
METHODOLOGY ARTICLE Open Access

A parallel and incremental algorithm for efficient
unique signature discovery on DNA databases
Hsiao Ping Lee1,2,3, Tzu-Fang Sheu4*, Chuan Yi Tang3

Abstract

Background: DNA signatures are distinct short nucleotide sequences that provide valuable information that is
used for various purposes, such as the design of Polymerase Chain Reaction primers and microarray experiments.
Biologists usually use a discovery algorithm to find unique signatures from DNA databases, and then apply the
signatures to microarray experiments. Such discovery algorithms require to set some input factors, such as
signature length l and mismatch tolerance d, which affect the discovery results. However, suggestions about how
to select proper factor values are rare, especially when an unfamiliar DNA database is used. In most cases,
biologists typically select factor values based on experience, or even by guessing. If the discovered result is
unsatisfactory, biologists change the input factors of the algorithm to obtain a new result. This process is repeated
until a proper result is obtained. Implicit signatures under the discovery condition (l, d) are defined as the
signatures of length ≤ l with mismatch tolerance ≥ d. A discovery algorithm that could discover all implicit
signatures, such that those that meet the requirements concerning the results, would be more helpful than one
that depends on trial and error. However, existing discovery algorithms do not address the need to discover all
implicit signatures.

Results: This work proposes two discovery algorithms - the consecutive multiple discovery (CMD) algorithm and
the parallel and incremental signature discovery (PISD) algorithm. The PISD algorithm is designed for efficiently
discovering signatures under a certain discovery condition. The algorithm finds new results by using previously
discovered results as candidates, rather than by using the whole database. The PISD algorithm further increases
discovery efficiency by applying parallel computing. The CMD algorithm is designed to discover implicit signatures
efficiently. It uses the PISD algorithm as a kernel routine to discover implicit signatures efficiently under every
feasible discovery condition.

Conclusions: The proposed algorithms discover implicit signatures efficiently. The presented CMD algorithm has
up to 97% less execution time than typical sequential discovery algorithms in the discovery of implicit signatures in
experiments, when eight processing cores are used.

Background
Mutations introduce variations and divergence into
DNA sequences within and among species. Differences
among DNA sequences are extensively used to identify
species [1-4]. For example, specific oligonucleotides
have already been used in the Polymerase Chain Reac-
tion (PCR) method to identify 14 human pathogenic
yeast species [5]. A unique DNA signature is a sequence
that occurs in a DNA database only once, and has some
minimum mutation distance from all other sequences in

the database. Unique signature discovery [6] is the find-
ing of unique signatures in a set of DNA sequences.
They are accelerating various areas of research, includ-
ing the map-based cloning of genes that control traits,
comparative genome analysis, protein identification, and
the development of various methods that depend on
gene-specific oligonucleotides, such as the DNA micro-
array technology.
The methods of signature discovery have been widely

studied, and many related tools and applications have
been developed [1,6-16]. For example, [14] integrates
multiple bioinformatics algorithms to determine hori-
zontally transferred, pathotype-specific signature genes

* Correspondence: fang@pu.edu.tw
4Department of Computer Science and Communication Engineering,
Providence University, Taichung, 43301 Taiwan, ROC

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

© 2010 Lee et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:fang@pu.edu.tw
http://creativecommons.org/licenses/by/2.0

as targets for specific, high-throughput molecular diag-
nostic applications and reverse vaccinology screens;
insignia [15] is a web application for rapidly identifying
unique DNA signatures, and hybseek [16] is a web ser-
vice for efficiently designing both pathogen-specific and
compatible primer pairs for DNA-based diagnostic
multi-analyte assays.
The algorithm of Zheng et al. [17] and IMUS [18] are

two hamming-distance-based unique signature discovery
algorithms. These two algorithms deal with DNA data-
bases. Let l and d be two positive integers, where d ≤ l.
An l-pattern is a string of l characters in the alphabet
set {A, C, G, T}. A pattern P is (l, d)-mismatched to
a pattern Q if the length of P and Q is l and the ham-
ming distance, which is the number of mismatches,
between P and Q does not exceed d. An l-pattern P is
referred to as a unique signature with mismatch toler-
ance d if and only if no other pattern Q exists in the
given DNA database such that P and Q are (l, d)-mis-
matched. Zheng’s algorithm and the IMUS algorithm
are designed for efficiently discovering the unique signa-
tures under the discovery conditions of signature length
l and mismatch tolerance d.
Zheng’s algorithm, called the UO algorithm hereafter,

is based on the observation that if two patterns, P and
Q, are (l, d)-mismatched, then at least one of the parti-
tions of l P is (l/l, 1)-mismatched to the corresponding
part in Q, where l = ëd/2û + 1 and all partitions have
equal length. The UO algorithm is a two-phase algo-
rithm. In the first phase, the algorithm divides DNA
sequences into patterns of length l/l. An index system
is built based on the l/l-patterns as index keys, in
which l-patterns that contain the same index key are
gathered in a single index entry. Assume that KP is an
index key, and KQ is one of the keys that are (l/l, 1)-
mismatched to KP. In the second phase, the UO algo-
rithm performs complete string comparisons on the
l-patterns in the entries KQ and KP to check whether
they are (l, d)-mismatched. The unique signatures
emerge after all of the duplicated patterns have been
pruned.
The IMUS algorithm improves upon the UO algo-

rithm. The IMUS algorithm is based on the
observation that if two patterns P and Q are (l, d)-mis-
matched, then at least one of the two halves of P is
(l/2, ëd/2û)-mismatched to the corresponding part of
Q. In the processing-kernel level, the UO and IMUS
algorithms are similar. The main difference between
them is the number of partitions in an l-pattern. The
IMUS algorithm divides an l-pattern into two parti-
tions, whereas the UO algorithm divides a pattern into
ëd/2û + 1 partitions. Since the mismatch tolerance d is
small (usually d <6) in most discoveries of short signa-
tures (of length l ≤ 40), the IMUS algorithm reduces

the number of partitions in an l-pattern to decrease
the number of required string comparisons, and thus
increases the discovery efficiency. A consequence is
that more memory is required to store the index that
is used in the IMUS algorithm. An additional fre-
quency filter, which represents an enhanced usage of
the frequency distance, defined in [19], is used in the
IMUS algorithm as a pre-filter to prevent unnecessary
comparisons between dissimilar patterns. However,
most signature discovery algorithms have the problem
that we do not know how to select proper factor
values, such as the proper (l, d) values in the UO or
IMUS algorithm, because the proper discovery result is
defined on a case-by-case basis. In most cases, factor
values are selected based on domain knowledge or
experience or even by guessing. The factor settings are
then used in the discovery algorithm to discover signa-
tures. If the result is unacceptable, then the factor
values are changed to get other results. The process is
repeated until satisfactory results are found. This situa-
tion often arises when an unfamiliar DNA database is
being used. A method that can efficiently find all of
the signatures that satisfy feasible discovery conditions,
instead of repeated trial and error, enabling users to
select the proper signatures, is needed. In other words,
when the discovery condition is given in terms of sig-
nature length l and mismatch tolerance d, a discovery
algorithm can be use to discover not only the signa-
tures with exact (l, d) but also all signatures that meet
stricter discovery conditions - with a length smaller
than l or a mismatch tolerance larger than d. Then,
the signatures that meet our requirements can be
selected directly from the results. The signatures of
length ≤ l and mismatch tolerance ≥ d are called the
implicit signatures under the discovery condition (l, d).
Providing researchers with all implicit signatures with-
out manually changing the factor values would be
helpful. One challenge is how to discover efficiently all
implicit signatures from DNA databases under a cer-
tain discovery condition. An intuitive solution is to use
the UO or IMUS algorithm iteratively to perform a
complete discovery under all feasible discovery condi-
tions. However, this solution is not sufficiently effi-
cient. The UO and IMUS algorithms are specifically
designed for discovering signatures that meet a certain
discovery condition, but they cannot discover all of the
implicit signatures. Accordingly, an efficient algorithm
for discovering all implicit signatures under a certain
discovery condition is needed.
The idea of the ‘incremental’ has been used in many

