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Introduction

The olfactory system has a unique neurogenic niche in which 
olfactory sensory neurons are replaced throughout an indi-
vidual’s lifespan. Because the olfactory neuroepithelium is 
exposed to the external environment, there is a constant turn-
over of olfactory neurons, and newborn olfactory neurons 
are supported and guided by specialized glia called olfactory 
ensheathing cells (OECs). OECs are located in the lamina 
propria underlying the olfactory mucosa and surround the 
axons of the olfactory sensory neurons from the epithelium 
up into the nerve fiber layer of the olfactory bulb1–3. Thus, 
OECs can be easily obtained from an intranasal biopsy of the 
olfactory mucosa including the lamina propria. OECs share 
morphological and molecular features with both central ner-
vous system (CNS) glia such as astrocytes, and peripheral 
glia such as Schwann cells4–6. They support the continual 
regeneration of neurons by acting as a suitable substrate,  
and by migrating in tandem or ahead of emerging olfactory 
axons7–9. OECs are also considered to be the primary innate 
immunocytes in the olfactory system. They are a dynamic 
cell population that can be stimulated from a resting state to 
a phagocytic state, and they are capable of clearing bacteria 
and axonal debris10,11. Due to their numerous properties, the 
transplantation of OECs to repair injuries in other regions of 
the nervous system, particularly spinal cord injury (SCI), is 
being explored by many research groups.

An injury to the spinal cord is devastating and often an 
irreversible event that usually triggers multiple deleteri-
ous processes such as delayed and progressive cell death, 
ischemia, hypoxia, inflammation, and extensive scar-
ring12. This complex injury site microenvironment is pro-
apoptotic and anti-regenerative13. To overcome these 
inhibitory factors, OECs have been trialed extensively for 
SCI repair because of their versatile and favorable biologi-
cal functions which can ameliorate the environment of the 
injury site and promote regeneration. OECs can offer neu-
roprotection, enhance neurite outgrowth, provide axonal 
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guidance cues, and promote remyelination in animal mod-
els and in humans (reviewed in Gómez et al.14). Despite 
several completed clinical trials with transplantation of 
OECs demonstrating safety and efficacy, the recovery 
outcomes in patients are often variable. While there are 
multiple factors contributing to the variable recovery out-
comes such as differences in cell source, cell purity, cell 
delivery techniques, and assessment of functional read-
outs (reviewed in Kawaja et al.15, Miah et al.16, Yao 
et al.17), a consistent observation across studies has been 
the poor survival of transplanted cells, with the reported 
survival rates of transplanted OECs being as low as 0.3% 
to 3% in animal models18–21. To compensate for this mas-
sive cell loss post-transplantation, excess cells are trans-
planted into the injury site. However, this approach comes 
with limitations as it introduces additional cytotoxic prod-
ucts (apoptotic corpses) at the injury site without any 
improvement in viability. In addition, it is not always fea-
sible to produce a surplus of cells for autologous therapies 
due to the limitations in cell production from a small 
biopsy source material. While the majority of our knowl-
edge on OEC biology comes from using rodent olfactory 
tissues, OECs have also been isolated and purified from 
different species such as dogs, pigs, primates, and 
humans22–26. There are fundamental inter-species differ-
ences in the control of OEC proliferation and their 
response to different growth factors (reviewed in 
Wewetzer et al.27). To overcome the complexities in cul-
turing OECs from different species, it is important to 
identify and maintain cells under optimal conditions that 
favor cell proliferation and rapid expansion while main-
taining cell-specific properties such as morphology, anti-
gen expression, and phagocytosis. For OECs to be used 
clinically for cell transplantation, it will be imperative to 
produce sufficient purified cells in a short timeframe in 
vitro. Therefore, it is critical to test protocols for cell iso-
lation, purification, and expansion for OECs obtained 
from individual species to predetermine optimal culture 
conditions, rather than assume cells from different species 
will respond similarly.

Strategies need to be designed that enable the in vitro pro-
duction of OECs in a state that will optimize their survival 
and integration after transplantation into the hostile injury 
site. However, commonly used in vitro models for cell 
expansion do not reflect the conditions of the injury site and 
this critical aspect of the OEC transplantation therapy is 
mostly unexplored. By implementing pretreatment strategies 
for the culture of OECs in an environment mimicking the 
host site before transplantation, their phagocytic, secretory, 
and migratory capacity can be improved to enhance viability 
and neural regeneration at the transplantation site. This 
review focuses on the following themes prior to cell trans-
plantation of OECs: (1) homeostatic/hypoxic precondition-
ing and (2) priming/activating cells, and (3) bioengineering a 
suitable microenvironment.

