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Abstract: The blast-induced damage of a high rock slope is directly related to construction safety and
the operation performance of the slope. Approaches currently used to measure and predict the blast-
induced damage are time-consuming and costly. A Bayesian approach was proposed to predict the
blast-induced damage of high rock slopes using vibration and sonic data. The relationship between
the blast-induced damage and the natural frequency of the rock mass was firstly developed. Based on
the developed relationship, specific procedures of the Bayesian approach were then illustrated.
Finally, the proposed approach was used to predict the blast-induced damage of the rock slope
at the Baihetan Hydropower Station. The results showed that the damage depth representing the
blast-induced damage is proportional to the change in the natural frequency. The first step of the
approach is establishing a predictive model by undertaking Bayesian linear regression, and the
second step is predicting the damage depth for the next bench blasting by inputting the change rate
in the natural frequency into the predictive model. Probabilities of predicted results being below
corresponding observations are all above 0.85. The approach can make the best of observations and
includes uncertainty in predicted results.

Keywords: blast-induced damage; high rock slope; sonic test; blasting vibration; natural frequency;
Bayesian linear regression

1. Introduction

Excavation of high rock slopes in many fields, such as transportation, hydraulic and
hydropower, and mining engineering, usually involves blasting due to the high efficiency,
reliable effectiveness, and low costs of blasting operations [1–3]. During excavation of rock
slopes, blasting loads with high levels arisen from blasting operations close to contour
surfaces usually trigger unavoidable damage in remaining rock masses, which impairs
the integrity and strength of the remaining rock masses that support different major
structures, such as dams and bridges [4,5]. The blast-induced damage could cause local
or even complete failure of rock slopes, and thus heavy economic losses and even major
catastrophes in an extensive region follow closely [6,7].

Measurement techniques currently used to detect the blast-induced damage of high
rock slopes can be naturally divided into two categories, direct measurements and non-
direct measurements [8]. As regards direct measurements, geometric and topological
features of micro defects in rock masses are directly measured, and those measured fea-
tures, such as the number, size, shape and position of the micro defects, are then used
to quantitatively define the rock damage. According to the locations of the measured
micro defects, the direct measurement is further subdivided into superficial topography
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measurements, which make use of diverse optical microscopes [9], scanning electron mi-
croscopes [10,11], laser scanners [12,13], borehole televiewers [14,15] etc., and internal
structure measurements, which employ the computed tomography technique [16,17] and
so on. As for the non-direct measurements, the physical and mechanical properties of target
rock masses are firstly measured, and the blast-induced damage is then indirectly obtained
by using those measured properties and calculating indexes representing rock damage.
A diversity of physical and mechanical properties of rock masses can be used in calcu-
lating the blast-induced damage, among which stress-strain behavior [8,18], sonic wave
velocities [19,20], electromagnetic wave response [21,22], acoustic emission characteris-
tics [18,23,24], infrared radiation features [25,26], and electrical resistance values [27,28]
etc. are all found commonly used in different occasions. Most of above measurement tech-
niques, for example computed tomography and infrared cameras, are limited in laboratory
tests so it is troublesome and impractical to apply them to evaluate the blast- induced
damage in on-site operations. The measurement techniques widely adopted in on-site
operations also have deficiencies of complicated operations, being time-consuming and
costly. Nowadays, sonic tests, which are relatively simpler, cheaper and more timesaving,
are the most commonly and pervasively used on-site measurement techniques for rock
damage during excavation of high rock slopes.

The blast-induced damage correlates well with the peak particle velocity (PPV),
and considerable effects have been made on predicting the blast-induced damage by devel-
oping a relationship between rock damage and the corresponding PPV [6], which helps
reduce the time and cost for on-site measurement of the blast-induced damage. Holm-
berg and Persson [29] proposed an approach to predict damage zones for contour blasting
based on an empirical equation relating rock damage and the PPV, and the empirical
equation was later discretized by Hustrulid and Lu [30]. Subsequently, more adaptions
and improvements were added onto the empirical equation for obtaining better perfor-
mance in on-site applications [31–33]. Nowadays, soft computing methods are more and
more popularly used in establishing empirical models for predicting rock damage [34–36],
because those methods can address uncertainty and imprecision without knowing much
about explicit theoretical expressions. Based on the relationship between rock damage
and the corresponding PPV, the blast-induced damage can be detected by comparing
monitored blasting vibration velocities against the critical PPV associated with a certain
degree of rock damage. It should be noted that the near-field PPV and corresponding
rock damage data are essential in establishing empirical predictive models. However, it is
very difficult to obtain the near-field PPV data through the blasting vibration monitoring
due to intense impacts and corresponding destructiveness in the vicinity of blastholes.
In addition, the monitored blasting vibration data are influenced by not only rock damage
but also many other factors such as measurement conditions, which easily leads to inexact
prediction of the blast-induced damage.