research areas, such as data mining and knowledge dis-
covery [20,21], communications [22-25] and computer
graphics and visualization [26,27]. The definitions of the
term ‘incremental’ vary slightly among fields. Here,

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 2 of 13

‘incremental’ is used to refer to the fact that a new
result is obtained by processing the previously discov-
ered signatures, rather than by performing a complete
discovery on the whole database. Additionally, since an
increasing number of computers have multi-core pro-
cessors, parallel computing is applied to accelerate the
signature discovery processes. This work proposes an
algorithm that is called the Consecutive Multiple Dis-
covery (CMD) algorithm, which is designed specifically
for discovering all implicit signatures under a certain
discovery condition from DNA databases. The CMD
algorithm is an iterative algorithm. It includes an algo-
rithm called Parallel and Incremental Signature Discov-
ery (PISD) algorithm as a kernel routine. The PISD
algorithm enhances the hamming-distance-based unique
signature discovery algorithms, the UO and IMUS algo-
rithms, by using the incremental and parallel computing
techniques. The PISD algorithm is based on observa-
tions of hamming-distance-based signatures, and dis-
covers new results by reusing previously discovered
signatures but with looser discovery conditions. For
example, the algorithm can find signatures of length l =
28 and mismatch tolerance d = 4 by processing the sig-
natures of l = 30 and d = 2. The scope of the search is
far smaller than the size of the input database. The
PISD algorithm runs faster than the typical UO and
IMUS algorithms because it reuses the discovered signa-
tures as candidates, rather than all of the patterns in the
database. Based on the results from the experiments on
human chromosome 13 EST databases, the proposed
CMD algorithm discovers all implicit signatures and
performs 33.74 times faster than the typical algorithm
when eight processing cores are used.

Results and Discussion
Algorithm
The proposed Consecutive Multiple Discovery (CMD)
algorithm efficiently discovers all of the implicit signa-
tures of length ≤ l and mismatch tolerance ≥ d under
the discovery condition (l, d). The CMD algorithm uses
the parallel and incremental signature discovery (PISD)
algorithm as a kernel routine. Given a discovery condi-
tion (l, d), the PISD algorithm is designed for efficiently
discovering signatures of length l’ and tolerance d’, and
then the CMD algorithm uses the PISD to find all of
the implicit signatures of length l’ ≤ l and mismatch tol-
erance d’ ≥ d. The PISD algorithm is based on observa-
tions of the hamming-distance-based signatures, and
uses parallel computing to increase discovery efficiency.
The PISD algorithm applies a scheduling heuristic,
which is called the parallel entry list (PEL) heuristic, to
generate a reordered entry list when parallel computing
is used. This entry list improves the performance of the
proposed PISD algorithm.

The parallel and incremental signature discovery (PISD)
algorithm
Let Ωl, d denote the set of the unique signatures discov-
ered by the UO or IMUS algorithm under the discovery
condition (l, d). We have the observations as follows:
Observation 1. ∀P Î Ωl-1, d, P must be a substring of

a pattern Q in Ωl, d.
Proof.
Assume P Î Ωl-1, d and P’ is a pattern of length l - 1.

Since P is a signature of condition (l - 1, d), HD(P, P’)
>d, where HD(P, P’) is the hamming distance between P
and P’.
Let x be a character in {A, C, G, T}. Assume Q = x

+ P and Q’ is a pattern of length l, where + means string
concatenation. HD(Q, Q’) = HD(x + P, Q1 + Q l2) ≥
HD(P, Q l2) > d, where Qi is the i-th character of Q’
and Qi j denotes the substring starting from the i-th to
the j-th characters in Q’. Hence, P is a substring of Q
and Q Î Ωl, d in this case.
The proof of the case with Q = P + x can be done in

the same way, yielding the result that P is a substring of
Q and Q Î Ωl, d.
Therefore, the observation holds.
Observation 2. ∀ P Î Ωl, d+1, P must be in Ωl, d.
Proof.
Assume P Î Ωl, d+1 and P’ is a pattern of length l.

Since P Î Ωl, d+1, HD(P, P’) >d + 1 >d, where HD(P, P’)
is the hamming distance between P and P’. Thus, P Î
Ωl, d. The observation holds.
Observation 3. ∀P Î Ωl-a, d+b, P must be a substring

of a pattern Q in Ωl,d, where a and b are positive inte-
gers, and a <l.
The observations can be used to improve the ham-

ming-distance-based signature discovery algorithms,
including the UO and IMUS algorithms. Based on these
observations, the unique signatures of factors (l’, d’)
must be discoverable from the unique signatures that
satisfy the discovery condition (l, d), where l’ ≤ l and d’
≥ d. Accordingly, the discovery is incremental, reducing
the scope of the search in the discovery process. Here-
after, this heuristic is called ‘incremental discovery’.
For example, Table 1(A) presents a DNA database of

three sequences. Table 1(B) lists the five patterns in the
database. Table 1(C) presents Ω5,1, Ω5,2, Ω4,1 and Ω4,2.
Each pattern in Ω5,2 is in Ω5,1, and all of the patterns in
Ω4,1 and Ω4,2 are implicit in Ω5,1. Restated, to discover
Ω5,2, Ω4,1 or Ω4,2, the patterns in Ω5,1 can be used as
candidates, instead of all of the patterns in the database.
Since the number of patterns in Ω5,1, 5, is less than the
number of patterns in the database, 12, the discovery
process is accelerated.
Additional file 1 presents the PISD algorithm. Let l’ be

the desired signature length and d’ be the mismatch toler-
ance. Divide all of the DNA sequences in the input

