome the circular reasoning of aiming to develop a new algorithm and benchmarking to
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a manually-annotated gold standard, we instead aim to improve the gold standard by revising the portion of
the data that was incorrectly learned by the network. When blindly presented with the selected signals for re-
assessment (23% of the data), the two independent expert-annotators changed the annotation in 25% of the
cases. Subsequently, the network was trained on the expert-revised gold standard, which resulted in improved
separation between artifacts and nonartifacts as well as an increase in balanced accuracy from 74% to 80%
and precision from 59% to 76%. These results show that CNNs are promising to enhance manual annotation
of EEG artifacts and can be improved further with better gold-standard data.

Key words: artifact detection; convolutional neural networks; deep learning; digital signal processing; EEG

Introduction
EEG recordings contain a mix of complex signals

coming from both neuronal and non-neuronal sources.
The latter sources produce artifacts which, in turn, can
have physiological or nonphysiological origins such as
muscle activity or electrode movement, respectively.
Artifacts are commonly manually identified and re-
moved from the data before EEG signals are analyzed
further. The quality and reliability of data analysis ulti-
mately depend on the definition of artifacts, subjective
decisions, concentration of the professional who prepro-
cesses the data, and subsequently the resulting quality
of the preprocessed signals. The annotation procedure is
time consuming, complicating the assessments of large
datasets or delaying the analysis of noisy EEG recordings
in certain patient populations, such as in children with

neurodevelopmental disorders who may find it difficult to
sit still during the recording. Thus, reliable automated arti-
fact detection methods would be an asset; however, a con-
sensus is lacking on how to identify the large diversity of
artifacts in a reliable manner, and manual annotation remains
a gold standard (Urigüen and Garcia-Zapirain, 2015).
Several advanced algorithms have been developed for au-

tomated EEG preprocessing of artifacts. These algorithms
are built on signal-processing techniques such as regression
(Anderer et al., 1999; Croft and Barry, 2000), independent
component analysis (ICA; Bell and Sejnowski, 1995; Delorme
et al., 2007; Vigario and Oja, 2008), or a wavelet transform (A
Cohen and Kova�cevi�c, 1996; Unser and Aldroubi, 1996).
Automation is mainly achieved through channel referencing
(Schlögl et al., 2007), by applying various thresholding mech-
anisms (Castellanos and Makarov, 2006; Gao et al., 2010;
Nolan et al., 2010; Mognon et al., 2011; Akhtar et al., 2012;
Islam and Tcheslavski, 2016; Jas et al., 2017), or using feature
extraction followed by classification with conventional ma-
chine-learning algorithms such as support vector machines
(Shoker et al., 2005; Halder et al., 2007; Shao et al., 2009;
Gabard-Durnam et al., 2018; Sai et al., 2018). In recent years,
deep-learning algorithms have gained popularity to address
EEG signal denoising (Wang et al., 2018; B Yang et al., 2018;
Craik et al., 2019; Pion-Tonachini et al., 2019; Roy et al.,
2019; Sun et al., 2020; Boudaya et al., 2022; Jurczak et al.,
2022; Liu et al., 2022), providing a more flexible solution than
traditional methods by taking advantage of end-to-end
learning, i.e., using a single model to act as both feature
extractor and classifier. For example, because of hier-
archical feature learning, convolutional neural networks
(CNNs; LeCun et al., 1989, 1998, 2010, 2015) can recog-
nize complex patterns from minimally preprocessed
data. This strength may be applicable to discriminate
complex EEG patterns produced by the brain from vari-
ous nonbrain artifacts. Developing these methods re-
quires big datasets, and recent large-scale open-source
data-sharing initiatives (Harati et al., 2014; Cavanagh et
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Significance Statement

Manual annotation of artifacts in EEGs remains the gold standard in research and clinic but is time consum-
ing and prone to human oversight. Here, we introduce a convolutional neural network (CNN) to increase the
speed and accuracy of manual annotation of EEG artifacts. We highlight the possibility of using active learn-
ing to iteratively improve both the model and the gold standard. With our method, it is possible to vary the
decision probability threshold and control the portion of the data that can be labeled automatically by the
model or that would require expert judgment. We expect that our new approach will speed up EEG process-
ing and facilitate reliable data analysis in neurodevelopmental disorders.
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al., 2017) are a great source of EEG data. Nonetheless,
openly accessible annotated datasets are scarce (Hamid
et al., 2020; Buckwalter et al., 2021; Zhang et al., 2021),
and validation of artifact-detection approaches is prob-
lematic as no gold-standard and standardized bench-
marks are currently available.
Sometimes active-learning approaches are used to

generate more labeled data (Settles, 2009; Lawhern et al.,
2015; Sebek et al., 2019). Typically, such approaches
start with a model trained on a small labeled training set
and use expert knowledge for manual labeling of the most
useful (i.e., least confident) examples to add them into the
training set and iteratively repeat the procedure. However,
the amount of data may be not enough to start with as
deep-learning methods need big-size datasets to be suffi-
ciently trained. Moreover, such methods operate under an
assumption that a ground truth is reliable, which is not al-
ways the case.
In this proof-of-concept study, we propose an iterative

deep-learning-based approach that could accelerate and
increase the quality of manual annotation of artifacts in
resting-state multichannel EEG recordings and improve
gold-standard signal data that would be suitable for the
development and validation of artifact detection and re-
moval techniques. We hypothesize that CNNs trained on
expert-annotated EEG data can be used to revise and im-
prove the gold standard, which, in turn, can be used to
improve the model. We also argue that automatic prepro-
cessing algorithms are currently unable to fully replace
humans in the decision-making process but should rather
be used to speed up and reduce errors of manual EEG an-
notation. Using such a decision-support system may be
reciprocally beneficial, as both the human and the system
would actively learn from each other and improve their
performance. Thus, we intent to integrate this approach
into a toolbox to facilitate annotation of EEG signals, its
further testing, as well as data curation and sharing.