Unlike blasting vibration velocities that are easily influenced by external conditions,
natural frequencies of rock masses are intrinsic characteristics and relatively simple to
obtain without knowing near-field vibration data. Based on commonly recorded blasting
vibration data, natural frequencies of rock masses can be extracted by diverse methods,
such as Fourier spectra [37,38], the power spectral density (PSD) [39,40], the transfer
function [41,42], the frequency domain decomposition method [43,44], spectral ratios [45,
46], and polarization analysis [40,47]. Researchers have developed a number of techniques
to identify the location and degree of damage in structures using the change in the natural
frequency in structural health monitoring [48–50]. Among those techniques of damage
identification, the Bayesian approach that takes into account prior knowledge and posterior
probabilities is one of the most appealing and prevailing techniques [51,52].

In the present study, a Bayesian approach to predict the blast-induced damage of
high rock slopes using vibration and sonic data was proposed. A relationship between the
blast-induced damage and the natural frequency was firstly developed. The blast-induced
damage was obtained through sonic tests and the natural frequency was extracted by
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picking PSD peaks of blasting vibration monitoring data. Based on the relationship and
available vibration and sonic data, a predictive model of the blast-induced damage was
established by undertaking a Bayesian linear regression. By inputting the change rate in
the natural frequency into the predictive model, the blast-induced damage for the next
bench blasting can be predicted. The proposed Bayesian approach was finally adopted in
the right bank rock slope at the Baihetan Hydropower Station. The results demonstrated
that the proposed approach is feasible and efficient.

2. Relationship between Blast-Induced Damage and Natural Frequency
2.1. Blast-Induced Damage

We can define the change rate in the longitudinal wave velocity of rock masses before
and after blasting as:

η =
CP − CP

CP
= 1− CP

CP
(1)

where η is the change rate in the longitudinal wave velocity of rock masses, CP and CP are
the longitudinal wave velocities of rock masses before and after blasting, respectively.

According to construction technical specifications on rock foundation excavating
engineering of hydraulic structures, rock masses are considered to be severely damaged
when η exceeds 10% and the integrity of rock masses are critically destroyed. In engineering
practice, the damage depth D is widely used to represent the blast-induced damage of
rock masses and can be obtained by interpreting the change rate in the longitudinal wave
velocity η at different depths from contour surfaces.

2.2. Natural Frequency of Rock Mass

As regards blasting of the cylindrical charge with infinite length in infinite rock masses,
the cylindrical blasting source can be treated as a cylindrical cavity with a radius of a whose
inner wall is acted upon the radial load p, as depicted in Figure 1a. Only considering
radial motions of rock masses in the vicinity of the cylindrical cavity, the mechanical model
shown in Figure 1a can be then simplified as a plane strain model as shown in Figure 1b.
The simplified plane model can be further simplified into a single-degree-of-freedom
(SDOF) model owing to that the infinite rock masses with the circular cavity are always
symmetric regarding the circular cavity.

Figure 1. Simplified mechanical model for blasting of cylindrical charge: (a) Simplified model of
infinite cylindrical charge in infinite rock masses; (b) Simplified plane and SDOF models.