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 3 of 13

database into a-patterns, where the value of a is related to
the selected hamming-distance-based signature discovery
algorithm. For example, a = l’/2 for the IMUS algorithm,
and a = l’/(ëd’/2û + 1) for the UO algorithm. A l’-pattern
comprises l’/a consecutive a-patterns. An index of 4a

entries is built with the a-patterns as index keys. A multi-
level index can be adopted if the index is too large to be fit
in the main memory. The l’-patterns that contain a certain
a-pattern are collected in an entry. Each entry maintains a
list of the locations of the pattern in the database, which is
called a pattern list. The patterns in the input database are
called data patterns, and the patterns that are discovered
by a hamming-distance-based signature discovery algo-
rithm are referred to as candidate patterns. Based on the
observations of hamming-distance-based discovery and
incremental discovery, the new result obtained under
stricter discovery conditions can be discovered from the
candidate patterns obtained under looser conditions. To
accelerate access, the candidate patterns are arranged in
the pattern list in an entry prior to the non-candidate pat-
terns. A pointer indicates the end of the candidate patterns
in the pattern list. A processing order list of all of the
entries in the index is constructed. If a multiple-processor
system is used, then the processing order list is generated
by the PEL heuristic (described in the following section);
otherwise, the order list includes the entries in an arbitrary
order.
Observation 4. (UO observation) if two patterns, P

and Q, are (l’, d’)-mismatched, then at least one of the
(ëd’/2û + 1) partitions of P is (a, 1)-mismatched to the
corresponding part in Q, where a = l’/(ëd’/2û + 1) and
all partitions have equal length.
Observation 5. (IMUS observation) if two patterns P

and Q are (l’, d’)-mismatched, then at least one of the
two halves of P is (a, ëd’/2û)-mismatched to the corre-
sponding part of Q, where a = l’/2.

Two index entries are called similar entries if the
number of mismatches between the keys of the entries
is less than or equal to a certain value b. This value is
also related to the employed discovery algorithm, for
example, b is 1 in the UO algorithm, and b = ëd’/2û in
the IMUS algorithm. Assume KP and KQ are index keys,
and P and Q are the l’-patterns listed in the entries of
keys KP and KQ, respectively. Based on Observations 4
and 5, if Q is (l’, d’)-mismatched to P, then KQ must be
(a, b)-mismatched to KP, such that the entries of keys
KP and KQ are similar. Since all the patterns that are (l’,
d’)-mismatched to a pattern P must be in the entries
that are similar to the entry whose key is KP, P is com-
pared to all of the patterns in the similar entries, to
determine whether P is unique. The pattern P is a
unique signature if no pattern is (l’, d’)-mismatched to
it. Since the new result can be discovered from the can-
didate patterns, the PISD processes only the candidate
patterns. An available processor is assigned to handle
the next untreated entry (based on the assumption that
the key of the entry is KP) in the processing order list.

Assume that P is one of the candidate patterns in the
entry. P is compared to all of the patterns in the similar
entries, which are those whose keys are (a, b)-mis-
matched to KP. Each of the comparisons is a complete
string comparison of l’ characters. The candidate l’-pat-
terns that are (l’, d’)-mismatched to any of the l’-pat-
terns in the similar entries are discarded, and the
remaining candidate patterns are new unique signatures.
The scheduling heuristic for parallelism
One of the ways to accelerate signature discovery is to
apply parallel computing. Assume that a computer of n
processors is employed in signature discovery, and that
processor i takes ti time units to complete its tasks. The
overall processing time Tn required by the computer to
complete the discovery is T tn i

n
i max ()1 , which

means that the processor that takes longest dominates
the overall processing time.
The optimal processing time when n processors are

used is Tn = T1/n, which equals 1/n of the processing
time of a single-processor computer.
The simplest way to apply parallel computing to the

proposed PISD algorithm is to assign randomly an avail-
able processor to process the patterns in the index in an
arbitrary order. The treatment of an entry is referred to
as a task. For example, a computer with four processors
is used to handle N tasks. Processor 1 can be assigned
to task 1, ..., and processor 4 can be assigned to task 4.
Assume that processor 3 is the first to complete its task;
the processor is immediately assigned to the next task,
task 5. The next available processor is similarly assigned
to the next task until all of the N tasks are completed. If
four tasks are processed simultaneously, then ideally, the
overall processing time is reduced to one quarter of that

Table 1 An example of implicit signatures.

(A) A DNA database.

CCCTAATG

TTAATAAT

ATAATGCG

(B) All 5-patterns in the database.

CCCTA, CCTAA, CTAAT, TAATG, TTAAT, TAATA

AATAA, ATAAT, ATAAT, TAATG, AATGC, ATGCG

(C) Some unique signatures in the database.

Ω5,1 CCCTA, CCTAA, AATAA, AATGC, ATGCG

Ω5,2 ATGCG

Ω4,1 CCCT, CCTA, ATGC, TGCG

Ω4,2 TGCG

Let Ωl, d denote the set of the unique signatures of length l and mismatch
tolerance d. The result shows that all of the patterns in Ω5,2, Ω4,1 and Ω4,2 are
implicit in Ω5,1.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 4 of 13

which would be required using a single-processor
computer.
However, two potential problems must be considered

when parallel computing is applied to the proposed
PISD algorithm. First, if one of the last few tasks
requires much processing time, then the overall proces-
sing time may be longer than the optimal processing
time. For example, Figure 1 shows a list of six tasks. All
of the tasks can be completed in 22 time units by a sin-
gle-processor computer. The optimal processing time is
therefore 22/2 = 11 units for a two-processor computer.
However, in this case, processor 1 is assigned to {A, D,
F}, and processor 2 is assigned to {B, C, E}. The proces-
sing times are 15 and 7 units respectively, and the over-
all processing time is 15 units, which exceeds the
optimal processing time. This situation can be avoided
by arranging long tasks before the others in the proces-
sing order list. Here, the long tasks are moved forward
in the processing order list, yielding the result in Figure
2. In the new list, processor 1 performs tasks {F, D} and
processor 2 performs tasks {A, C, E, B}. The overall

processing time is 11 units, which equals the optimal
processing time.
The second potential problem is that the time

required to process a task may exceed the optimal pro-
cessing time, T1/n. For example, Figure 3 shows a list of
six tasks. All of the tasks can be completed in 24 units
by a single-processor computer. When a two-processor
computer is used to handle the tasks, processors 1 and
2 are assigned to tasks {A, C, E} and {B, D, F}, and tak-
ing 5 and 19 units, respectively. The overall processing
time is 19 units. Long tasks are moved forward, yielding
the new processing order list that is shown in Figure 4.
In this situation, processor 1 is assigned to task F only,
and processor 2 is assigned to the other tasks. The over-
all processing time is then 16 units, which still exceeds
the optimal processing time, because task F takes 16
units, which exceeds the sum of the times required to
complete all of the other tasks. Hence if less time were
to be spent on task F, then the overall processing time
would be reduced. Generally, when an entry has more
patterns than the other entries, a task that handles this

Figure 1 An example of the first potential problem of parallel signature discovery. The tasks can be completed in 22 time units by a
single-processor computer. The overall processing time is 15 units for a two-processor computer, which exceeds the optimal processing time, 11
units.

Figure 2 The result of moving long tasks forward in the processing order list. The long tasks are moved forward in the processing order
list in Figure 2, yielding the new processing order list. The overall processing time for a two-processor computer is 11 units, which equals the
optimal processing time.