Materials and Methods
Definitions
Inconsistencies between the definition of artifacts from

task to task or expert to expert are among factors that
complicate standardization of benchmarks and validation
of methods. Here, a common convention of defining arti-
facts as any nonbrain-arising activity reflected on EEG
traces was used. The task of artifact classification was
defined as follows: “Given a multichannel EEG pattern,
determine if it contains an artifact.”
To avoid ambiguity when using terminologies of EEG

and machine learning which share a few identical words
with different meanings, clarifications and definitions are
provided throughout this paper.

Task formulation
Mathematically, the task is formulated in the follow-

ing way. Given a dataset of EEG segments obtained
from minimally preprocessed recordings measured
on different individuals, it can be written: D ¼ f X 1ð Þ;

�

y 1ð ÞÞ; X 2ð Þ; y 2ð Þ� �
; :::; ðX Nð Þ; y Nð ÞÞg, where X ið Þ denotes the

i-th EEG segment, y ið Þ is its class label, and N is the
total number of segments in the dataset. The input
structure X ið Þ is a tensor with Cin �m� n dimensions
which describes the i-th EEG segment. Here, Cin indi-
cates the number of channels (i.e., the size of a vector
of features associated with each pixel) in the input
image, m is the image height and n is the image width.
In general, representation of EEG can vary and de-
pends on the desired input formulation, goal, and algo-
rithm. Signal values (discretized voltage fluctuations)
and images [derived from time-frequency (TF) analysis] are
the most common representations used (Craik et al., 2019;
Roy et al., 2019). In this project, we define input as TF im-
ages which captured the power spectral density patterns
of signal snapshots (segments) and corresponded to a dis-
tinct class. Dimensions Cin �m� n, then, correspond to
EEG channels � frequencies � time. In the case of binary
classification, y ið Þ 2 L ¼ fl1 ¼ artifact; l2 ¼ non� artifactg,
where L is a set of two class labels, and i ¼ 1:::N.
The goal of training a CNN is to find a set of good pa-

rameters u such that the trained network can take a new
previously unseen EEG segment X jð Þ and assign the cor-
rect class label y jð Þ to it: f X jð Þ; u

� �
: RCin�m�n ! L, where R

is bound to [0,1].

Data
Description
EEG measurements were collected from two ongoing

studies with identical EEG measurement protocols [SPACE
(Sensory Processing in Autism and Childhood Epilepsy)
and BAMBI (Bumetanide in Autism Medication and
Biomarker, Eudra-CT 2014-001560-35)]. The studies were
conducted in accordance with the guidelines and regula-
tions approved by the respective ethical committee and
in compliance with the provisions of the declaration of
Helsinki and Good Clinical Practice, and in accordance
with the Medical Research Involving Human Subjects Act
(WMO). Human subjects were recruited at the Brain Center
Rudolf Magnus at the University Medical Center (UMC)
Utrecht. Written informed consent was received from the
participants or their legal guardians before inclusion in the
studies. The dataset comprised recordings of 121 children
with autism spectrum disorder (ASD), 20 with epilepsy
(EP), and 30 with typical development (TD) aged 7–
16 years, with 114 males and 57 females. Signals were
recorded using 64-channel BioSemi 10–20 layout caps
at 2048-Hz sampling rate during 3–5min of eyes-closed
or eyes-open rest (ECR and EOR, respectively). A total of
340 EEG recordings were available. Manual annotation
of artifacts in this dataset was performed by a medical
expert with training in clinical EEG (neurophysiology and
EP) using information from the 64 channels. Before an-
notation, the data were bandpass-filtered in the range of
0.5–45Hz (we used the same range when preprocessing
the data as described below, Minimal preprocessing). Cz
was used as the reference electrode to perform the an-
notations. Signals were scrolled through in windows of
10 s. Artifacts included physiologic ones: ocular, cardiac/
pulse, glossokinetic, muscle and movement artifacts,
and nonphysiologic ones such as electrode detachment
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(electrode “pop” and bad channels). Artifact definitions in-
clude (but are not limited to): activity or waveform confined
to a single channel, high voltage, low (,1Hz) or very high
(.70Hz) frequency fluctuations, double or triple phase re-
versals and periodic patterns. For a comprehensive review
on artifact definition, localization, and atlas see Lüders and
Noachtar (2000), Kellaway (2003), Abou Khalil and Misulis
(2006), Tatum et al. (2011), Tatum (2014), and Britton et al.
(2016). It should be noted that this annotation was not per-
formed for this particular study (i.e., to detect artifacts in
particular), but for a clinical research project with the mind-
set of keeping as much data as possible (Bruining et al.,
2020)

Minimal preprocessing
EEG recordings were preprocessed using MNE Python

(Gramfort et al., 2013). Signals were bandpass filtered be-
tween 0.5 and 45Hz using a FIR-filter with a Hamming
window and a transition bandwidth of 0.5Hz at the low
cutoff frequency and 11.25Hz at the high cutoff fre-
quency. The length of the filter was determined from the
shortest of the transition bandwidths (TB ¼ 0:5 Hz) and
the sampling rate (SR ¼ 2048 Hz) as ð3:3 � SRÞ=TB and
rounded up to the nearest even integer. Bad channels
were interpolated using spherical spline interpolation.
Recordings were re-referenced using average reference,
and 19 standard EEG channels were selected: Fp1, F7,
T3, T5, F3, C3, P3, O1, Fp2, F8, T4, T6, F4, C4, P4, O2, Fz,
Cz, Pz. The selection was limited to 19 standard channels
for several reasons. First, there are numerous different
low-density and high-density EEG-channel layouts, and
many of these layouts are extensions to the standard 10–
20 system. Thus, this selection allows to use the model for
EEGs recorded with other channel-layout caps. Second,
neighboring electrodes are usually highly correlated in
high-density-layout caps and will not carry new informa-
tion. Finally, it will help to reduce computation costs asso-
ciated with training the model.

EEG segmentation and class assignment
Signal segmentation was done using a sliding window

of 1 s with 50% overlap between consecutive windows.
These values were optimal to enable detection of both
slow and fast EEG patterns. A segment was assigned to
the nonartifact class if there were no intersections with
any of the expert-annotated EEG intervals of artifacts. A
segment was assigned to the artifact class if the length of
the intersection was at least 0.1 s, or less in the case
when the duration of the interval itself was less or equal

than 0.1 s. A segment was ignored if the intersection
length was less than and the annotation interval duration
was .0.1 s. The number of generated segments for each
class is specified in Table 1.