Assuming that rock masses are homogeneous, isotropic, and linear elastic media,
the radial displacement of rock masses at distance r from the center of the blasting source
can be obtained by:

ur =
1 + υ

E
a2

r
p (2)

where υ and E are the Poisson’s ratio and the elastic modulus of rock masses, respectively.
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Based on Equation (2), the equivalent radial stiffness K can be written as:

K =
2πap

ur
=

2πE
1 + υ

r
a

(3)

The mass per unit length M of rock masses with the circular cavity follows as:

M = π
(

r2 − a2
)

ρ (4)

where ρ is the mass density of rock masses.
Knowing the mass M and stiffness K, the natural frequency f0 of rock masses can be

identified by:

f0 =

√
K
M

=

√
2

1 + υ

CP
a

√
ra

r2 − a2 (5)

When r � a, the natural frequency f0 is simplified as:

f0 ≈ ξ
CP
a

√
a
r

(6)

where ξ is a coefficient related to the properties of rock masses.

2.3. Relationship between Damage Depth and Natural Frequency

Though Equation (6) was developed based on several idealized assumptions, the as-
sumptions can be proved valid in the vicinity of the blastholes [53], where the blast-induced
damage is primarily triggered. Comparing Equation (1) with Equation (6), the damage
depth D representing the blast-induced damage is roughly proportional to the change in
the natural frequency ∆ f0 of rock masses, as presented as Equation (7):

D ∝ ∆ f0 (7)

Based on Equation (7) and available data of ∆ f0, the damage depth D can be estimated
by generating a predictive model describing the relationship between the damage depth
and the change in natural frequency of rock masses.

3. Bayesian Approach to Predict Blast-Induced Damage

Excavation of high rock slopes follows the construction sequence from top to bottom.
As the excavation advances, more and more on-site data from sonic tests and the blasting
vibration monitoring at lower benches are progressively accumulated. In order to make the
best of those accumulated data and update the predictive model in real time as new data
are continually added, the Bayesian linear regression that can make full use of the prior
knowledge and include the uncertainty of posterior parameters in predicted results [54]
was adopted.

3.1. Bayesian Linear Regression

For a given dataset {di, yi}N
i=1, where N is the number of data samples, di ∈ Rd

indicates the input variable, and yi ∈ R means the target value, the regression analysis
aims at producing a predicted target value y(di;ω) when the input variable di is given.
Equation (8) presents the expression of the linear regression:

y(dt;ω) =
n

∑
i=1

ωidi
t + ω0 (8)

where di
t indicates the ith element of the input variable dt, and ωi indicates the ith element

of the weight vectorω.
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Equation (8) can be also written as y = Φω, where Φ = (φ(d1), φ(d2), · · · , φ(dN))
T

and y = (y1, y2, · · · , yN)
T , and φ(di) is the basis function. Based on the Bayesian inference,

the Bayesian linear regression is intended to get the solutions of the weight vectorω so as
to establish the corresponding regression model.

The relationship between the predicted value y(di;ω) and the target value yi follows:

yi = y(di;ω) + θi (9)

where θi is the noise and follows a Gaussian distribution, θ ∼ N
(
0, λ−1). As a result,

the target value yi also follows a Gaussian distribution as written by Equation (10):

p(yi|ω, λ ) = N
(

yi|y(di;ω) , λ−1
)

(10)

For an input dataset d = (d1, d2, · · · , dN)
T , the likelihood of the target vector y is:

p(y|ω, λ ) =
N

∏
i=1

N
(

yi|y(di;ω) , λ−1
)
=

(
λ

2π

)N/2
exp

{
−λ

2
‖y−Φω‖2

}
(11)

In order to avoid overfitting in the maximum-likelihood estimation and control the
model complexity, a prior distribution is defined as:

p(ω|ζ ) =
N

∏
i=0

N
(

ωi|0 , ζ−1
)

(12)

where ζ is the parameter controlling the distribution of ωi, and p(ωi|ζ ) = N
(
ωi|0 , ζ−1).

According to the Bayesian theorem, the posterior distribution of the weight vector
ω is:

p(ω|y, ζ, λ ) =
p(y|ω, λ )p(ω|ζ )

p(y|ζ, λ )
= N(ω |µ , Σ) (13)

where Σ =
(
λΦTΦ + ζI

)−1 and µ = λΣΦTy are the posterior variance and mean, respec-
tively, and p(y|ζ, λ ) =

∫
p(y|ω, λ )p(ω|ζ )dω.