Homeostatic/Hypoxic Preconditioning of OECs

Oxygen availability is a fundamental requirement for cellu-
lar function, and decreased oxygen levels can induce cellular 
stress. Under homeostatic conditions, cells require oxygen 
levels between 2% and 9% (14.4–64.8 mm Hg), whereas 
lower oxygen levels 0.5% to 2% (<10 mm Hg) are consid-
ered hypoxic28. Standard cell culture practice involves cul-
turing cells in liquid medium incubated at atmospheric 
oxygen levels of 21% which is considerably higher than 
physiological oxygen levels. Continued exposure to oxygen 
concentration above physiological levels can lead to prema-
ture senescence of primary cells29,30. It is likely that cells are 
physiologically adapted to their anatomic niche conditions. 
By culturing cells ex vivo under higher oxygen levels and 
then transplanting them in vivo to homeostatic or hypoxic 
conditions, the cells may require significant re-adaptation 
which may confer additional cellular stress. This may be a 
contributing factor to the poor survival of OECs after trans-
plantation. Hence, there is a need for in vitro approaches to 
mimic the low oxygen conditions that the cells experience in 
their tissue-specific niche and the transplantation site.

To gain insight into the potential for homeostatic oxygen 
or hypoxic preconditioning where cells are cultured under 
low oxygen conditions, it is useful to examine how other 
cells respond, such as mesenchymal stem cells (MSCs; Table 1). 
The aims of homeostatic/hypoxic preconditioning are to 
improve the viability of the cell product and the therapeutic 
properties of the transplanted cells. Culturing bone marrow–
derived mesenchymal stem cells (BM-MSCs) in hypoxic 
conditions has been shown to increase proliferation, multipo-
tency, and the secretion of cytoprotective molecules49,52. This 
has partly been attributed to the provision of oxygen levels 
similar to the resident cellular niche. The cellular niche 
encompasses the local microenvironment that includes both 
cellular and acellular components that nourish and regulate 
the functions of cells. Oxygen levels in the niches of mesen-
chymal and neural stem cells are 2% to 8% and 1% to 8%, 
respectively53,54.

Olfactory mucosa–mesenchymal stem cells (OM-MSCs) 
are a type of Nestin-positive stem cells identified55 in the 
olfactory mucosa that have the potential to differentiate into 
smooth muscle cells, adipocytes, osteocytes, and neurons 
and show similar antigenic profile to BM-MSCs56,57. The 
OM-MSCs secrete anti-inflammatory cytokines and have 
been shown to improve myelination of rat spinal cord cell 
cultures58. Due to these favorable properties, OM-MSCs are 
an alternative source of MSCs for autologous cell transplan-
tation. OM-MSCs and OECs are resident within the same 
niche, the highly cellular lamina propria (reviewed in 
Lindsay et al.59). The application of conditions tested on 
OM-MSCs to OECs can be an appropriate strategy to re-
create an optimized microenvironment for the culture and 
expansion of OECs, and to improve their efficacy for cell 
transplantation.
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Similar to BM-MSCs, hypoxic preconditioning of 
OM-MSCs resulted in increased secretion of neuroprotective 
paracrine factors against cerebral ischemia/reperfusion 
injury. Interestingly, hypoxic OM-MSCs were able to inhibit 
microglial cell death following cerebral ischemia/reperfu-
sion injury in vitro. This anti-pyroptotic and anti-apoptotic 
effect of OM-MSCs on microglia was mediated by regulat-
ing expression levels of hypoxia-inducible factor 1-alpha 
(HIF-1α), a key transcription factor regulating cellular 
response to hypoxia34,33. Preconditioning of OM-MSCs 
resulted in marked increase of HIF-1α, and silencing HIF-1α 
in OM-MSCs affected cell viability and resulted in accelera-
tion of apoptosis32. A hypoxic environment could also pro-
mote differentiation of OM-MSCs to dopaminergic neurons 
by upregulation of HIF-1α and activation of tyrosine hydrox-
ylase35,60. Thus, it is clear that MSCs respond in various ways 
to low oxygen conditions and hence the effect of low oxygen 
conditions should be considered for OECs.