TF inputs
Each 1-s 19-channel EEG segment was transformed into

TF domain using complex wavelet convolution. Morlet
wavelets were constructed over 45 logarithmically-spaced
frequency bins in the range of 0.5–45Hz. The time resolution
parameter as a function of frequency was specified as a log-
arithmically-spaced vector between 1.2 and 0.2 s, i.e.,
increasing resolution for higher frequencies (MX Cohen,
2019). Wavelet convolution was performed per EEG chan-
nel, and the convolution output was resampled from 2048 to
100Hz along the time axis. This resulted in a 19� 45� 100
tensor for each segment. Values were normalized using
Z-score normalization (with zero mean and unit variance)
across all channels. Examples of EEG segments are
shown in Figure 1.

Model
Network architecture and structural hyperparameters
In our study, we opted for CNNs as they are known to

work well with images which, in our case, are TF repre-
sentations of EEG signal snapshots. The CNN architec-
ture was created using three convolutional layers with
rectified linear unit (ReLU) activation (a function that intro-
duces nonlinearity; LeCun et al., 2015) and one fully con-
nected layer with a softmax (a normalized exponential
function; Goodfellow et al., 2016). In addition, max-pool-
ing (a technique to reduce dimensionality of the input)
after each convolutional layer with ReLU was introduced
in the design. Convolution in the first and second convolu-
tional layers was done per group, i.e., separately for each
of the EEG channels in the first layer and for the convolu-
tion output of each of the channels in the second convolu-
tional layer. Table 2 provides a summary of the network’s
layers, hyperparameters, input and output sizes of each
layer as well as the number of learnable parameters.

Hyperparameters related to learning
Training was performed using mini-batches. A mini-batch

(which we will call a batch thereafter) is a fixed-size group of
examples/instances (i.e., single objects from a training, vali-
dation, or test set that are supplied to a deep-learning net-
work as input) that is provided to the network during one
iteration. In our case, instances are 1-s EEG segments.
Based on the results from small-scale experimental runs, a

Table 1: Summary of the EEG data

Group
Number of
subjects

Total length of
signal (s)

Total length of annotated
intervals of artifacts (s)

Number of artifact
segments

Number of nonartifact
segments

ASDa

EPb

TDc

Total

121
20
30
171

62,790
10,193
16,829
89,812

17,195
1824
2574
21,593

40,265
4332
6209
50,806

82,803
15,780
26,921
125,504

Artifact and nonartifact segments are standardized windows of fixed length of 1 s with 50% overlap between consecutive windows.
a Autism spectrum disorder.
b Epilepsy.
c Typically developing.
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batch size of 64 and the learning rate of 1 � 10�4 were se-
lected for full-scale network training and evaluation. An aver-
aged stochastic gradient descent (ASGD) optimizer from
PyTorch (Paszke et al., 2019) to accelerate convergence
was used to update the weights (Polyak and Juditsky,
1992). Cross-entropy loss was adopted as an optimization
criterion. It is a logarithmic function that determines the “dis-
tance” between the true and estimated probability distribu-
tions (Murphy, 2012). For discrete target values, minimizing
cross-entropy is equivalent to minimizing the negative loga-
rithm probability (under the model) of the correct class. To

handle class imbalance, weights for each class in the train
set were calculated as one divided by the number of exam-
ples in the class and included into the cross-entropy term.
This helped to avoid bias toward the majority class, a bottle-
neck of class imbalanced datasets.

Training, evaluation, and revision
Training and evaluation
The data were split into training, validation, and test

sets using subject-wise five-fold cross-validation scheme.

Figure 1. Examples of EEG artifact and nonartifact segments. A, 10 s of an EEG recording. Traces for 19 EEG channels specified
on the y-axis are shown. Blue shaded regions show manually-annotated artifacts. Red and blue vertical lines indicate onsets (every
0.5 s) of artifact and nonartifact overlapping EEG segments, respectively. B, EEG segment containing an artifact and (C) EEG seg-
ment that does not contain an artifact. Both show preprocessed EEG signals of 1 s each. D, E, Time-frequency (TF) representations
for the EEG channels highlighted in red in B and C, respectively. The color codes Z-score normalized TF power values.
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For each fold, 20% of the subjects was taken for the test
and validation sets. The remaining 80% was used for train-
ing. The validation loss was recorded after each epoch
(i.e., a full training pass over all the minibatches; a full train-
ing run usually consists of several epochs) next to the train
loss to examine the learning dynamics of the model. After
the train-validation loop, the train and validation sets were
pooled and passed through the network using the latest
network’s parameters on the loop exit. The parameters
were optimized one more time as one epoch was per-
formed on the combined set. Performance metrics such as
Sensitivity, Specificity, Precision, and Balanced Accuracy
(bAcc) were recorded on the test fold at the probability
threshold of 0.5 (see Eqs. 1–4). Then, the average perform-
ance was estimated across the five test folds for eachmetric:

Sensitivity ¼ TP
TP1FN

; (1)

Specificity ¼ TN
TN1FP

; (2)

Precision ¼ TP
TP1FP

; (3)

bAcc ¼ Sensitivity1Specificity
2

: (4)

In the equations above, TP is the number of true positives,
FN is the number of false negatives, FP is the number of false
positives, and TN is the number of true negatives.