For a given test point d∗, the predicted distribution of the corresponding target value
y∗ is:

p(y∗ |y ) =
∫

p(y∗|ω, λ )p(ω|y, ζ, λ )p(ζ, λ |y )dωdζdλ (14)

If ζm and λm maximum p(ζ, λ |y ), Equation (14) can be rewritten as:

p(y∗ |y ) =
∫

p(y∗|ω, λm )p(ω|y, ζm, λm )dω = N
(

y∗
∣∣∣µ∗, σ2

∗

)
(15)

The predicted mean µ∗ and variance σ2
∗ of the target value y∗ can be calculated by:

µ∗ = φ(d∗)µ (16)

σ2
∗ = λ−1

m + φ(d∗)Σφ(d∗)
T (17)

3.2. Relationship between Damage Depth and Natural Frequency

Procedures of the Bayesian approach to predict the blast-induced damage of high
rock slopes using vibration and sonic data are illustrated in Figure 2. The procedures
to predict the damage depth induced by the n-th bench blasting are divided into two
major steps, namely establishing the predictive model and producing predicted results.
For establishing the predictive model, blasting vibration monitoring and sonic test data
from the first (n−1) bench blasting operations are firstly collected, among which the former
data are used to identify natural frequencies of rock masses and the latter data are used to
determine the damage depth. Then, the calculated natural frequencies ∆fn−1 are taken as
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the input dataset d and the damage depths Dn−1 are taken as the target vector y. Based on
the input dataset d and the target vector y, the predictive model of the damage depth is
finally developed by using the Bayesian linear regression. Since the predictive model has
been developed, the predicted results of the damage depth for the n-th bench blasting are
hence obtained just by inputting the change rate in the natural frequency ∆ fn before and
after the n-th bench blasting into the predictive model. The above two major steps can be
repeatedly conducted as the excavation of rock slopes advances. The procedures of the
Bayesian approach have the advantages of introducing the prior information, considering
the uncertainty, and improving the estimation as more data are collected.

Figure 2. Procedure of Bayesian approach to predict blast-induced damage.

4. Blasting and Measurement Operations at the Baihetan Hydropower Station
4.1. Engineering Background

The Baihetan Hydropower Station lies in an asymmetrical V-shaped canyon which is
between Ningnan County in Sichuan Province and Qiaojia County in Yunnan Province,
located in the lower course of the Jinsha River, southwest China. The station has a total
installed capacity of 16,000 MW and the dam is a double-curvature arch dam with a
maximum height of 289 m, as shown in Figure 3a. The natural slope angle of the left bank
high rock slope is around 42◦ and that of the right bank high rock slope is around 65◦.
The heights of both the left and right bank high rock slopes in the dam abutment are
between 200 m and 300 m, as shown in Figure 3b. The bedrocks of the high rock slopes
in the dam abutment are mainly composed of Permian basalts P2β3~P2β6, and the typical
geological profile of the high rock slopes is presented in Figure 4.
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Figure 3. Baihetan Hydropower Station: (a) Double-curvature arch dam; (b) High rock slopes in
dam abutment.

Figure 4. Typical geological profile of high rock slopes at Baihetan Hydropower Station.

The excavation of the right bank high rock slope in the dam abutment was chose for
study in this paper. Each bench height of the studied slope was designed to be 10 m. Blast-
ing parameters used during the excavation of the slope were carefully determined based
on a series of on-site experiments, and the detailed blasting parameters are summarized
in Table 1. Initiation networks and charge structures commonly adopted in the blasting
operations were basically similar. The typical initiation network of the blasting excavation
between the EL. 794 m and the EL. 784 m and charge structures for different blastholes are
shown in Figure 5.

Table 1. Detailed blasting parameters.

Blasthole
Blasthole Parameter Charge Parameter

Diameter
(mm)

Length
(m)

Spacing
(m)

Burden
(m)

Diameter
(mm)

Stemming
(m)

Weight per
Blasthole (kg)

Presplit hole 90 10.4~11.2 0.8 / 32 1.0 5.2~7.4
Buffer blasthole 105 10.4~11.2 1.9 1.4 70 3.0 34~42

Production blasthole 105 9.8~12.4 5.0 3.0 90 3.0 50~64

4.2. Damage Depth Measurement

Sonic tests before and after bench blasting were carried out to acquire the damage
depth of each slope bench. The HX-SY04A sonic test system as presented in Figure 6,
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which is manufactured by Hunan Aocheng Technology Co., Ltd. (Shangsha, China),
was employed to conduct sonic tests, and the sampling interval and measurement range
in frequency bandwidth of the system are 0.1~499 µs and 10~200,000 Hz, respectively.
The accuracy of sonic transit time of the system reaches 0.1 µs. Both the cross-hole and
single-hole transducers were adopted in each sonic test, and the former is presented in
Figure 6b and the latter is presented in Figure 6c.