Figure 3 An example of the second potential problem of parallel signature discovery. The tasks can be completed in 24 units by a single-
processor computer. The overall processing time is 19 units for a two-processor computer, which exceeds the optimal processing time, 12 units.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 5 of 13

entry takes more time to complete. Therefore, some of
the longest entries are divided into n equal partitions,
which are then treated as typical entries, where n is the
number of available processors. For example, task F in
Figure 4 can be divided into two tasks with identical
processing times, yielding the new task list in Figure 5.
After the division, processor 1 is assigned to tasks {F1,
B, D, A}, and processor 2 is assigned to tasks {F2, C, E}.
The overall processing time is 12 units, which equals
the optimal processing time.
Based on the above discussion, the order of tasks in

the processing order list influences the overall proces-
sing time for parallel discovery. Since the proposed dis-
covery algorithm PISD focuses on processing candidate
patterns, the processing time of a task is proportional to
the number of candidate patterns in the entry. The
index entries can be sorted in descending order of the
number of candidate patterns therein, and the sorted list
can be used as the processing order list. Entries that
contain more candidate patterns are expected to be at
the top of the list. However, the sorting process takes O
(N log N) time for N entries, which is significant.
A simple and efficient scheduling heuristic, called the

parallel entry list (PEL), is provided. It yields a proces-
sing order list for tasks in which the tasks that involve
more candidate patterns are before those that involve
fewer. Additional file 2 displays the PEL heuristic. The
PEL heuristic is similar to a partial quicksort. Unlike
quicksort, the PEL heuristic is iterative, and only

operates on the left part of a list in each iteration.
Firstly, the PEL heuristic generates a processing order
list L that consists of all of the index entries in arbitrary
order, and w is defined as the number of index entries
in L. The average number of candidate patterns (g) in
each entry is computed, where g equals (total number of
candidate patterns)/w. Let Li represent the i-th entry in

L, and | Li
* | be the number of candidate patterns in Li.

Then, the PEL heuristic searches for the maximal value

r such that | Lr
* | >g and the minimal value k such that

| Lk
 | ≤ g, and then exchanges Lk and Lr. The searches

and exchanges continue until r <k. The process scans
the entries from L1 to Lw in L and w is updated to the
current value of r. Then, the entries in L are divided

into two parts: if i ≤ w, then | Li
* | >g; otherwise, | Li

* | ≤

g. Assume w’ is the most recent value of the variable w.

Since | Li
* | >g, ∀ i ≤ w, w <w’/2. Then, the PEL heuristic

focuses on the first part of L, and moves the long entries

forward until L w n L Nii

N
ii

N

1 1
/ / , where n is

the number of available processors and N is the number
of index entries in L. Now, the first w entries in L are
the top w entries, which contain the most candidate pat-
terns. The first w entries are removed from L, and the
candidate patterns in each entry are divided into n parti-
tions of equal number of patterns. The nw partitions are

Figure 4 The result of moving long tasks forward in the processing order list. The long tasks are moved forward in the processing order
list in Figure 4, yielding the new processing order list. The overall processing time for a two-processor computer is 16 units, which still exceeds
the optimal processing time.

Figure 5 The result of dividing long tasks into short tasks in the processing order list. Task F in Figure 5 is divided into two tasks with
identical processing times, yielding the new task list. The overall processing time for a two-processor computer is 12 units, which equals the
optimal processing time.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 6 of 13

then put into L, and treated as typical entries in succes-
sive processes. The total number of scans performed on

is 1 2 31
1

 i

i

w , where m is the number of itera-

tions of the main outer loop (line 10 to 27 of the PEL
heuristic in Additional file 2), which moves the long
entries forward. The time complexity of the PEL heuris-
tic is O(3N) = O(N).
As an example of the above, consider an entry list L,

shown in Table 2(A). The average number of candidate
patterns in each entry (g) is 41. The leftmost entry in L
that contains fewer than g candidate patterns, and the
rightmost entry that contains more than g candidate
patterns are sought. The respective results are entries A
and J. These two entries are exchanged in L. Entries B
and G as well as D and E are similarly exchanged. Table
2(B) shows the new processing order list. Now, w is
four, and the number of candidate patterns in each of
the first w = 4 entries exceeds g = 41, while that in the
other entries is less than 41. Then, only the region of
the first four entries is considered in the next step. The
average number of the candidate patterns in each entry
within this region is computed, yielding g = 79. In this
region, the leftmost and rightmost entries that contain
fewer than and more than 79 candidate patterns are J
and E, respectively. J and E are exchanged in the list,
yielding Table 2(C). Assume a two-processor computer
is used. Entry E is divided into two partitions E1 and E2,
and E1 and E2 are added to the list. The new list is as
shown in Table 2(D). Processor 1 will handle entries E1,
G, D, F, B, I and A, and processor 2 will handle entries
E2, C, J, H and K. The total number of candidate pat-
terns to be treated by each processor is 227.

The consecutive multiple discovery (CMD) algorithm
Additional file 3 displays the consecutive multiple dis-
covery (CMD) algorithm. Let l and d be two integers.
The CMD algorithm is an iterative algorithm, which
uses the PISD algorithm as a kernel routine, to discover
all implicit signatures under the discovery condition of
length l and mismatch tolerance d. Firstly, the UO or
IMUS algorithm is used to discover the unique signa-
tures that satisfy the discovery condition (l, d). The sig-
natures discovered by UO or IMUS are applied as
candidates in successive discoveries. The feasible discov-
ery conditions are all combinations of the possible l’ and
d’, which means {(l’ ≤ l, d’ ≥ d)}. In each discovery, the
PISD algorithm is used to discover new signatures from
the candidates under a feasible discovery condition. The
discovery process continues until all of the implicit sig-
natures are discovered.

Testing
This section evaluates the performance of the proposed
algorithms. Since the incremental discovery and parallel
computing mentioned in the previous sections can be
applied to the UO and IMUS algorithms, briefly, the
CMD (or PISD) with the UO and IMUS kernels are
denoted as CMDUO and CMDIMUS (or PISDUO and PIS-
DIMUS), respectively. The algorithms are analyzed based
on a uniformly distributed database. The first part of
this section presents these analyses. To evaluate the per-
formance of the UO, IMUS, CMDUO and CMDIMUS

algorithms, they are applied to human chromosome 13
and 21 EST databases for signature discovery. The sec-
ond part of this section presents the experimental
results.
Mathematical analyses
The CMD algorithm is an iterative algorithm. It includes
the PISD algorithm as a kernel routine. Accordingly, the
time complexity of the PISD algorithm dominates that
of the CMD algorithm. First, the time complexity of the
PISDUO algorithm is analyzed under a certain discovery
condition, and then, the results are integrated, yielding
the time complexity of the CMDUO algorithm. The ana-
lyses of the PISDIMUS and CMDIMUS algorithms can be
done in a similar way.
Let l’ be the signature length and d’ be the mismatch

tolerance. sl’ denotes the index system built under the
condition of signature length l’ in the PISDUO algorithm.
sl’ consists of 4

a pattern entries, where a = l’/(ëd’/2û +
1) is the length of the entry keys. Let sl’, i be the i-th
entry in sl’·|sl’, i| denotes the number of all patterns in

sl’, i and l i’,
 denotes the number of candidate pat-

terns in sl’, i. HD(sl’, i, sl’, j) denotes the hamming dis-
tance between sl’, i and sl’, j, which is defined as the
hamming distance between the entry keys of sl’, i and

Table 2 An example of using the PEL heuristic to build
an entry list.