Revision
The final model was trained using the same hyperpara-

meters on the entire dataset without splits over 100

epochs. The final fit to the data were then used to deter-
mine false positive and false negative EEG segments,
i.e., where the model disagreed with the original annota-
tion. The segments were independently revised by two
trained experts with years of practice, and interrater
agreement was evaluated using Cohen’s k (Eq. 5).
Subsequently, original annotations of EEG segments for
which the two raters agreed on the new annotation were
replaced with the latter. The model was then retrained on
the original plus revised data according to the scheme
described above.

k ¼ po � pe

1� pe
: (5)

In the equation above, po is the relative observed agree-
ment between the two raters, and pe is the probability of
chance agreement, which for m categories and N obser-

vations is pe ¼ 1
N2

X

m

nm1nm2, where nm1 and nm2 are the

number of times category m was predicted by rater 1 and
2, respectively. Cohen’s k ranges from �1 to 1, with 1
corresponding to perfect interrater agreement and 0 cor-
responding to chance-level agreement. As suggested by
Cohen, k of � 0 indicates no agreement, 0.01–0.20 none
to slight agreement, 0.21–0.40 fair agreement, 0.41–0.60
moderate agreement, 0.61–0.80 substantial agreement,
and 0.81–1.00 almost perfect agreement.

Data availability and code accessibility
Because of ethics and privacy regulations of human sub-

jects, we cannot share the clinical data used for training. The
code/software described in the paper is freely available
online at GitHub repository (https://github.com/dmari104/
CNN-EEG). The code is available as Extended Data 1.

Table 2: Summary of hyperparameters, input/output sizes, and learnable parameters of the CNN architecture used for
training

Layer Input size Filters Groups Kernel Output size Parameters
Input (TF image with 19 channels) 19 � 45 � 100 - - - - -
Convolutional (ReLU) 19 � 45 � 100 50 19 1 � 5

(stride 1 � 1)
950 � 45 � 96 5700

Max-pooling 950 � 45 � 96 - - 1 � 2 � 2
(stride 1 � 2 � 2)

950 � 22 � 48 -

Convolutional (ReLU) 950 � 22 � 48 100 50 5 � 5
(stride 1 � 1)

1900 � 18 � 44 904,400

Max-pooling 1900 � 18 � 44 - - 1 � 2 � 2
(stride 1 � 2 � 2)

1900 � 9 � 22 -

Convolutional (ReLU) 1900 � 9 � 22 150 - 3 � 3
(stride 1 � 1)

150 � 7 � 20 2,565,150

Max-pooling 150 � 7 � 20 - - 1 � 1 � 1
(stride 1 � 1 � 1)

150 � 7 � 20 -

FC (linear) 21,000 - - - 2 42,000
Softmax 2 - - - 2 -
Output (class distribution) - - - - 2 -

Here, the input in the first layer is a TF image with 19 channels corresponding to 19 EEG channels, and the output of the last layer is a class probability distribu-
tion. No padding (i.e., an area of values, usually zeros, that can be added to the borders of the input, increasing its size) was used. For filter weights, we used
Kaiming uniform initialization (He et al., 2015), a default in PyTorch implementation of the convolutional layers. Kernel, a two-dimensional matrix of weights that is
convolved over the input (in convolutional layers). Multiple kernels form a filter. In pooling layers, there are no filters, and a kernel “summarizes” input values dur-
ing each sliding step. Stride: a sliding step of a kernel in convolution or pooling. Max-pooling: dimension reduction involving replacing a patch of n� n pixels in
the input with a single pixel containing the maximum value from among the pixels of the patch. For multiple dimensions, sizes are of shape channels � frequen-
cies � time.
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Software and hardware
Data were preprocessed and analyzed on an Intel(R)

Core(TM) i7-8565U CPU at 1.80GHz with 16 GB of RAM
and dual four cores, running on Ubuntu 18.04.3 LTS
(Bionic Beaver). Data were preprocessed using functions
from MNE Python as well as custom-made functions.
Model training was implemented in Python 3.7.6 using
PyTorch 1.5.0 with CUDA 10.1 compatibility on the GPU-
based (NVIDIA Titan/GTX980/K20/K40) Distributed ASCI
Supercomputer 5 platform (Bal et al., 2016), DAS-5, using
the VU cluster at 2.4GHz with 64 GB of RAM and dual 8
cores, running on CentOS Linux 7. Re-annotation of EEG
segments was performed in MATLAB R2019a (The
Mathworks Inc., 2019).

Results
CNN learns to distinguish and generalize manually
annotated EEG artifacts and nonartifacts
To assess the ability of the CNN to identify artifact and

nonartifact patterns in EEG signals, a model was trained
on expert-annotated artifact (n=50,806) and nonartifact
EEG segments (n= 125504) of 1 s each from 340 resting-
state EEG recordings of 171 subjects (see Materials and
Methods, Data). The expert annotations served as a gold
standard to perform subject-wise five-fold cross-valida-
tion by splitting the data into train, validation, and test
sets (see Materials and Methods, Training, evaluation,
and revision).
During training, loss on training and validation sets were

recorded, which informed how well the model fit the train-
ing and validation data, respectively. The train-validation
dynamics displayed a good learning pattern with no over-
fitting, as indicated by the decrease in both train- and vali-
dation-loss curves and their convergence to a minimum
with the increasing number of epochs (Fig. 2A). This con-
trasted with the learning pattern of the model that was
trained on the same data but with annotations randomly

sampled (i.e., random gold standard), which served as
baseline and validity check (Fig. 2B). In this case, random
sampling was done with class probabilities equal to the
ratio of examples in each class in the original data. The
average test performance of the classifier across the five
folds for four different metrics is shown in Table 3 and
was higher compared with that of the random case. The
final model trained on the entire data for 100 epochs dem-
onstrated good class separation as shown by the proba-
bility distribution of model predictions in Figure 2C. Under
the used gold standard, the bulk of EEG segments were
confidently assigned to their class, which contrasted the
output in the random set-up (Fig. 2D). These findings sug-
gested that the used gold standard contained distinct arti-
fact and nonartifact patterns that could be learned and
distinguished by the model as well as generalized across
subjects, in contrast to the random gold-standard case.
However, it could be seen that the separation of the two
classes and generalizability of the model under the used
expert annotations were not perfect. There were data of
both classes within the uncertainty range of model’s con-
fidence (0.45–0.55 probability) as well as data falsely clas-
sified with moderate to high confidence by the model
([0.0, 0.40] and [0.65, 1.0]). This raised a question of who,
the gold standard or the model, was right, especially for
misclassified data with moderate to high confidence.