Figure 5. Typical blasting design of slope excavation between the EL. 794 m and the EL. 784 m:
(a) Plane layout of blastholes; (b) Cross section of blastholes (A-A′); (c) Charge structure for pres-
plit hole; (d) Charge structure for buffer blasthole; (e) Charge structure for production blasthole.

In cross-hole sonic tests, the longitudinal wave velocity of rock masses is obtained as:

CP = ∆d/∆t (18)

where ∆t is the time of the ultrasonic wave penetrating the rock masses between the two
sonic test holes, and ∆d is the minimum distance between the two sonic test holes.

In single-hole sonic tests, the longitudinal wave velocity of rock masses is obtained as:

CP = ∆L/(t2 − t1) (19)

where t1 and t2 are the time of the ultrasonic wave travelling from the transmitter to the
upper and lower receivers, respectively, and ∆L is the fixed length between the upper and
lower receivers.
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Figure 6. Sonic test system: (a) HX-SY04A versatile ultrasonic instrument; (b) Cross-hole transducer;
(c) Single-hole transducer; (d) On-site sonic test.

In order to guarantee the accuracy of the sonic tests, two groups of sonic test holes
with the diameter of 90 mm were bored. According to the Chinese code for blasting
safety monitoring of hydropower and water resources engineering and design requirement,
all sonic test holes extended about 6 m from the contour surface. Each group of sonic test
holes were arranged in form of an equilateral triangle, whose edge lengths in the berm
surface and the contour surface are about 1.8 m and 1.0 m, respectively. The typical layout
of the sonic test holes before bench blasting is depicted in Figure 7. Before bench blasting,
total 12 sonic tests including six cross-hole sonic tests and six single-hole sonic tests were
performed to gain the longitudinal wave velocities of the remaining rock masses before
bench blasting. As the bench blasting was done, the layout of the remaining sonic test
holes turned to be in the form as shown in Figure 8. After removing the stemmed rock
debris in the sonic test holes, another 12 sonic tests including 6 cross-hole sonic tests and 6
single-hole sonic tests were again performed to gain the longitudinal wave velocities of the
remaining rock masses after bench blasting.

Typical results of the sonic tests before and after bench blasting are plotted in Figure 9,
which show the change in longitudinal wave velocities of rock masses. According to the
results of the sonic tests and Equation (1), the damage depth for each slope bench was
determined by averaging the results of both cross-hole and single-hole sonic tests.
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Figure 7. Layout of sonic test holes before bench blasting: (a) Cross section of sonic tests holes;
(b) Plane view of sonic tests holes (B-B′).

Figure 8. Layout of sonic test holes after bench blasting: (a) Cross section of sonic tests holes;
(b) Section view of sonic tests holes (C-C′).

Figure 9. Typical results of sonic tests between the EL. 794 m and the EL. 784 m: (a) Typical results of
cross-hole sonic test; (b) Typical results of single-hole sonic test.
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4.3. Blasting Vibration Monitoring

The blasting vibration monitoring during the bench blasting was implemented to
further extract the natural frequencies of rock masses. The TC-4850 blasting vibration
monitoring system as shown in Figure 10a, which is manufactured by Chengdu Zhongke
Measurement and Control Co., Ltd. (Chengdu, China), was used in recording the blasting
vibration and it is composed of the TC-4850 intelligent monitor and the matched triaxial
velocity sensor. The internal component of the velocity sensor comprises a coil and a
suspended magnet, as depicted in Figure 10b. The measurement ranges in the velocity
and the frequency of the blasting vibration monitoring system are 0.001~35.0 cm/s and
5~300 Hz, respectively. The velocity resolution of the system is 0.01 cm/s.

Figure 10. Blasting vibration monitoring system: (a) TC-4850 intelligent monitor and triaxial velocity sensor; (b) Internal
component of velocity sensor.

