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Abstract: This study reported the functionality integration of zeolitic imidazolate framework-8 (ZIF-8)
with horseradish peroxidase (HRP) and streptavidin (SA) for the synthesis of a HRP&SA/ZIF-8
nanocomposite through one-pot coprecipitation. The synthesized HRP&SA/ZIF-8 nanocomposite
was then employed as the ideal signal tag for application in the enzyme-linked immunosorbent assay
(ELISA) and exhibited excellent sensitivity, selectivity and accuracy in the detection of insecticidal
crystalline (Cry) protein Cry1Ab as a transgenic biomarker with a detection limit of 4.8 pg/mL.
This proposed method provides a new way for the detection of transgenic biomarkers in food and
may inspire further integration of a variety of biomolecules into ZIF-8 for applications ranging from
biosensing, biomedicine, and catalysis to energy.
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1. Introduction

Bacillus thuringiensis (Bt) is an important Gram-positive bacillus that can be applied
as an efficient insecticide, owing to its ability to secrete insecticidal crystal proteins (Bt
proteins) which include two main parasporal toxins, crystalline (Cry) and cytolytic (Cyt)
toxins [1,2]. With the development of transgenic technology and increased demand for
food crop production, the Bt gene can be implanted into targeted crops by transgenic
technology to express the Bt protein to effectively protect agricultural food crops such as
maize, soybean and rice against crop insects [3–5]. However, although Bt proteins have a
strong killing effect on crop insects, the nontarget toxicity of Bt proteins on other creatures
also gains much concern from the public [6,7]. For a better response and regulation of
transgenic products and food safety, the determination of the content of Bt protein in
transgenic food crops or related environmental samples is particularly important and must
be the first step.

At present, there are mainly two kinds of methods for detecting Bt protein. One is
nucleic-acid-based detection methods, such as polymerase chain reaction and microar-
ray [8,9]. Such methods are relatively complex in their operation process and not suitable
for large-scale rapid detection on site, which usually requires professional instruments
and equipment. The other is protein-based detection methods, such as enzyme-linked
immunosorbent assay (ELISA) and immunochromatography assay (ICA) that are suitable
for the detection of large quantities of samples due to their relatively simple operation and
cost-efficiency [10,11]. However, the traditional ELISA and ICA method, due to the limited
number of enzyme molecules bound to the analyte, often suffer from the limitation of its
sensitivity and cannot meet the requirement of detection of a low content of residual Bt
protein in the environment [12,13].
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To overcome this challenge, nanostructure-based materials have gained much interest
owing to the possibility of functionalized nanomaterials to achieve specific properties. With
the high specific surface area and biocompatibility, nanomaterials are considered to be
the appropriate carrier for immobilizing sufficient enzyme molecules to achieve signal
amplification [14,15]. Usually, immobilization strategies work through adsorption or cova-
lent attachment to integrate enzymes on the presynthesized nanomaterials [16]. However,
these strategies have the disadvantages of easy leaching or activity loss of enzymes and
complicated operation and purification processes [17]. Among the many nanomaterials,
zeolitic imidazolate framework-8 (ZIF-8) is the subclass of metal–organic frameworks
(MOFs) and has received much attention for its high thermal and chemical stability and
synthesis under mild biocompatible conditions [18–21]. These properties enable ZIF-8 to
become an ideal candidate as the immobilization carrier to address the issue mentioned
above. For example, through one-pot coprecipitation, Lyu et al. synthesized cytochrome
c (cyt c)/ZIF-8 nanocomposite that was 10-fold enhanced in its activity compared with
free cyt c, which exhibited excellent performance in the detection of explosive organic
peroxides [22]. Wang et al. prepared glucose oxidase (GOx) and NiPd-nanoparticles-
coencapsulated ZIF-8 through the coprecipitation method, which was successfully applied
in the rapid sensing of glucose and showed high electrocatalytic activity for the oxygen
reduction reaction [23]. Ricco et al. used HRP and iron oxide magnetic nanoparticles to
construct magnetically responsive HRP@ZIF-8 with one-pot synthesis, which provided a
new platform for reusable biocatalysts [24]. These studies revealed the great promise of
ZIF-8 in biocatalysis and biosensing.