Figure 2. The classifier predicts manually annotated artifacts and nonartifacts with good accuracy. A, Train- and validation-loss
curves gradually decrease and converge as the training progresses with each training epoch for the classifier trained on expert-an-
notated artifacts and nonartifacts. B, The classifier trains poorly on the same data but with randomly sampled annotations, showing
no decrease for the validation-loss curve and overfitting to the training set as indicated by the diverging loss curves. The mean
curve 6 SD (shaded area around the mean curve) over five test folds is shown. Subject-wise five-fold cross-validation was used in
each case. The legend and y-axis are shared between A and B. C, The classifier separates expert-annotated artifacts from nonarti-
facts, and most EEG segments in each class are classified confidently and correctly. D, The random classifier cannot separate ran-
domly labeled EEG segments and lacks confident predictions. The number of EEG segments is plotted on the y-axis, and the
predicted probability that an EEG segment has an artifact on the x-axis. The legend and y-axis are shared between C and D. The
second distribution inside D is a zoomed-in version of the main distribution with the same y-axis.

Table 3: The CNN classifier shows good test performance

Model Sensitivity % Specificity % Precision % bAcc %
CNN
CNN-rnd

71.0 6 5.5
4.6 6 3.1

78.1 6 3.5
95.3 6 3.3

59.7 6 2.7
30.0 6 3.5

74.6 6 1.3
49.9 6 0.2

Average test performance scores are shown for four different metrics. CNN,
classifier trained on expert-annotated EEG dataset; CNN-rnd, classifier
trained on the same dataset where annotations were randomly generated with
class probabilities equal to the ratio of examples in each class in the original
dataset; bAcc, balanced accuracy. Mean 6 SD values are shown. Subject-
wise five-fold cross-validation was used in each case. Scores were calculated
based on the probability threshold of 0.5.
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Themodel uncovers artifacts misclassified by the
expert annotator
To facilitate interpretation of the results, we further

looked at the correspondence between the model’s out-
put and the gold standard. We examined one of the EEG
recordings and compared the predictions made by the
model against the annotations made by the expert. At the
probability threshold of 0.5, the model made 83% of cor-
rect predictions, identifying 76% of artifacts and 86% of
nonartifacts. Examples of such predictions are shown in
Figure 3, where the model detected five artifact intervals
marked by the annotator. More importantly, the classifier
detected five more intervals (67–70 s in Fig. 3A, 80–82 s in
Fig. 3B, 105–107 s in Fig. 3C, 120–122 and 124–127 s in
Fig. 3D) that were not marked by the annotator [some of
them probably by accident, e.g., a misclick or software
malfunction (the interval between 67–70 s seems to be
missed by the annotator by accident (e.g., a misclick)] but
were corroborated to be artifacts. This suggested that the
model could have outperformed the gold standard in

some of the cases in the rest of the data. A re-assessment
of such cases by two trained experts could shed light on
the degree of actual correct hits made by the model. It
may also improve the model by reducing the noise from
misinformation and mistakes contained in the gold
standard.

Themodel training behavior and performance change
under the expert-revised gold standard
Based on the previous results that showed omissions in

the used gold standard, we revised a portion of segments
that were misclassified by the model. Nonartifact seg-
ments that were incorrectly classified as artifacts (false
positives) with the probability of [0.65, 1], artifact seg-
ments that were incorrectly classified as nonartifacts
(false negatives) with the probability of [0, 0.4], as well as
any segments adjacent to those segments in time, re-
gardless of the predicted probability, were selected to be
re-assessed by two independent experts (Fig. 4A,D). The

Figure 3. The model uncovers artifacts missed by the expert annotator. Examples of manually annotated EEG signals with corre-
sponding model predictions from one of the recordings are shown. The model detected artifacts marked by the expert (A) at 67 s,
(B) between 82 and 83 s and 86 and 89 s and (D) 122 and 124 s and 127 and 130 s. It also detected additional possible artifacts be-
tween (A) 67 and 70 s, (B) 80 and 82 s, (C) 105 and 107 s, (D) 120 and 122 s, and 124 and 127 s. Nineteen standard EEG channels
are specified on the y-axis. The color bar below the signals represents probability-based predictions made by the CNN model. The
color indicates one of the five categories of probability of an artifact Part. Here, each time sample has a corresponding probability
value. For that, predictions made by the model for 1-s overlapping windows (50% overlap) were interpolated for each time sample
using three consecutive windows at a time (the current window, the window before, and the next window), except the first and last
second of the recording for which only two consecutive windows were used for interpolation.
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thresholds were chosen to include medium- to high-confi-
dence predictions. The experts were blindly presented
with the selected segments (40 478 segments, or 23% of
all segments) and could either keep the current annotation
or change it to one of the following: artifact, nonartifact, or
uncertain (the latter, to avoid mistakes in cases when they
were hesitant about their decision). Examples of the se-
lected segments are shown in Figure 4B,C,E,F. An extra
category (i.e., gray) was added in case experts wanted to
annotate brain-related physiological activity that might be
necessary to remove at later stages if only “awake” peri-
ods were to be evaluated. Examples of this included slow
waves typical of drowsiness (slow d and u activity in the
background, 1–7Hz), and hypnagogic hypersynchrony
(paroxysmal sharp, high voltage d activity characteristic
of drowsiness in children; Britton et al., 2016). This cate-
gory would allow for further differentiation and flexibility.
The raters reached interrater agreement of 0.54 as

measured by Cohen’s k . This degree of agreement is not
high and highlights the challenges and degree of subjec-
tivity in the interpretation of subtle EEG events. Such
events mostly come from the false negative portion of

EEG segments, i.e., putative nonartifacts as predicted by
the model (k statistic of 0.41 vs 0.68 in the false positive
portion). In total, agreement between the raters occurred
in 79% of the cases (32,149 segments). Six segments
were assigned to the gray class by one or both raters and
were removed entirely from the dataset and subsequent
computations. Segments for which the raters disagreed
or which both raters assigned to the uncertain class were
kept in the dataset with their original annotation. Taking
this into account, annotation change occurred in 25% of
the cases (10,150 segments). The dataset was then up-
dated accordingly and contained 60,672 artifact and
115,632 nonartifact EEG segments. It was used to train
and cross-validate the model from scratch. The decrease
in the train- and validation-loss curves of the newly trained
model was larger as compared with the original CNN clas-
sifier (Fig. 5A). As can be seen in Figure 5A, an improved
training behavior was also noticeable when compared
with a random-case CNN classifier which was trained on
the same dataset but with annotations of the selected
EEG segments randomly generated. The new CNN clas-
sifier enhanced the separation between artifacts and