(A) The original entry list.

ID A B C D E F G H I J K

|*| 33 26 49 5 143 9 72 29 11 55 22

(B) After first iteration, w = 4.

ID J G C E D F B H I A K

|*| 55 72 49 143 5 9 26 29 11 33 22

(C) After second iteration, w = 1.

ID E G C J D F B H I A K

|*| 143 72 49 55 5 9 26 29 11 33 22

(D) The final entry list.

ID E1 E2 G C J D F B H I A K

|*| 71 72 72 49 55 5 9 26 29 11 33 22

Let |*| denote the number of candidate patterns in an entry. Part (A) presents
the original entry list. Entries A and J, B and G as well as D and E are
exchanged. Part (B) presents the new entry list. Entries J and E are exchanged
in the next iteration, yielding Part (C). Assume a two-processor computer is
used. Entry E is divided into two partitions E1 and E2, and E1 and E2 are added
to the list. The new list is as shown in Part (D).

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 7 of 13

sl’, j. Because only the candidate patterns have to be

considered, l i’,
 |sl ’, i| string comparisons are per-

formed on the patterns in sl’, i. Additionally, ∑j l i’,
 |sl’,

j| string comparisons are required to check possible
mutants, where sl’, j Î sl’ such that HD(sl’, i, sl’, j) = 1.
All characters in an l’-pattern excluding the entry key
region are compared in each of the string comparisons,
yielding l’ - a character comparisons.
The total amount of character comparisons used in

the PISDUO algorithm, denoted as MPISDUO
, is:

M l ii
l i l

i

l i l j

j

PISDUO

()(| || |

| || |

’, ’

’, ’,

1

4

where sl’, j Î sl’ such that HD(sl’, i, sl’, j) = 1.
Let l be the desired signature length and d be the mis-

match tolerance of pattern uniqueness. the CMDUO

algorithm uses the PISDUO algorithm to find all of the
implicit signatures of length l’ ≤ l and mismatch toler-
ance d’ ≥ d. The time complexity of the CMDUO algo-
rithm, denoted as MCMDUC

, is:

M M

l

d dl l

i

l i l j

d d

CMD PISDUO UO

’’

’, ’,

’

(’)(| || |

1

4

l l

l i l j

j

’

’, ’,| || |)

where sl’, j Î sl’ such that HD(sl’, i, sl’, j) = 1.
Assume the input DNA database D and the set of the

discovered signatures Ωl’ ≤ l, d’ ≥ d are uniformly distrib-
uted. Let l d, Î {Ωx, y}l’ ≤ x ≥ l and d ≤ y ≥ d’}, where
(x, y) ≠ (l’, d’), be the set of signatures discovered in the
strictest iteration prior to the iteration of (l’, d’). Assume
the sizes of D and l d, are denoted as |D| and | l d, |.
The index system built in this uniformly distributed case
is denoted as l . Each entry in l should contain

| l ,0 | ≈ |D|/4a patterns, and
 l l d,
*

, /0 4 of

them are candidate patterns. In this case, the amount of
character comparisons used in the PISDUO algorithm,
denoted as MPISDUD

, is:

M l

l

l i l i

i

l i l i

j

PISDUO

()()

)

()(

, ,

, ,

1

4

ll l

i

l l

j

l l

l

l

, ,

, ,

, ,

)

)

()(

0 0

1

4

0 0

0 04

,, ,

,

)

()() /

0 0

1 4

l

l dl D

where sl’, j Î sl’ such that HD(sl’, i, sl’, j) = 1, and � =
3a is the number of all possible 1 base permutations of
a string of length a. Note that

 l i l jj lj l l l, , , , , ,0 0 0 0 because of

the uniform assumption.
In the uniformly distributed case, the number of char-

acter comparisons used in the CMDUO algorithm,
denoted as MCMDUO

, is:

M M

l D

d dl l

l d

d dl l

CMD PISDUO UO

 ()() /, 1 4

(()() /,

 l D l d

d dl l

 1 4

where � = 3a.
The main difference between the PISDUO and the

typical UO algorithms is that the two algorithms use dif-
ferent candidate sets. The PISDUO algorithm uses the
previously discovered signatures as candidates, but the
UO algorithm uses all of the patterns in the database as
candidates. The amount of character comparisons used
in the UO algorithm for discovering signatures from the
uniformly distributed database D can be obtained by
replacing l l d d, with D. The formula is:

M l DUO ()() / 1 4
2

where � = 3a.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 8 of 13

The UO algorithm is executed repeatedly to discover
all implicit signatures. The time complexity of using the
UO algorithm, denoted as MALL UO

, is:

M M

l D

d dl l

d dl l

ALL UOUO

 ()() / 1 4

2

where � = 3a.
The gain delivered by the CMDUO algorithm is:

G M M

l D

l D

d dl l

ALL CMDUO UO/

(()() /) /

(()()

1 4

1

2

 l d

d dl l

d dl l

l D

l

, /)

(()() /) /

((

4

1 4
2

))() /)

/

,

,

 1 4D

D

l d

d dl l

l d

where � = 3a.
It means that the CMDUO algorithm performs

G ≥ |D|/|Ωl, d| times faster than the typical UO algo-
rithm, when discovering implicit signatures from a uni-
formly distributed database.
Performance evaluation
The platform that was adopted in this experiment was a
Dell PowerEdge R900 server with two Intel Xeon E7430
2.13 GHz quad-core CPUs, 12 GB RAM and 900 GB
disk space. The operating system was Red Hat Enter-
prise Linux 5. The algorithms were implemented in
JAVA language, and the programs were compiled by
JDK 1.6. The DNA data that were used in the experi-
ments were from the human chromosome 13 and 21
EST databases. Before the experiments, the remarks in
the databases were removed; all of the universal charac-
ters, such as ‘don’t care’, were replaced with ‘A’, and
DNA sequences that were shorter than 36 bases were
discarded. The experimental data are denoted as D13

(human chromosome 13 EST database) and D21 (human
chromosome 21 EST database), and their corresponding
sizes were approximately 36.44 M and 22.21 M bases.
The pooled oligo probes, that are used to screen an