Considering the reliability of the recorded vibration data and the safety of the mon-
itoring system, the blasting vibration monitoring system was arranged at the toe of the
upper slope bench, as shown in Figure 11. The recorded blasting vibration waveforms
of the monitoring point mounted at the EL. 804 m are typically presented in Figure 12.
According to the initiation network shown in Figure 5a, the blasting vibration waveforms
shown in Figure 12 can be divided into three segments: the presplit blasting vibration
waveform, the production blasting vibration waveform, and the superposition of the pres-
plit and production blasting vibration waveform. The presplit blasting vibration waveform
was used to extract the natural frequency of rock masses between the monitoring point and
the blasting zone before bench blasting, and the production blasting vibration waveform
was used to extract the natural frequency of rock masses after bench blasting. The change
in the natural frequency of rock masses was then adopted to predict the damage depth of
the rock masses adjacent to the blasting zone.

Figure 11. Typical layout of blasting vibration monitoring system.
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Figure 12. Typical blasting vibration waveforms of monitoring point at EL. 804 m.

The power spectral density (PSD), which describes how the power of a signal or time
series is distributed over the frequency, of the recorded blasting vibration data was used to
extract the natural frequencies of rock masses before and after bench blasting. The PSD of
a signal x(t) is simply defined as:

Sxx( f ) = lim
T→∞

|x̃T( f )|2

T
(20)

where xT(t) = x(t)ωT(t) and ωT(t) is the unity within the arbitrary period and zero else-
where, and |x̃T( f )|2 =

∫ ∞
−∞

[∫ ∞
−∞ x∗T(t− τ)xT(t)dt

]
e−i2π f τdτ is the Fourier transform of

the time convolution of x∗T(−t) and xT(t).
Considering a window of −N ≤ n ≤ N with the signal sampled at discrete times

xn = x(n∆t) for a total measurement period T = (2n + 1)∆t, the PSD defined as Equation (20)
can be generalized to discrete time variables xn as:

Sxx( f ) = lim
N→∞

(∆t)2

T

∣∣∣∣∣ N

∑
n=−N

xne−i2π f n∆t

∣∣∣∣∣
2

(21)

According to the previous derivation of the relationship between the damage depth
and the natural frequency, the radial motion of rock masses are closely related to the
blast- induced damage and hence longitudinal blasting vibration velocities were employed
to extract the natural frequencies of rock masses. The typical PSD illustrations of the
longitudinal velocities for the monitoring point at EL. 804 m are plotted in Figure 13.
The frequencies corresponding to the peaks in the PSD reveal the resonance frequencies
that can be considered to be equal to the natural frequencies of the rock masses. The first
resonance frequency was selected for calculating the change in the natural frequency of
rock masses.
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Figure 13. Typical PSD illustrations of longitudinal velocities for monitoring point at EL. 804 m:
(a) PSD of presplit blasting vibration; (b) PSD of production blasting vibration.

5. Results and Discussion
5.1. Damage Depth and Change in Natural Frequency

It is important to clarify the impact of the lower bench blasting on the damage state of
the upper remaining rock masses, because the blasting vibration monitoring system for
the current bench blasting was arranged at the toe of the upper slope bench. Therefore,
repeated sonic tests of the same remaining rock masses were separately conducted after the
adjacent and lower bench blasting. The typical results of the repeated sonic tests and their
differences are presented in Figure 14. The results show that the differences between the
longitudinal wave velocities of the same remaining rock masses after the adjacent and lower
bench blasting are all lower than 2.0% and most of them are below 1.0%. The differences
are rather small so that the lower bench blasting can be considered to have hardly any
impact on the damage state of the upper remaining rock masses. As a result, the change
in the natural frequency extracted from the blasting vibration data recorded at the upper
bench toe can reflect the change of damage state induced by the current bench blasting.