Figure 4. Examples of EEG segments selected for revision. Probability distributions of segments with predominantly false positive
(A) and predominantly false negative (D) model predictions. Predicted probabilities that EEG segments have an artifact are depicted
on the x-axis, and the legend shows original expert annotations. The selection was made based on the predicted probability range
[0.65, 1] for A and [0, 0.4] for D, including segments that were adjacent to the selected segments in time, regardless of their pre-
dicted probability value. That is why one can see segments of both classes with predicted probabilities,0.65 or.0.4. Probability
thresholds, Pfp and Pfn, are shown on the plots as black vertical lines with the corresponding label. B, C, E, F, Examples of EEG
segments selected for revision. B and C show adjacent overlapping segments with false positive (rectangle 2 in B and rectangles 2,
3, and 4 in C), true positive (rectangle 3 in B and rectangle 1 in C), and true negative (rectangle 1 in B) predictions. E and F show ad-
jacent overlapping segments with false negative (rectangle 2 in E and rectangles 2, 3, and 4 in F), true negative (rectangle 3 in E and
rectangle 1 in F), and true positive (rectangle 1 in E) predictions. Horizontal lines in each example that separate each rectangle in
three regions show areas that were shaded according to the predicted annotation (bottom), gold standard (middle), and revised
label (top). The predicted annotation was decided based on the predicted probability threshold of 0.5 (nonartifact if the threshold
probability was,0.5 and artifact if �0.5). The larger top area was shaded by default in yellow if there was a disagreement between
the predicted annotation and the gold standard, in red if there was an agreement for an artifact, and in light green for a nonartifact.
In the revision process, experts were presented with such segments to re-assess and make a final decision by changing or keeping
the annotation in the top area. The experts were blind to the origin of annotations reflected in the bottom and middle regions, i.e.,
they did not know which was the predicted annotation and which was the gold standard.
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nonartifacts and became more confident in its predic-
tions (Fig. 5B). Both the new CNN classifier and the
random-case CNN classifier outperformed the original
CNN classifier as shown by the average test perform-
ance across the five folds of cross-validation (Table 4).
However, albeit detecting slightly less artifacts on aver-
age (73.5% vs 76.5% sensitivity), the model trained on
the dataset with expert-revised EEG segments turned to
be more precise and specific (76.7% vs 68.8% precision
and 87.0% vs 83.4% specificity). These changes, how-
ever, should be interpreted with caution. Although the
cross-validation test folds were formed using the same
subject splits in each experiment, the annotations might
differ because of the annotation change on revision.
Since there is no perfect benchmark test set that could
be used to confirm the improvements, we decided to

analyze model predictions a bit further to see what could
be driving these changes.

The gold standard can be improved further
We analyzed predictions made by the old and new

model on three subsets of the training data. The first sub-
set was a portion of the revision set for which both expert
decisions agreed with the original annotation (54% of the
revision data, or 12% of all data). The second subset was
a nonrevised portion of the data (82% of all data). The
third subset was a portion of the revision set for which
there was a disagreement between the original and new
annotation, hence a change in the annotation by both ex-
perts (25% of the revised data, or 6% of all data).
Both models showed similar results on the first two

subsets of the training data (Table 5). Whereas they per-
formed generally well on the nonrevised data subset
(80.2% and 79.6% sensitivity, 91.0% and 90.5% specific-
ity, and 76.1% and 74.8% precision by the original and
new CNN model, respectively), they showed poor per-
formance on the subset of the revision set for which both
experts agreed with the original annotation (34% and
33.8% sensitivity by the original and new CNN model, re-
spectively). Despite this similarity in the performance
scores, the difference between the two models could be
seen in the distributions of their predicted probabilities
(Fig. 6). No separation between the two classes with left-
skewed histograms was observed for the original CNN
model on the subset of the revision set for which both ex-
perts agreed with the original annotation (Fig. 6A), hence
low performance in predicting artifacts (Table 5). However,
despite the same low performance of the new CNN model,
the predicted probability distribution showed a trend for
separating the two classes with two-tailed histograms (Fig.
6B). Two-tailed distributions were also visible for the non-
revised subset of the data with good separation between
artifacts and nonartifacts shown by both the original and
new CNN model, where the latter predicted artifacts and
nonartifacts more confidently (Fig. 6D,E). Nevertheless,
both models showed imperfect class separation, which
could indicate that both models missed artifact and nonar-
tifact EEG patterns detected by the two experts or they
identified such patterns that were missed by the experts.
Examples of artifact and nonartifact signals from both sub-
sets of the data showed that some of such events, subtle
or distinct, could indeed be missed by either the models or
the experts (Fig. 6C,F).
A well-defined difference between the two models was

observed on the third subset of the data, a portion of the
revision set for which there was a disagreement between
the original and revised annotation. The original model
showed poor results as opposed to the new model (0.0%
and 98.6% sensitivity, 1.6% and 97.2% specificity, and
0.0% and 100% precision by the original and new model,
respectively; Table 5). This was expected as the portion of
the data to be revised was determined based on the false
predictions made by the original CNN under the original
expert-annotation gold standard. As can be seen from
Figure 6G, the false predictions in the subset of the data
for which the original annotations were later changed by

Figure 5. Training and performance of the CNN classifier
change after expert revision. A, Train- and validation-loss
curves of the CNN classifier trained on the dataset with expert-
revised segments (CNN-r) show improved converging dynamics
as compared with the original classifier (CNN) and classifier
trained on the same dataset where annotations of the revised
segments were randomly generated (CNN-rrnd). The mean
curve 6 SD (shaded area around the mean curve) over five test
folds is shown. Subject-wise fivefold cross-validation was used
in each case. B, CNN-r classifier shows improved separation
between artifact and nonartifact EEG segments. The two proba-
bility distributions inside the plot are the distributions of the
original CNN classifier (CNN) and the classifier CNN-rrnd and
show changes in the distribution shape. The number of EEG
segments is plotted on the y-axis, and the predicted probability
that an EEG segment has an artifact on the x-axis. The two
small distributions in B have the same y-axis and x-axis scales
as ones of the main distribution.