EST library, such as the BAC library, generally have
lengths from 24 to 40 bases [28]. Our experimental
results on unique signature discoveries, with the criteria
of exact matches, also shows that most of the human
EST sequences can be distinctly labeled by signatures of

length greater than 18 bases. Accordingly, the experi-
ments in this section focused on discovering signatures
of length between 24 and 30 with mismatch tolerances
of two and four.
For reasons of performance and memory consump-

tion, a two-level index was used in the implementation
of the IMUS and CMDIMUS algorithms. The first level
of the index comprised 410 direct-accessible entries, and
a binary search was used to locate a specified entry in
the second level. The index systems that were used in
the implementation of the UO and CMDUO algorithms
were one-level, and all of the entries in their index sys-
tems were directly accessible. Since the purpose of our
experiments was to evaluate the improvements provided
by incremental discovery and parallel computing, addi-
tional filters, such as the frequency filter that was used
in the IMUS algorithm, was excluded from the kernels
of the algorithms.
Since ëd/2û + 1 = 2 when d = 2, the kernels of the UO

and IMUS algorithms are very similar under this condi-
tion. Only the performance of the IMUS and CMDIMUS

algorithms was examined when mismatch tolerance was
two. Table 3 presents the discovery conditions that were
used in our experiments. In the experiments on the UO
and IMUS algorithms, the UO and IMUS algorithms
were executed repeatedly to discover all of the signa-
tures under all feasible discovery conditions. The experi-
ments were performed on a one-processor computer.
Before the performance of the CMDUO and CMDIMUS

algorithms was evaluated, the IMUS algorithm was used
to discover signatures under the discovery condition of
length l = 30 and mismatch tolerance d = 2. The discov-
ery on D13 took approximately 19.6 minutes and 20.88%
of the patterns from D13 were discovered as signatures.
The discovery on D21 took about 5.3 minutes and
22.07% of the patterns from D21 were discovered as sig-
natures. In each successive experiment, the CMDUO and
CMDIMUS algorithms used the discovered signatures of l
= 30 and d = 2 as candidates to produce new results.
The percentage time saved is used to evaluate the

improvements in the processing time of an algorithm.
The time saving is defined as (1-(processing time of the
CMDUO (or CMDIMUS) algorithm)/(processing time of
the UO (or IMUS) algorithm))*100%. A larger ‘saving’

Table 3 The discovery conditions used in our
experiments.

The used discovery conditions.

(l’, d’) (28,2) (26,2) (24,2) (30,4) (28,4) (27,4) (26,4) (24,4)

CMDUO • • •

CMDIMUS • • • • • • • •

• indicates that the discovery condition was used in the experiments by the
specified algorithm.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 9 of 13

means a greater improvement by the CMDUO or CMDI-

MUS algorithm. The term ‘overall’ refers to the total pro-
cessing time required for the UO, IMUS, CMDUO or
CMDIMUS algorithm to discover all of the signatures
that satisfy the discovery conditions.
First, improvements in the time of discovery asso-

ciated with incremental discovery are examined. For a
single processing core, the performance of the CMDUO

and CMDIMUS algorithms was evaluated by using the
algorithms to discover signatures from D13 and D21.
Tables 4 and 5 present the processing time that for the
UO and IMUS algorithms, and the time savings deliv-
ered by the CMDUO and CMDIMUS algorithms. The
tables also present the processing time required to dis-
cover signatures under every discovery condition. In the
experiments, the proposed CMDUO algorithm took
76.2% less processing time than the UO algorithm to
discover all of the implicit signatures from D13, and
about 74% less processing time to discover those from
D21. With respect to the performance of the CMDIMUS

algorithm, it took about 67% and 52% less processing
time than the IMUS algorithm to discover all of the

signatures from D13 and D21. Greater overheads in
accessing indices caused the percentage processing time
saved by the CMDIMUS algorithm to be less than that
saved by the CMDUO algorithm.
To elucidate the benefits of parallel computing for sig-

nature discovery, various number of processing cores
were used and the PISDUO and PISDIMUS algorithms
were used to discover the signatures of (l’ = 24, d’ = 4)
from D13. Table 6 shows the experimental results:
the acceleration is the processing time normalized to
the processing time when one processor is used. When
the PISDUO algorithm is used, the acceleration of the
discovery processes is almost proportional to the num-
ber of processing cores used. The acceleration values of
the PISDIMUS algorithm increase with the number of
processing cores such that the discovery process using
eight processing cores is approximately 4.6 times faster
than that using a single core.
Finally, the improvements in the discovery perfor-

mance delivered by a combination of incremental dis-
covery and parallel computing are examined. In this
case, the CMDUO and CMDIMUS algorithms discovered

Table 4 The performance of the CMDUO algorithm when
using a single processing core.

(A) The results on D13.

(l’, d’) (30,4) (27,4) (24,4) overall

UO 03:49:54 09:56:59 35:56:27 49:43:20

CMDUO 00:50:52 02:22:32 08:37:03 11:50:27

saving(%) 77.87 76.12 76.02 76.19

(B) The results on D21.

(l’, d’) (30,4) (27,4) (24,4) overall

UO 01:10:18 03:09:37 11:12:18 15:32:13

CMDUO 00:17:10 00:49:34 02:55:27 04:02:11

saving(%) 75.58 73.86 73.90 74.02

The table presents the processing time that for the UO algorithm, and the
time savings delivered by the CMDUO algorithm. The time format used in the
table is HH:MM:SS.

Table 5 The performance of the CMDIMUS algorithm when using a single processing core.

(A) The results on D13.

(l’, d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4) overall

IMUS 00:23:56 00:30:24 00:43:35 00:50:57 01:10:14 01:57:30 03:57:25 09:34:01

CMDIMUS 00:03:06 00:04:54 00:08:33 00:20:22 00:27:09 00:44:03 01:21:22 03:09:29

saving(%) 87.03 83.84 80.35 60.01 61.33 62.50 65.73 66.99

(B) The results on D21.

(l’, d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4) overall

IMUS 00:06:25 00:08:22 00:11:48 00:19:17 00:25:08 00:40:13 01:16:54 03:08:07

CMDIMUS 00:01:27 00:02:13 00:03:48 00:11:08 00:13:38 00:20:17 00:37:28 01:29:59

saving(%) 77.43 73.61 67.81 42.24 45.80 49.56 51.28 52.17

The table presents the processing time that for the IMUS algorithm, and the time savings delivered by the CMDIMUS algorithm. The time format used in the table
is HH:MM:SS.

Table 6 The benefits of parallel computing for signature
discovery.

(A) PISDUO.

CPUs 1 2 4 8

Time 08:37:03 04:22:04 02:07:22 01:04:23

Acceleration 1.00 1.97 4.06 8.03

(B) PISDIMUS.