Survival of OECs in culture and at the transplantation 
site can be compromised by a lack of oxygen and nutri-
ents to support their viability. In vitro sensitivity of OECs 
to hypoxia and serum deprivation was tested by Pellitteri 
et al., in neonatal mouse OEC cultures. OEC proliferation 
and survival were reduced when exposed to a combina-
tion of hypoxia and serum starvation61. Addition of basic 
fibroblast growth factor, a mitogen for OECs62, could 
improve survival and proliferation of OECs from hypoxia 
or serum deprivation. Intriguingly, the growth rate of pri-
mate OECs was unaffected by environmental oxygen 
concentration in contrast to rodent OECs which appeared 
to overcome replicative senescence when cultured in low 
oxygen conditions25.

A recent study63 investigated the therapeutic effects of 
exosomes from human umbilical cord–derived MSCs on 
OECs in hypoxic conditions for sciatic nerve regeneration in 
rats. Treating OECs with exosomes resulted in improved 
viability, proliferation, and migration of OECs, and increased 
the secretion of brain-derived neurotrophic factor (BDNF) 
thereby resulting in improved functional recovery in injured 
rats. Notably, extracellular vesicles derived from hypoxia-
preconditioned OM-MSCs (3% O2) could promote HIF-1α–
vascular endothelial growth signaling in human brain 
microvascular endothelial cells via miR-612 upregulation 
and downregulation of TP53, a component of cellular stress 
responses, resulting in enhanced angiogenesis in in vitro tube 
formation assays31.

While these studies make a case for preconditioning cells 
to low oxygen conditions before transplantation into a “hos-
tile” hypoxic environment, the adoption of low oxygen pre-
treatment to a clinical setting will be contingent on the 
protocol consistency. It will be critical to predetermine the 
vulnerability and responses of the OEC cellular product to 
hypoxic stress, the duration and percentage O2 of low oxygen 
exposure, and ultimately the ideal conditions to improve cell 
survival and integration at the transplantation site.

Pretransplantation Cell Priming

The inflammatory environment and the inhibitory extracel-
lular matrix at the injury site in the CNS result in poor growth 
conditions for both the endogenous and transplanted cells64,65. 
OECs offer a potential therapeutic benefit as they can modu-
late the inflammatory environment, remove cell and myelin 
debris, and offer neurotrophic and physical support to regen-
erating axons (Fig. 1, reviewed in Yao et al.17, Brosius Lutz 
and Barres66, and Fregnan et al.67). Many aspects of OECs 
and their cellular interactions for pro-regenerative functions 
have been studied in vitro using assays for neurite outgrowth, 
interaction with astrocytes, debris clearance, and phagocyto-
sis assays14. One avenue to further improve the therapeutic 
efficacy of OECs is to enhance their activities. Thus, there is 
a need for the design of approaches to activate or train OECs 
to attain a functionally relevant phenotype in vitro and to 
retain or enhance their relevant function in vivo after 
transplantation.

Different approaches have been tested to stimulate the 
secretion of growth factors, and to enhance the migratory 
and phagocytic capabilities of OECs. The main objectives of 
cell priming or preconditioning cells by exposure to an acti-
vating/priming agent in vitro are to augment their potential 
therapeutic properties and to better prepare the cells to face 
the conditions at the transplantation site.

Soluble signaling cues. OECs secrete many neurotrophic mol-
ecules such as neurotrophin-3 (NT-3), nerve growth factor 
(NGF), glial-derived neurotrophic factor (GDNF), BDNF, 
neurotrophins-4/5 (NT-4/5), and vascular endothelial growth 
factor (VEGF)68–70, These molecules can also counteract the 
diffusion of inhibitory molecules from neuronal debris by 
phagocytosing debris.