Table 4: The CNN classifier trained on the dataset with ex-
pert-revised EEG data shows increased test performance
as compared with the original CNN classifier

Model Sensitivity % Specificity % Precision % bAcc %
CNN
CNN-r
CNN-rrnd

71.0 6 5.5
73.5 6 4.7
76.5 6 4.2

78.1 6 3.5
87.0 6 2.0
83.4 6 2.2

59.7 6 2.7
76.7 6 2.6
68.8 6 2.1

74.6 6 1.3
80.2 6 1.7
79.9 6 1.2

Average test performance scores are shown for four different metrics. CNN,
classifier trained on the original dataset (see Fig. 2; Table 3); CNN-r, classifier
trained on the dataset with expert-revised EEG segments; CNN-rrnd, classifier
trained on the same dataset where annotations of the revised segments were
randomly generated with uniform class probabilities; bAcc, balanced accu-
racy. Mean 6 SD values are shown. Subject-wise five-fold cross-validation
was used in each case. Scores were calculated based on the probability
threshold of 0.5.
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the two experts were mostly the false positives (i.e., puta-
tive artifacts). In total, originally 10,008 nonartifacts and
142 artifacts changed their annotation, and later most of
those cases were confidently and correctly predicted by
the new CNN model under the expert-revised gold stand-
ard (Fig. 6H,I). Based on these results, the revised portion
of the data brought about the changes in the CNN model
training behavior and performance, and the new model
became generally more confident in its predictions. It also
showed that the gold standard could be improved further.

Discussion
Resting-state EEG is commonly used by researchers

and clinicians to analyze intrinsic brain activity and com-
pute biomarkers of various developmental and mental
health disorders. Analysis outcomes depend on the quality
of upstream cleaning and preprocessing, which are typi-
cally performed by trained professionals who visually in-
spect and manually annotate EEG signals. Interpretation of
EEG patterns can be extremely challenging, time consum-
ing, and flawed. In this paper, we presented a CNN to in-
crease the speed and accuracy of manual annotation of
artifacts in resting-state multichannel EEG recordings. Our
findings demonstrate that the model is capable of learning
artifact and nonartifact patterns in manually annotated
EEG signals and converging with a better gold standard.
Re-assessment of controversial EEG patterns, i.e., those
that CNN confidently predicted as artifacts or nonartifacts
in disagreement with the experts improved both the model
and the ground truth. The experts changed labels in 25%
of the selected segments, which led to improved perform-
ance of the revised model (CNN-r) and supported our hy-
pothesis. In the control experiment where the labels of the
selected segments were randomly shuffled, CNN-rrnd per-
formed worse than CNN-r, as expected. Although it might
seem to be counterintuitive at first that the performance of
CNN-rrnd was better than that of CNN, this was expected
because most of the data were the same in the two mod-
els, but when randomly shuffling the labels of the selected
data, by mere chance, some would flip and match the new
expert-revised annotation, which would lead to enhanced
performance of CNN-rrnd as compared with that of CNN
which operated under the original uncorrected ground
truth.
We envision that our approach may operate semi-auto-

matically in the future and be particularly useful for helping

annotators in their daily work, especially when processing
large datasets with a high degree of artifact contamina-
tion. The model can be applied for automatic annotation
of patterns predicted with certain confidence. The annota-
tor will then only have to score portions of the signal pre-
dicted with low reliability, which thereby will reduce the
amount of data left to be examined and scored by the an-
notator. It may also be interesting to test how our method
works in combination with other cleaning approaches such
as HAPPE, ADJUST, or FASTER (Nolan et al., 2010;
Mognon et al., 2011; Gabard-Durnam et al., 2018). For ex-
ample, our model can be used as the next step of the pipe-
line to make predictions on the data coming out of these
approaches to let the annotator inspect segments indi-
cated by the model with high confidence to be artifacts.
This may be a way of evaluating upstream cleaning and
leaving room for further cleaning without having to man-
ually inspect a large number of segments already properly
cleaned by these algorithms. By integrating our method
into a signal viewer that is currently being designed in our
group (Weiler et al., 2022), we expect to facilitate fast and
reliable resting-state EEG data analyses.
Several evolving large-scale EEG-data curations (Harati

et al., 2014; Cavanagh et al., 2017) are a result of excep-
tional effort and time that are being put into collecting, or-
ganizing, and realizing data which continue to support the
development and testing of various machine-learning al-
gorithms. Nevertheless, it still is hard to design advanced
versatile approaches for all-purpose EEG-pattern recog-
nition or faithfully compare existing detection algorithms.
Partly, this is because of still inadequate quantities or het-
erogeneity of properly annotated ground-truth data, and
partly, because massive number of EEGs remains private
or unannotated. Some methods, thus, may work better
than others for one type of data and vice versa for another
type of data. We acknowledge that our model is no differ-
ent as based on a limited set of data and confined to
certain conditions and experimental setting. Professional
judgment by trained medical experts is ultimately indis-
pensable to ensure the quality and validity of decisions
and performed analyses, and the model should be used
as a decision-support system. To the best of our knowl-
edge, there is no properly annotated resting-state neuro-
developmental EEG-data curation accessible to public.
We hope making our model available for other labs with
similar data to use it and, whenever ethically possible,

Table 5: Portion of the dataset revised by the two experts drives the changes in CNN training behavior and performance

Subset Gold standard Model Sensitivity % Specificity % Precision % bAcc %
R-a Original (¼Revised) CNN 34.0 72.8 63.5 53.4

Revised (¼Original) CNN-r 33.8 71.4 62.1 52.6
nR-a Original (¼Revised) CNN 80.2 91.0 76.1 85.6

Revised (¼Original) CNN-r 79.6 90.5 74.8 85.0
R-d Original ( 6¼Revised) CNN 0.0 1.6 0.0 0.8