CPUs 1 2 4 8

Time 01:21:22 00:52:24 00:28:33 00:17:36

Acceleration 1.00 1.55 2.85 4.62

With various number of processing cores, the PISDUO and PISDIMUS algorithms
were used to discover the signatures of (l’ = 24, d’ = 4) from D13. The table
shows the experimental results. The acceleration is the processing time
normalized to the processing time when one processor is used. The time
format used in the table is HH:MM:SS.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 10 of 13

signatures from the databases using eight processing
cores. Tables 7 and 8 present the time savings made
by the CMDUO and CMDIMUS algorithms. Tables 9
and 10 show the number of discovered signatures
under each discovery condition. In the experiments,
the proposed CMDUO algorithm took 97% less proces-
sing time than the UO algorithm to discover all of the
implicit signatures from D13, and about 96.7% less pro-
cessing time to complete discovery on D21. The CMDI-

MUS algorithm took about 92.6% and 88.8% less
processing time than the IMUS algorithm, to discover
all of the signatures from the experimental data D13

and D21, respectively.
The experimental results reveal that the CMDUO and

CMDIMUS algorithms with one processing core require
up to 76% and 67% less processing time to find all
implicit signatures than the typical UO and IMUS algo-
rithms, respectively. Moreover, up to 97% and 93% of
the processing time is saved when the CMDUO and
CMDIMUS algorithms are executed using eight proces-
sing cores. Restated, the proposed CMDUO and

CMDIMUS algorithms perform 4.2 and 3.03 times faster
than the typical UO and IMUS algorithms when one
processing core is used, and 33.74 and 13.48 times faster
when eight processing cores are used.

Conclusions
This work proposes two unique signature discovery algo-
rithms - the consecutive multiple discovery (CMD) algo-
rithm and the parallel and incremental signature discovery
(PISD) algorithm. The CMD algorithm is designed to dis-
cover all implicit signatures from DNA databases, provid-
ing all implicit signatures to users, especially when they
are using an unfamiliar DNA database. The PISD algo-
rithm is a parallel and incremental enhancement of exist-
ing signature discovery algorithms. It is based on
incremental discovery, and efficiently discovers signatures
under a certain discovery condition. This incremental
strategy can be adapted to all hamming-distance-based
unique signature discovery algorithms. The PISD algo-
rithm has a significantly shorter processing time for signa-
ture discovery than typical discovery algorithms. The PISD
algorithm is the kernel of the CMD algorithm.

Table 7 The performance of the CMDUO algorithm when
using eight processing cores.

(A) The results on D13.

(l’, d’) (30,4) (27,4) (24,4) overall

UO 03:49:54 09:56:59 35:56:27 49:43:20

CMDUO 00:06:27 00:17:36 01:04:23 01:28:26

saving(%) 97.19 97.05 97.01 97.04

(B) The results on D21.

(l’, d’) (30,4) (27,4) (24,4) overall

UO 01:10:18 03:09:37 11:12:18 15:32:13

CMDUO 00:02:13 00:06:03 00:22:20 00:30:36

saving(%) 96.85 96.81 96.68 96.72

The CMDUO algorithm discovered signatures from the databases using eight
processing cores. The table presents the time savings made by the CMDUO

algorithm. The time format used in the table is HH:MM:SS.

Table 8 The performance of the CMDIMUS algorithm when using eight processing cores.

(A) The results on D13.

(l’, d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4) overall

IMUS 00:23:56 00:30:24 00:43:35 00:50:57 01:10:14 01:57:30 03:57:25 09:34:01

CMDIMUS 00:00:40 00:00:59 00:01:33 00:04:58 00:06:31 00:10:18 00:17:36 00:42:35

saving(%) 97.21 96.77 96.44 90.25 90.72 91.23 92.59 92.58

(B) The results on D21.

(l’, d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4) overall

IMUS 00:06:25 00:08:22 00:11:48 00:19:17 00:25:08 00:40:13 01:16:54 03:08:07

CMDIMUS 00:00:20 00:00:30 00:00:43 00:02:44 00:03:22 00:04:57 00:08:29 00:21:05

saving(%) 94.81 94.02 93.93 85.83 86.60 87.69 88.97 88.79

The CMDIMUS algorithm discovered signatures from the databases using eight processing cores. The table presents the time savings made by the CMDIMUS

algorithm. The time format used in the table is HH:MM:SS.

Table 9 The number of signatures discovered by the
CMDUO algorithm when using eight processing cores.

(A) The number of discovered signatures in D13.

(l’, d’) (30,4) (27,4) (24,4)

UO 4018054 3918976 3401911

CMDUO 4018054 3918976 3401911

(B) The number of discovered signatures in D21.

(l’, d’) (30,4) (27,4) (24,4)

UO 2581787 2525108 2277644

CMDUO 2581787 2525108 2277644

The CMDUO algorithm discovered signatures from the databases using eight
processing cores. The table presents the number of discovered signatures
under each discovery condition.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 11 of 13

Consequently, the CMD algorithm provides an efficient
means of implicit signature discovery.

Additional file 1: Parallel and Incremental Signature Discovery
(PISD) algorithm. Assume l’ is the desired signature length and d’ is the
mismatch tolerance. a and b are two integers that are related to the
selected hamming-distance-based signature discovery algorithm. a = l’/2
and b = ëd’/2û for the IMUS algorithm, and a = l’/(ëd’/2û + 1) and b = 1
for the UO algorithm. The algorithm is designed for efficiently
discovering signatures under the discovery condition (l’, d’).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
132-S1.PDF]

Additional file 2: Parallel Entry List (PEL) heuristic. The heuristic
yields a processing order list for index entries in which the entries that
involve more candidate patterns are before those that involve fewer. The
reordered entry list improves the performance of the proposed PISD
algorithm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
132-S2.PDF]

Additional file 3: Consecutive Multiple Discovery (CMD) algorithm.
Let l be the desired signature length and d be the mismatch tolerance
of pattern uniqueness. The algorithm discovers all implicit signatures
under the discovery condition (l, d).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2105-11-
132-S3.PDF]

Acknowledgements
The authors would like to thank the National Science Council of the
Republic of China, Taiwan, for financially supporting this research under
Grants 98-2218-E-126-001-MY2.

Author details
1Department of Applied Information Sciences, Chung Shan Medical
University, Taichung, 40201 Taiwan, ROC. 2Department of Medical Research,
Chung Shan Medical University Hospital, Taichung, 40201 Taiwan, ROC.
3Department of Computer Science, National Tsing Hua University, Hsinchu,
Taiwan, ROC. 4Department of Computer Science and Communication
Engineering, Providence University, Taichung, 43301 Taiwan, ROC.

Authors’ contributions
HPL carried out the unique signature studies, participated in the design of
the study, programmed the algorithms, evaluated the experimental results
and drafted the manuscript. TFS participated in its design and coordination,
performed the mathematical analysis and drafted the manuscript. CYT
convinced of the study and helped to gather data. All authors read and
approved the final manuscript.

Received: 18 November 2009 Accepted: 16 March 2010
Published: 16 March 2010

References
1. Kaderali L, Schliep A: Selecting signature oligonucleotides to identify

organisms using DNA arrays. Bioinformatics 2002, 18(10):1340-1349.
2. Francois P, Charbonnier Y, Jacquet J, Utinger D, Bento M, Lew D,

Kresbach GM, Ehrat M, Schlegel W, Schrenzel J: Rapid bacterial
identification using evanescent-waveguide oligonucleotide microarray
classification. Journal of Microbiological Methods 2006, 65(3):390-403.

3. Mateo-Marti E, Briones C, Pradier CM, Martin-Gago JA: A DNA biosensor
based on peptide nucleic acids on gold surfaces. Biosensors and
Bioelectronics 2007, 22(9-10):1926-1932.