Until now, the coimmobilization of the enzyme and recognition protein in ZIF-8 for
application in the colorimetric immunoassay, especially for the detection of Bt protein,
has been rarely explored. Thus, in this study, the horseradish peroxidase as the enzyme
and streptavidin as the recognition protein were employed and coimmobilized in the
ZIF-8 to prepare an HRP&SA/ZIF-8 nanocomposite integrating the bifunction of signal
amplification and biorecognition. The morphology, size and structure of the synthesized
HRP&SA/ZIF-8 nanocomposite were characterized. Under optimized conditions, the
proposed HRP&SA/ZIF-8 nanocomposite then served as the ideal signal label in ELISA
for application in the detection of the Bt protein Cry1Ab as a transgenic biomarker. The
sensitivity, selectivity and accuracy of this method were also presented and discussed
in detail.

2. Material and Methods
2.1. Materials and Reagents

Streptavidin (SA), hemoglobin, horseradish peroxidase (HRP), bovine serum albumin
(BSA), 3,3′,5,5′-tetramethylbenzidine (TMB) and polyvinyl pyrrolidone (PVP) were ob-
tained from Sigma-Aldrich. 2-methylimidazole, zinc nitrate (Zn (NO3)2), tween-20, sulfuric
acid (H2SO4), potassium dihydrogen phosphate (KH2PO4), dibasic sodium phosphate
(Na2HPO4), potassium chloride (KCl) and sodium chloride (NaCl) were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). 96-well ELISA plates were
bought from Corning-Costar. CP4-EPSPS, Cry1Ab, Cry1e, biotin-antibody and monoclonal
antibody to Cry1Ab were acquired from Youlong Biotech Co., Ltd. (Shanghai, China). All
chemical reagents were used as received without further purification.

2.2. Instruments

The scanning electron microscope (SEM) and transmission electron microscopy (TEM)
images were obtained with the NTC JSM-6390LV SEM system and Hitachi H-7650 TEM
system, respectively. The X-ray diffraction (XRD) analysis was conducted on the Rigaku
Miniflex 600 system. The solution in 96-well ELISA plates for the absorbance determination
was performed with the SpectraMax i3 multifunctional system.
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2.3. Synthesis and Characterization of HRP&SA/ZIF-8 Nanocomposite

In a typical synthesis, 0.1 mL 0.30 M Zn (NO3)2, 5 µL 1 mg/mL SA, and 5 µL 1 mg/mL
HRP were added to 1 mL 1.2 M 2-methylimidazole at room temperature and the mixture
was stirred for 30 min. The precipitate was collected by centrifugation at 7000 rpm for
15 min and then washed with deionized water 3 times. The obtained product was redis-
persed in 1 mL phosphate-buffered saline (PBS) buffer solution and stored at 4 ◦C before use.
For the SEM and TEM observation, a drop of the as-prepared nanocomposites was dried
on the conductive adhesive and carbon grid, respectively. For the XRD, the as-prepared
HRP&SA/ZIF-8 nanocomposite was processed with the vacuum freeze-drying treatment
before the analysis. The simulated XRD pattern of ZIF-8 was analyzed by Mercury software
version 2022.2.0 (Cambridge Crystallographic Data Centre, Cambridge, UK).

2.4. Optimization of the Experimental Conditions

To obtain the best performance, the optimal total amount of HRP and SA (0.02, 0.03,
and 0.04 mg), mass ratio of HRP to SA (1:1, 3:1, 5:1, and 7:1), pH value (5.5, 6.0, 6.5, 7.0,
and 7.5), the dilution ratio of synthesized nanocomposite (1:5, 1:10, 1:15, and 1:20) for
application in the detection and incubation time of the synthesized nanocomposite (15, 20,
25, 30, and 35 min), respectively, were determined.

2.5. Procedure for Cry1Ab Detection

The procedure for detection was similar to the traditional ELISA and the ELISA plate
was carefully washed by PBS 3 times after each step. Briefly, the ELISA plate was firstly
coated with 100 µL 1 mg/mL monoclonal antibody to Cry1Ab at 4 ◦C overnight and
then incubated with 10 mg/mL BSA for 1 h blocking. The standard Cry1Ab solutions
with different concentrations were added to the plate for 1 h incubation. To form the
antigen–antibody sandwich structure, the biotin–antibody to Cry1Ab (100 µL 200 ng/mL)
was added to the plate for 1 h incubation. Next, the 100 µL synthesized HRP&SA/ZIF-8
nanocomposite with appropriate dilution was added to the plate and incubated for 20 min.
The HRP substrate solution was then added to incubate for 15 min. The reaction was
stopped by adding 100 µL per well of 1 M H2SO4 and the absorbance of the resulting
solution was detected by using a microplate reader (SpectraMax i3 system) at 450 nm.