To optimize the functional outcomes from OEC trans-
plantation, cell modulation with different neurotrophins has 
been tested (reviewed in Rosner et al.71 and Wright et al.72). 
NT-3 is an interesting candidate as it can promote both the 
proliferation and survival of OECs, and also different groups 
have shown that local application of NT-3 at the injury site 
was favorable for regeneration after SCI73–75. To achieve 
long-term and site-specific delivery of NT-3 to the injury 
site, OECs genetically modified to secrete high amounts of 
NT-3 were transplanted to the injured spinal cord, and these 
cells could significantly improve axonal outgrowth73,76. A 
recent study explored the effect of NT-3 in a rat model of SCI 
and showed that NT-3 could inhibit the mitogen-activated 
protein kinase (MAPK) signaling pathway77. Similarly, NGF 
and BDNF play a neuroprotective role by modulating the 
MAPK/mitogen-activated extracellular signal-related kinase 
(MEK) pathway78,79.

The Wingless-related integration site (Wnt) signaling 
pathway influences multiple aspects of neural development 
from cell proliferation, cell fate specification, and neuronal 
morphogenesis to cell death (reviewed in Ciani and Salinas80). 
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A specialized subgroup of OECs in the inner nerve layer of 
the olfactory bulb was identified using Wnt reporter mice, 
and Wnt signaling was implicated in appropriate olfactory 
axonal targeting and in neural regeneration81–83. Notably, the 
activation of Wnt signaling could promote self-renewal of 
olfactory epithelial stem cells and neuronal differentiation. 
Furthermore, Wnt signaling activation is critical for the 
regeneration of adult olfactory epithelium after methimazole 
induced injury84. Activation of canonical Wnt signaling 
was shown to be both necessary and sufficient to drive the 
transition of horizontal basal stem cells from a resting to an 
activated neurogenic state in the uninjured epithelium85. 
Recently, it was reported that Wnt-activated OECs can 
stimulate neural stem cell proliferation and neuronal 

differentiation in neonatal mouse OECs. Interestingly, the 
conditioned medium from Wnt-activated OECs was suffi-
cient to stimulate proliferation of neural stem cells deter-
mined by an increase in Ki67 and Sox2 double positive cells, 
and it could also promote the differentiation of neural stem 
cells into β-tubulin III positive neurons86.

There is growing evidence supporting a paracrine/secre-
tory effect of transplanted cells such as MSCs and OECs on 
neural regeneration (reviewed in Makridakis et al.87). These 
studies indicate that there may not be a need for homing of 
large cell numbers to the injury site to observe an effect. 
Secreted signaling cues could be sufficient to drive cellular 
responses, and there is potential for using activation or 
stimulation of the cells as another approach to enhance 

Figure 1. Schematic of the various biological roles of olfactory ensheathing cells that favour neural regeneration. The therapeutic 
effects of olfactory ensheathing cell transplantation for neural repair are attributed to their biological roles such as phagocytosis of 
debris, interaction with astrocytes, neurotrophic support, immunomodulation, and neuronal regeneration.
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therapeutic potency of transplanted cells by improving their 
function and their resistance to inflammatory conditions. 
Little is known about the immunomodulatory properties of 
OM-MSCs. To address this, Jafari et al., compared the cyto-
kine secretion of stimulated OM-MSCs and adipose-derived 
MSCs by short-term priming protocols to stimulate Toll-like 
receptors. Interestingly, OM-MSCs had significantly higher 
levels of immunosuppressive cytokines interleukin-8, 
transforming growth factor beta (TGF-β) and C-C motif che-
mokine ligand 5 secretion in comparison with adipose tis-
sue–derived MSCs even before any treatment88. We recently 
reported that OECs produced less pro-inflammatory cyto-
kines compared with Schwann cells and macrophages when 
exposed to necrotic bodies and in a pro-inflammatory micro-
environment89. The secretome of OM-MSCs has been 
reported previously90 and the results showed that the secreted 
proteins were mainly associated with neurotrophy, cell 
growth, angiogenesis, cell differentiation, and apoptosis. In 
cerebral ischemia reperfusion injury, models, OM-MSCs 
were shown to downregulate reactive oxygen species and 
lipid peroxidation levels, and eventually reduce neuronal 
apoptosis33. Recently, extracellular vesicles derived from 
OECs were shown to display neuroprotective effects on neu-
ral progenitor cells and promoted peripheral nerve regenera-
tion in rats91,92.

Overall, these studies suggest that OECs can be stimu-
lated in vitro to enhance the activity, function, and secretome 
of OECs which can then exert various benefits to other cell 
types. However, a robust analytical approach is required to 
identify the “ideal” activators for OECs and to measure the 
immunosuppressive potential of activated OECs in an 
inflammatory environment.