4. Eom HS, Hwang BH, Kim DH, Lee IB, Kim YH, Cha HJ: Multiple detection of
food-borne pathogenic bacteria using a novel 16S rDNA-based
oligonucleotide signature chip. Biosensors and Bioelectronics 2007,
22(6):845-853.

5. Kiryu BM, Kiryu CP: Rapid identification of Candida albicans and other
human pathogenic yeasts by using oligonucleotides in a PCR. J Clin
Microbiol 1998, 73:1634-1641.

6. Li F, Stormo GD: Selection of optimal DNA oligos for gene expression
arrays. Bioinformatics 2001, 17:1067-1076.

7. Rouillard JM, Herbert CJ, Zuker M: Oligoarray: Genome-scale
oligonucleotide design for microarrays. Bioinformatics 2002, 18:486-487.

8. Kim SS, Lee CH, Lee KM, Lee SD: A New Scheme for Nucleotide Sequence
Signature Extraction. Proceedings of the 5th International Conference on
Machine Learning and Applications 2006, 162-167.

9. Phillippy AM, Mason JA, Ayanbule K, Sommer DD, Taviani E, Huq A,
Colwell RR, Knight IT, Salzberg SL: Comprehensive DNA Signature
Discovery and Validation. PLoS Computational Biology 2007, 3(5).

10. van Hijum SA, de Jong A, Buist G, Kok J, Kuipers OP: UniFrag and
GenomePrimer: selection of primers for genome-wide production of
unique amplicons. Bioinformatics 2003, 19:1580-1582.

11. Chou HH, Hsia AP, Mooney DL, Schnable PS: PICKY: oligo microarray
design for large genomes. Bioinformatics 2004, 20:2893-2902.

12. Nordberg EK: YODA: selecting signature oligonucleotides. Bioinformatics
2005, 21:1365-1370.

13. Rahmann S: Rapid large-scale oligonucleotide selection for microarrays.
Proc of the First IEEE Computer Society Bioinformatics Conference (CSB’02)
2002, 54-63.

14. Amin HB, Hashem MA-G, Aziz RK: Bioinformatics determination of ETEC
signature genes as potential targets for molecular diagnosis and reverse
vaccinology. BMC Bioinformatics 2009, 10(7).

15. Phillippy AM, Ayanbule K, Edwards NJ, Salzberg SL: Insignia: a DNA
signature search web server for diagnostic assay development. Nucleic
Acids Research 2009, 37(2):229-234.

16. Frech C, Breuer K, Ronacher B, Kern T, Sohn C, Gebauer G: hybseek:
Pathogen primer design tool for diagnostic multi-analyte assays.
Computer Methods and Programs in Biomedicine 2009, 94(2):152-160.

17. Zheng J, Close TJ, Jiang T, Lonardi S: Efficient Selection of Unique and
Popular Oligos for Large EST Databases. Bioinformatics 2004,
20:2101-2112.

Table 10 The number of signatures discovered by the CMDIMUS algorithm when using eight processing cores.

(A) The number of discovered signatures in D13.

(l’,d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4)

IMUS 4676722 4661305 4612508 4018054 3967920 3836732 3401911

CMDIMUS 4676722 4661305 4612508 4018054 3967920 3836732 3401911

(B) The number of discovered signatures in D21.

(l’,d’) (28,2) (26,2) (24,2) (30,4) (28,4) (26,4) (24,4)

IMUS 3017278 3010587 2982960 2581787 2552522 2482618 2277644

CMDIMUS 3017278 3010587 2982960 2581787 2552522 2482618 2277644

The CMDIMUS algorithm discovered signatures from the databases using eight processing cores. The table presents the number of discovered signatures under
each discovery condition.

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/12376378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12376378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16216356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16996729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16996729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16621503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11724738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11724738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11934750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17511514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17511514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15572465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19201047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19201047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059835?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059835?dopt=Abstract

18. Lee HP, Sheu TF, Tsei YT, Shih CH, Tang CY: Efficient Discovery of Unique
Signatures on Whole-genome EST Databases. Proceeding of the 20th
annual ACM Symposium on Applied Computing (SAC2005) 2005, 100-104.

19. Lee HP, Tsai YT, Shih CH, Sheu TF, Tang CY: A Novel Approach for Efficient
Query of Single Nucleotide Variation in DNA Databases. Proceeding of the
Eighth Annual International Conference on Research in Computational
Molecular Biology (RECOMB 2004) 2004.

20. Zhang M, Kao B, Yip CL: A Comparison Study on Algorithms for
Incremental Update of Frequent Sequences. Proceeding of the Second IEEE
Conference on Data Mining (ICDM2002) 2002, 554.

21. Li T, Yang N, Xu Y, Ma J: An Incremental Algorithm for Mining
Classification Rules in Incomplete Information Systems. Proceeding of the
International Conference of the North American Fuzzy Information Processing
Society (NAFIPS 2004) 2004, 446-449.

22. Varma A, Chalasani S: An Incremental Algorithm for TDM Switching
Assignments in Satellite and Terrestrial Networks. IEEE Journal on Selected
Areas in Communications (JSAC) 1992, 10:364-377.

23. Yang B, Liu DY: Incremental Algorithm for Detecting Community
Structure in Dynamic Networks. Proceedings of 2005 International
Conference on Machine Learning and Cybernetics 2005, 2284-2290.

24. Rabbat MG, Nowak RD: Quantized Incremental Algorithms for Distributed
Optimization. IEEE Journal on Selected Areas in Communications (JSAC) 2005,
23:798-808.

25. Sun FX: Errors Estimating of Incompletion and Updating Strategy in IDS.
Proceeding of 2006 International Conference on Machine Learning and
Cybernetics 2006, 2948-2953.

26. Ponamgi MK, Manocha D, Lin MC: Incremental Algorithms for Collision
Detection between Polygonal Models. IEEE Transactions on Visualization
and Computer Graphics 1997, 3:51-64.

27. Archambault D, Munzner T, Auber D: Smashing Peacocks Further:
Drawing Quasi-Trees from Biconnected Components. IEEE Transactions on
Visualization and Computer Graphics 2006, 12:813-820.

28. Han C, Sutherland B, Jewett P, Campbell M, Meincke L, Tesmer J, Iundt M,
Fawcett J, Kim U, Deaven L, Doggett N: Construction of a BAC contig map
of chromosome 16q by two-dimensional overgo hybridization. Genome
Research 2000, 10(5):714-721.

doi:10.1186/1471-2105-11-132
Cite this article as: Lee et al.: A parallel and incremental algorithm for
efficient unique signature discovery on DNA databases. BMC
Bioinformatics 2010 11:132.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Lee et al. BMC Bioinformatics 2010, 11:132
http://www.biomedcentral.com/1471-2105/11/132

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/17080804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17080804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10810094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10810094?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Algorithm
	The parallel and incremental signature discovery (PISD) algorithm
	The scheduling heuristic for parallelism
	The consecutive multiple discovery (CMD) algorithm

	Testing
	Mathematical analyses
	Performance evaluation

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