2.6. Selectivity and Recovery Experiment

To investigate the selectivity of this method, the three interferences of hemoglobin,
CP4-EPSPS and Cry1e, and the mixture of Cry1Ab and the three interference analytes (each
of them at the same final concentration of 5 ng/mL) were detected. To study the recovery of
the Cry1Ab, the non-transgenic rice leaves (0.05 g) were carefully ground; then, the extract
solution (2 mL phosphate-buffered saline with tween-20 (PBST) containing 1% PVP) was
added to dissolve the ground sample and the standard Cry1Ab added to make the final
concentrations of 0 ng/mL, 1 ng/mL, 4 ng/mL and 8 ng/mL, which were determined
based on the standard curve.

3. Results and Discussion
3.1. Principle of Nanocomposites’ Preparation and Detection

The principle of preparation of the HRP&SA/ZIF-8 nanocomposites and their applica-
tion in ELISA for detecting Bt protein Cry1Ab are illustrated in Scheme 1. Both the HRP
and SA as the protein were encapsulated into ZIF-8 by the biomineralization process that
organic templates (protein and 2-methylimidazole) regulated the nucleation and growth
of inorganic materials at the organic/inorganic interface to control the morphology and
property of the organic/inorganic nanocomposite. This phenomenon was due to the fact
that the amino group in the HRP and SA backbone can bind with Zn2+. Additionally,
2-methylimidazole can coordinate with Zn2+ to form ZIF-8 [25]. This demonstrated the
formation of ZIF-8 along with the encapsulation of HRP and SA via one-step coprecipita-
tion. Zn2+ is a linker for loading sufficient HRP for signal amplification and the appropriate
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amount of SA for biorecognition. The as-prepared HRP&SA/ZIF-8 nanocomposites were
then applied as the signal label in ELISA for the sensitive detection of Cry1Ab. The mono-
clonal antibody, biotin–antibody and the antigen of Cry1Ab were to form the sandwich
complex. Next, the HRP&SA/ZIF-8 nanocomposites were employed and responsible for
signal amplification, which were bound to biotin–antibody through biotin–streptavidin
interaction. After the reaction was finished, the absorbance could be detected at 450 nm
and was proportional to the concentration of Cry1Ab, which can establish a standard curve
for the quantitative detection of Cry1Ab.
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tion in the detection of Cry1Ab.

3.2. Characterization of HRP&SA/ZIF-8 Nanocomposites

As shown in Figure 1, the morphology and size of HRP&SA/ZIF-8 nanocomposites
were characterized by SEM and TEM. The pure ZIF-8 crystal without encapsulation of
HRP and SA was polyhedral with a smooth surface (Figure 1a,c) while the HRP&SA/ZIF-8
nanocomposites displayed a spheroidal structure with a rough surface and a similar size of
~500 nm (Figure 1b,d), which may be due to the encapsulation of HRP and SA into ZIF-8.
The X-ray diffraction (XRD) analysis was also conducted to further verify the structure of
ZIF-8. Both the XRD pattern of pure ZIF-8 and HRP&SA/ZIF-8 nanocomposites agreed well
with the simulated XRD pattern (Figure 1e), indicating that the encapsulation of HRP and
SA had no impact on the crystal structure of ZIF-8 and HRP&SA/ZIF-8 nanocomposites
were successfully synthesized.
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Figure 1. (a) SEM image of ZIF-8; (b) SEM image of HRP&SA/ZIF-8 nanocomposites; (c) TEM image
of ZIF-8; (d) TEM image of HRP&SA/ZIF-8 nanocomposites; (e) XRD pattern of HRP&SA/ZIF-
8 nanocomposites.

3.3. Optimization for the Detection

To achieve improved performance for this assay, several detection conditions were
optimized (Figure 2). The amount and proportion of HRP and SA encapsulated into ZIF-8
directly determined the signal level and efficiency binding to the analyte; hence, they
affected the sensitivity of this method. The 0.03 mg total amount of HRP and SA with the
mass ratio of 5:1 can obtain the optimum signal level (Figure 2a). The higher proportion
of HRP cannot acquire a higher signal level; this may result from the lack of sufficient
SA to ensure the efficient binding of HRP&SA/ZIF-8 nanocomposites. The optimum
amount of as-prepared HRP&SA/ZIF-8 nanocomposites was also studied. The maximum
absorbance signal occurred when the as-prepared HRP&SA/ZIF-8 nanocomposites in
1 mL PBS stock solution were diluted 10 times for the detection (Figure 2b). 100 µL
of the 10-times-diluted stock solution was taken for a single detection in a well of an
ELISA plate; therefore, the as-prepared HRP&SA/ZIF-8 nanocomposite could be afforded
to the detection of 100 samples of Cry1Ab and the maximum 96 samples of Cry1Ab
could be determined in one measurement by using the 96-well ELISA plate. With the
increase in the dilution factor of the HRP&SA/ZIF-8 nanocomposites, the absorbance
value gradually decreased, which may be due to the decrease in the total amount of
HRP in the HRP&SA/ZIF-8 nanocomposites involved in the catalytic reaction. Moreover,
the optimum pH and incubation time were also investigated. The optimum signal level
was achieved at pH 6.5 (Figure 2c). The higher or lower pH value may not be the best
condition for HRP&SA/ZIF-8 nanocomposites binding or HRP catalysis. The optimum
incubation time for HRP&SA/ZIF-8 nanocomposites binding was 25 min. The extended
period of incubation time could not acquire the significantly higher absorbance signal
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(Figure 2d). Therefore, pH 6.5 and 25 min of incubation were chosen for HRP&SA/ZIF-8
nanocomposites binding.
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3.4. Detection of Cry1Ab Using HRP&SA/ZIF-8 Nanocomposite