Revised ( 6¼Original) CNN-r 98.6 97.2 100 97.9

R-a, subset of the revision data for which both expert decisions agreed with the original annotation; nR-a, nonrevised portion of the data; R-d, portion of the re-
vised set for which there was a disagreement between the original and revised annotation; Original, gold standard based on the original expert-annotated data-
set; Revised, gold standard based on the dataset with expert-revised EEG segments; Original = Revised, in that subset of the data, the two gold standards
agree; Original6¼Revised: the two gold standards disagree in that subset of the data; CNN, classifier trained on the original expert-annotated dataset; CNN-r,
classifier trained on the dataset with expert-revised EEG segments; bAcc, balanced accuracy. The scores were computed based on the probability threshold
of 0.5.
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making the data we annotate accessible to public. We
should note that the clinical measurements used in our
study were obtained from children aged 7–16 years when
EEG is not entirely mature. Indeed, EEG patterns of brain
activity evolve with age [e.g., the posterior dominant
rhythm evolves to an a one (8–12Hz) by age 5–13 years,
sleep patterns become fully developed in school-aged
children, and specific EEG patterns are more prominent,
such as l waves, positive occipital sharp transients of
sleep, and hypnagogic hypersynchrony; Britton et al.,
2016]. However, the nature of most EEG artifacts does

not evolve over time (e.g., eye blinks, eye movements,
pulse and muscle activity, or nonphysiological artifacts).
Thus, we expect the model to perform well also in an
adult population, as with the mean age of 10 years, the
signal comes rather close to an adult EEG. This will be fur-
ther tested in upcoming studies.
As more data get curated by human experts, we high-

light the feasibility to iteratively improving our model
through active learning. Similar work was done by Yang
and colleagues (S Yang et al., 2017) where the authors
used self-training to improve detection performance in

Figure 6. The CNN model becomes more confident in its predictions after expert revision. Distribution of the predicted artifact prob-
abilities plotted for the subset of the revision data for which both expert decisions agreed with the original annotation shows ag-
glomeration of values in a high-confidence range for the model trained on the dataset with expert-revised EEG segments (B) as
compared with that of the model trained on the original dataset (A). D, E, The same trend is observed in the distributions plotted for
the subset of the nonrevised portion of the data. G, H, Distributions are plotted for the subset of the revision data for which both ex-
perts changed the original annotation. G, Under the original gold standard, the CNN model trained on the original dataset predicted
most nonartifacts with high probability of being artifacts, whereas (H) under the expert-revised gold standard, most of these seg-
ments changed their annotation to artifacts and were predicted with high probability of being artifacts by the CNN model trained on
the dataset with expert-revised data. For all plots, the number of EEG segments is plotted on the y-axis, and the predicted probabil-
ity that an EEG segment has an artifact on the x-axis. C, F, I, Examples of EEG segments for 19 EEG channels (y-axis) predicted by
the models with original and revised annotations. Horizontal lines in each example that separate each rectangle in four regions
show areas that are shaded according to the predicted annotation by the original CNN model (first from bottom), predicted annota-
tion by the new CNN model (second from bottom), original gold standard (first from top), and revised gold standard (second from
top). The predicted annotation was decided based on the predicted probability threshold of 0.5; nonartifact (in green) if the threshold
probability was,0.5 and artifact (in red) if �0.5. CNN, classifier trained on the original dataset; CNN-r, classifier trained on the data-
set with expert-revised data; Original GS, gold standard based on original expert annotations; Revised GS, gold standard based on
expert-revised annotations.
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clinical EEGs. They did initial training on a small set of la-
beled data and used the model to automatically annotate
unlabeled events with high-confidence scores to include
them in the next training iteration, repeating the last two
steps until all unlabeled data got annotated. Thus, expert
intervention was eliminated. Our approach, on the other
hand, needs human intervention. We argue that it is im-
portant to ensure that the model is being exposed to EEG
patterns in which it is least confident, and which are prob-
ably the most subtle and informative. Resolving such
cases by experts would secure feature variability and ve-
racity in the gold standard. As we see, human error and
subjectivity in making decisions are inevitable, thus we
should aim at enhancing the interrater agreement when
revising EEG segments. This can be done by letting ex-
perts revise the data for the second time together, provid-
ing a possibility to discuss and arrive at a final decision. It
may also be useful to turn to multi-class classification and
stratify EEG patterns into distinct categories, as is being
done in several corpora (Harati et al., 2015; Buckwalter et
al., 2021). This can include separate categories for differ-
ent types of ocular and muscle artifacts (e.g., blinking, lat-
eral eye movement, eye flutter, glossokinetic, and chewing),
as well as various abnormal brain-related EEG patterns
(e.g., slowing of activity, sharp waves, spike-wave com-
plexes, etc.). The latter might be particularly useful when ana-
lyzing datasets where EEG abnormalities are highly prevalent
(e.g., EP and neurodevelopmental disorders) possibly dis-
cerning between signs of a more generalized cortical dys-
function from localized epileptiform abnormalities (Bruining et
al., 2020). This way, it would be possible to vary the definition
of artifacts depending on the task at hand as well as help an-
notators spot physiological artifact-free signals of interest.
We consider these improvements for future work.
We also note the lack of statistical tests as one of the

current limitations. Statistical testing using repeated five-
fold cross-validation at both experimental stages (before
and after revision) would strengthen the conclusions of
our analysis but would be very demanding to realize, con-
sidering computation costs associated with training a
model on a single fold (;20 h for 70 epochs of training,
which would add up to 2000 h for 10 runs of the two five-
fold cross-validation experiments each). This is excluding
intrarater reliability testing for each rater in the manual re-
vision step of our pipeline which would be even more
challenging to implement as single re-annotation of 25%
of the data takes five full days of work.
In the short-term, we aim at developing a signal viewer

that would allow using our approach as a decision-sup-
port and guidance system for manual or semi-automatic
annotation of artifacts in resting-state EEG recordings. It
would also allow us to accumulate more labeled data, re-
train the model, and run the next iteration to improve the
gold standard.
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