Migration. Transplanted cells will encounter a complex and 
unfavorable environment during their migration as they are 
faced with different cell types such as reactive astrocytes, 
activated microglia, invading fibroblasts, inflammatory mol-
ecules, and debris at the injury site. These interactions have 
the potential to modulate the transplanted cells and affect 
their ability to migrate. It is likely that OECs transplanted at 
the site of SCI will be surrounded by glial-fibrillary acidic 
protein-positive cells, possibly reactive astrocytes93, and 
these astrocytes can limit OEC migration. For instance, tumor 
necrosis factor alpha (TNFα) is secreted by reactive astro-
cytes at the site of injury and can modulate OEC migration in 
a dose-dependent fashion, blocking tumor necrosis factor 
receptor 1 alpha (TNFR1α). This can result in the reduced 
migration of olfactory bulb OECs94. Despite the odds being 
stacked against migration and integration at the injury site, 
OECs have been shown to migrate with the regenerating 
axons95 and interact with astrocytes5,96. These migratory 
properties of OECs, along with their ability to interact with 
astrocytes at the injury site and modulation of the inflamma-
tory environment, are thought to contribute toward favorable 
neural repair in the CNS5,94,97,98. Moreover, OECs can also 

downregulate the translocation of nuclear factor kappa beta 
(NFκB) in astrocytes, an important response implicated in 
astrocyte activation. Insulin-like growth factor-1, secreted by 
OECs is considered a key contributor to the modulation of 
astrocytes activation by OECs by potentially preventing the 
translocation of NFκB to astrocyte nuclei99.

Different candidates have been tested to stimulate OEC 
migration with the objective of improving neural repair out-
comes. We have shown previously that OEC migration is 
characterized by lamellipodial waves that appear to direct 
intercellular interactions. The lamellipodia migration of 
OECs could also be enhanced by GDNF which further medi-
ates the motility of axons100,101. Integrin alpha-7 has been 
reported to play an important role in the migration of adult 
OECs without directly affecting neurite regeneration102. 
Fibulin-3, Slit2, and NogoA have been shown to inhibit OEC 
migration, and interestingly they are also often found to be 
overexpressed in the scar tissue at lesion sites103–105. 
Similarly, lysophosphatidic acid (LPA) is produced at the 
injury site, and has been reported to promote migration and 
proliferation of OECs via extracellular signal-regulated 
kinase (ERK1/2) signaling106 while also facilitating the hom-
ing of OECs to the injury site107. We recently showed that 
liraglutide, a glucagon-like peptide-1 receptor agonist, could 
stimulate OEC migration by reducing time in arrest, upregu-
lating laminin-1, and activating the ERK pathway108. Another 
approach to augment OEC migration at the site of injury is to 
genetically modify cells. One such study was to modify 
OECs to express Nogo receptor ectodomain. These modified 
cells migrated longer than non-modified cells both in vitro 
and post-transplantation in a rat model of SCI. The myelin 
mediated inhibition of OEC migration could be partly over-
come by treatment with NEP1-40 peptide or antibodies 
against Nogo receptor109.

These studies further support the notion that stimulating 
migration of OECs is feasible, and perhaps incorporating 
cells with enhanced migratory properties should be a consid-
eration when designing OEC-based cell therapies for neural 
repair.

Phagocytosis. The persistence of cellular and myelin debris at 
the site of CNS injury impedes neural regeneration110. Effec-
tive stimulation of OEC phagocytic activity is another ave-
nue to promote debris clearance and thereby improve neural 
regeneration. Accumulating evidence from our group and 
other studies has helped identify different compounds that 
can increase OEC phagocytosis, including curcumin111, cur-
cumin with lipopolysaccharide (LPS)112, natural products 
2-methoxy-1,4-naphthoquinone113, the serrulatane diterpe-
noids 3-acetoxy-7,8-dihydroxyserrulat-14-en-19-oic acid, 
and 3,7,8-trihydroxyserrulat-14-en-19-oic acid114. The anti-
inflammatory cytokine TGF-β has also been implicated in 
increasing OEC phagocytosis115.