The detection of the Cry1Ab was based on the traditional sandwich immunoassay. The
Cry1Ab was firstly captured by the monoclonal antibodies immobilized on the ELISA plate
wells and then they formed a sandwich complex with a biotinylated antibody. The HRP
and SA in the HRP&SA/ZIF-8 nanocomposites performed the function of signal amplifica-
tion and biorecognition, respectively. When the HRP&SA/ZIF-8 nanocomposites finished
the binding by biotin-SA interaction, the HRP then catalyzed its substrate to produce a
colored solution, which provided an absorbance signal for the quantitative detection of
Cry1Ab. Under optimized conditions, a calibration curve was obtained and the range of
linearity was from 0.05 to 16 ng, with a detection limit of 4.8 pg/mL according to the 3σ
criterion (Figure 3). The formula for calculating the limit of detection (LOD) is as follows:
LOD = 3σ/s, where σ was the standard deviation of blank samples’ measurement, and s
was the slope of the calibration plot [26]. The result showed that the proposed method
showed better performance in its sensitivity, compared with other immunoassay-based
methods in Table 1, including the electrochemical, chemiluminescent, immunochromato-
graphic, electrochemiluminescent and impedimetric immunoassay. To further evaluate the
selectivity of this method, hemoglobin and the two transgenic-related proteins CP4-EPSPS
and Cry1e as the interference analytes were detected. A relatively strong signal absorbance
was obtained in the presence of Cry1Ab while a faint absorbance signal was observed for
the detection of the other three interference analytes (Figure 4), indicating that the proposed
method exhibited a good specificity for Cry1Ab against the selected interfering substances.
To verify whether the various sizes of the as-prepared HRP&SA/ZIF-8 nanocomposite
affected the proposed analytical method, the precision and reproducibility of this method
were also investigated. The proposed method showed a very good precision as evidenced
by the low relative standard deviation of 0.96% (n = 8) of eight consecutive measurements
of 10 ng/mL Cry1Ab. Additionally, there was a very good reproducibility as evidenced
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by the low relative standard deviation of 3.83% (n = 5) of five measurements of 10 ng/mL
Cry1Ab using the HRP&SA/ZIF-8 nanocomposite prepared at five different times. Thus,
the size of the HRP&SA/ZIF-8 nanocomposite prepared in this study had little impact on
the proposed analytical method. Moreover, to verify the accuracy and feasibility of this
method, the recovery experiments were adopted. The Cry1Ab at various concentrations
(including 0, 1, 4, and 8 ng/mL) was added into the spiked non-transgenic rice leaf samples.
The recoveries of Cry1Ab were determined to be from 92.0% to 104.3% (Table 2), suggesting
good applicability and reliability of the present method.
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Table 1. Comparison of different immunoassays for Cry1Ab detection.

Methods Linear Range
ng/mL

LOD
ng/mL Reference

Electrochemical immunoassay 0–1000 0.07 [27]
Immunochromatographic assay - 100 [28]

Chemiluminescent immunoassay 10.49–307.1 6.45 [29]
Electrochemiluminescent

immunoassay 0.010–1.0 0.03 [30]

Impedimetric immunoassay 1–10 0.37 [31]
This work 0.05–16 0.0048 This work

LOD: Limit of detection.

Table 2. Recoveries of Cry1Ab.

Cry1Ab Added
(ng/mL)

Cry1Ab Found
(ng/mL) Recovery (%)

0 not been found -
1 0.92 ± 0.05 92.0 ± 5.0
4 4.17 ± 0.38 104.3 ± 9.5
8 7.46 ± 0.61 93.4 ± 7.6
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