Curcumin elicits pleiotropic effects in OECs in a dose-
dependent manner. In assays where neurons are co-cultured 
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with OECs and neuronal debris, increased clearance of debris 
was observed in the presence of LPS and curcumin stimu-
lus112 or TGF-β115, and this in turn promoted neuronal sur-
vival. Strikingly, pretreatment with curcumin resulted in 
improved functional recovery and axon growth in a rat model 
of SCI. Cells stimulated by curcumin exhibited increased 
expression of phosphatidylserine receptor suggestive of 
increased phagocytosis and secreted more growth factors in 
vivo at the injury site116. Recently, it was shown that when 
activated by curcumin and LPS, OECs had pro-angiogenic 
effects such as promoting proliferation, migration, and ves-
sel formation of vascular endothelial cells likely by modulat-
ing the phosphatidylinositol 3-kinase/protein kinase B 
pathway117.

Compared with Schwann cells, OECs appear to have 
more favorable neural repair characteristics. In addition to 
producing less pro-inflammatory cytokines compared with 
Schwann cells in a pro-inflammatory environment, we have 
also demonstrated that OECs phagocytosed more myelin 
debris than Schwann cells89. More data are clearly needed to 
understand how OECs interact with the immune and nervous 
systems, and how debris clearance is coordinated between 
OECs and professional phagocytic cells at the injury site.

Overall, these studies show that OECs are responsive to 
stimulation and the potential exists that these various activi-
ties can be manipulated to further enhance the therapeutic 
benefits of OECs after transplantation. To create a microen-
vironment suitable to drive axonal regeneration, we need to 
develop and test approaches to activate and train OECs in 
vitro to maximize their functions in vivo. Systematic analysis 
of the priming agents and optimizing the duration of priming 
to modulate therapeutic efficacy will be the key to achieving 
efficient cell therapy outcomes with minimum cell dosage 
and side effects.

Bioengineering a Suitable Microenvironment

Another challenge in the application of cell therapies for 
SCIs is the retention of biological functions of transplanted 
cells. For cells to function consistently as “living drugs,” we 
must aim to recreate or mimic their in vivo niche in a dish 
and to standardize cell production protocols118. The factors 
that directly or indirectly affect the cell behavior such as 
extracellular matrix, neighboring cells, signaling cues, and 
mechanical forces caused by movement of physiological flu-
ids, all constitute the microenvironment of a cell.

OECs are conventionally cultured in vitro and expanded 
as adherent monolayers under conditions commonly used for 
mammalian cells. However, access to nutrition and oxygen is 
not uniform and well-controlled under these conditions, and 
intercellular interaction is unnatural when cells are adhered 
to a dish. Moreover, the properties of these cells are depen-
dent on factors such as cell density and time in culture. Cells 
are also reliant on direct contact with the surrounding extra-
cellular matrix and neighboring cells for maintenance and 

regulation of their biological function. So, two-dimensional 
adherent culture conditions are not ideal, and there is a dis-
parity between what the cells require for performing their 
biological roles and what is provided in vitro. There is a need 
for developing models mimicking both the resident cellular 
niches and the transplantation niche.

Rapid advances in materials science have led to the use of 
different biomaterials with the aim of promoting functional 
tissue repair at the site of injury119,120. Provision of three-
dimensional (3D) support has been shown to improve effi-
cacy of BM-MSCs after transplantation by mimicking the 
cellular niche, and creating a conducive and stable environ-
ment for axonal regeneration and cell survival (reviewed in 
Zhou et al.121).

Different biomaterials have been trialed in combination 
with OECs with varying success (Table 2). These biomateri-
als function as carriers for the cells and as structural scaffolds 
for axonal regrowth. The minimum prerequisites for a suit-
able biomaterial are biocompatibility, biodegradability, and 
adaptive mechanical properties. Despite the application of 
fabricated and synthetic 3D scaffolds such as fibrin and poly-
mer-based scaffolds for nerve repair, there remains a need for 
biologically relevant scaffolds or scaffold-free 3D culture 
techniques. It is expected that decellularized scaffold-based 
tissue constructs could be directly transplanted for the 
regrowth of axonal tracts and to hasten the neural regenera-
tion in vivo144. Decellularization is the process of creating an 
acellular extracellular matrix scaffold by removal of the cel-
lular components of living tissues. These acellular scaffolds 
are subsequently used to provide structural and spatial sup-
port, cytokine support, and integration through cell surface 
molecules145. Spinal cord decellularized scaffolds have 
been shown to promote axonal regeneration and functional 
motor recovery in the hind limbs of rats with SCI146–148. 
Decellularized scaffolds seeded with OECs showed good 
biocompatibility with adherent and proliferating OECs 
observed in the scaffold, and when transplanted into rat spi-
nal cord, the decellularized scaffold + OEC group could 
promote axonal regeneration and showed significant motor 
function recovery after 3 weeks of injury149. However, decel-
lularized materials which have a fixed architecture restrict to 
some degree the movement and interactions of cells that are 
seeded into the 3D construct. Thus, the resultant cell rela-
tionships may not reflect a more natural arrangement that 
may occur if the cells had a less restrictive environment.

To simplify the final cell product that is transplanted and 
to minimize potential adverse effects, our research has 
focused on the development of stable 3D constructs that are 
substrate and scaffold-free and can be cultured in standard 
cell culture medium. We recently reported two 3D spheroid 
culture systems: floating liquid marbles and the naked liquid 
marbles150,151. In the naked liquid marble system, OECs cul-
tured within a liquid drop on a superhydrophobic surface can 
form spheroids within hours. This rapid formation of spher-
oids is advantageous as short-term cultured OECs have 
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better effects on the neural survival and axonal growth152. 
Furthermore, we could customize the size of the spheroid 
using vibration at different frequencies153 or by changing cell 
density.

A major advantage of culturing cells in 3D spheres is that 
it closely mimics the in vivo environment and can recapitu-
late the cellular interactions and cell-matrix interactions. 
Importantly, our ability to culture OECs in 3D in this naked 
liquid marble system revealed two critical attributes of this 
process: (1) unrestricted movement of cells within liquid 
marbles enabled natural arrangement of cells reminiscent of 
their in vivo organization and (2) cells retained their migra-
tion properties from spheroids when transferred to a two-
dimensional culture plate. Due to the naked liquid marble 
system resulting in 3D cell constructs that closely mimic the 
in vivo environment, it is suitable for a range of in vitro stud-
ies of OECs which may better reflect cell function and 
responses.

3D bioprinting is a bespoke approach to address the vari-
able nature of SCIs wherein personalized tissue scaffolds 
suitable to match an individual’s injury site can be generated. 
For instance, Joung et al.154 reported a 3D spinal cord tissue-
like platform where multiple neural progenitor cells could be 
placed within a printed scaffold. More recently, a novel bio-
ink containing hydroxypropyl chitosan, thiolated hyaluronic 
acid, vinyl sulfonated hyaluronic acid, and matrigel was used 
for the fabrication of a tissue scaffold to mimic the white 
matter of spinal cord155. The feasibility of printing primary 
cultured OECs was demonstrated by Othon et al.156, where 
using biological laser printing several lines of OECs could be 
printed through a multilayer hydrogel scaffold.

In summary, integration of emerging technologies such as 
3D bioprinting in combination with scaffold-free models has 
the potential to create highly complex environments for the 

recreation of cellular and transplantation niches thereby 
facilitating the use of predictive and biologically relevant in 
vitro models.

Conclusion

The microenvironment of the injured spinal cord is unfavor-
able for the survival of transplanted cells. In this review, we 
have discussed potential strategies to precondition and stim-
ulate OECs for transplantation to improve their survival and 
to enhance their therapeutic potential (Fig. 2). When cells are 
isolated from their native environment, expanded in vitro, 
and then transplanted back in vivo to a harsh injury environ-
ment, the therapeutic potency of the cells is not well-pre-
served, possibly due to changes in the microenvironment of 
the cells. Preconditioning OECs in vitro may improve their 
migration, phagocytic, and immunomodulatory abilities. 
Understanding how the manipulation of different stimuli, 
such as oxygen levels, signaling cues, and 3D culture param-
eters of cells, can affect the behavior of OECs should be a 
consideration in the design of cell transplantation therapies. 
Future studies should focus on the development of robust in 
vitro models that can activate and retain biological properties 
of the cells by mimicking conditions of the tissue-specific 
microenvironment. This will help to improve the overall reli-
ability of cell-based therapies and to unlock the therapeutic 
capabilities of OECs for neural repair.
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