Data of sonic tests and blasting vibration monitoring were collected from total 19 bench
blasting operations, and total 52 sets of data pairs comprising the damage depth and the
change in the natural frequency were obtained through the collected data, Equation (1)
and Equation (21). The scatter plots shown in Figure 15 reveal the relationship between the
damage depth and the change rate in the natural frequency. According to the scatter plots
and corresponding linear fitting equations, the damage depth is found to be proportional
to the change rate in the natural frequency, which conforms to the relationship expressed
by Equation (7). In addition, the correlation coefficient R of the linear fitting equation
calculated through the longitudinal velocities is the largest, which verifies the reliability
and superiority of using longitudinal vibration data instead of transverse and vertical
vibration data.
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Figure 14. Typical results of repeated sonic tests of the same remaining rock masses for different
bench blasting: (a) Cross-hole sonic test; (b) Single-hole sonic test.

5.2. Predicted Results of Damage Depth

As the excavation of high rock slopes advances, more and more on-site data coming
from sonic tests and the blasting vibration monitoring were collected, and those increasing
data were successively used in the progressive procedures presented in Figure 2 to update
the developed predictive model continuously and improve the prediction reliability.

For the first two bench blasting operations, there are total 9 sets of data pairs relating
the damage depth to the change rate in the natural frequency, and the corresponding
scatter plot and the fitting line derived by the least square (LS) method are both shown in
Figure 16. In the Bayesian approach, the linear relationship between the damage depth
and the change rate in the natural frequency is represented as:

D = k0∆ f̃ + k1 + θ (22)

where k0 and k1 are the slope and intercept of the fitting line, respectively, and θ indicates
the noise.
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Figure 15. Scatter plots between damage depth and change rate in natural frequency: (a) Longitudinal vibration; (b)
Transverse vibration; (c) Vertical vibration.

Figure 16. Scatter plot and the fitting line between damage depth and change rate in natural frequency
(first two bench blasting operations).

The slope and intercept of the fitting line obtained by LS method were selected as
the initial values for the parameters k0 and k1, and then the Markov chain Monte Carlo
(MCMC) algorithm was used to draw 2000 posterior samples. The posterior distribution
of the parameters (k0, k1, and θ) and the corresponding individual samples are drawn in
Figure 17. The posterior distributions of the above parameters with the mean value and
the highest density interval (HDI) of 94% were further specifically presented in Figure 18.
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Figure 17. Posterior distribution and individual samples (first two bench blasting operations).

Figure 18. Posterior distribution with mean value and HDI of 94% (first two bench blasting operations).

The posterior predictive regression lines marked as Bayesian fits in Figure 19 were
obtained by taking multiple samples from the posteriors of the intercept and slope and
plotting a regression line for each of them. The estimated regression lines of the Bayesian fits
are similar to the regression line of LS fit, but there exists uncertainty in Bayesian estimates
that is expressed by the variability of the regression lines of the Bayesian fits. Therefore,
the predictive model of the damage depth is represented by the posterior predictive lines
of the Bayesian fits.
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Figure 19. Posterior predictive plots of Bayesian fits (first two bench blasting operations).

Since the predictive model of the damage depth was determined through the Bayesian
approach, the damage depth for the third bench blasting could be predicted by inputting the
change rate in the natural frequency of rock masses for the third bench blasting. Figure 20
shows the predicted result of the damage depth for the third bench blasting. From the
cumulative distribution function curve of the predicted damage depth, it can be seen that
the result of the LS prediction is far away from the on-site observation, while the result
of Bayesian prediction covers the result of the LS prediction and the on-site observation.
The Bayesian predicted result indicates the probability of that the damage depth induced
by the third bench blasting is lower than the on-site observation is about 0.85.

Figure 20. Bayesian predicted result of damage depth for the third bench blasting (cumulative
distribution function curve).

The complete procedures of the Bayesian approach to predict the damage depth for the
third bench blasting are illustrated in Figures 16–20, and the procedures could be divided
into two major steps, firstly developing a Bayesian predictive model of the damage depth
using collected on-site data of the first two bench blasting operations and then predicting
the damage depth by inputting the change rate in the natural frequency for the third bench
blasting into the predictive model. Using the Bayesian approach, the predictive model for
each bench blasting operation can be developed and the prediction of the damage depth
induced by the next bench blasting can be obtained. The typical predictive models and
predicted results of the damage depth for other bench blasting operations are presented in
Figures 21 and 22, respectively.
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Figure 21. Typical Bayesian predictive models: (a) The 4th bench blasting; (b) The 9th bench blasting; (c) The 14th bench
blasting; (d) The 19th bench blasting.

As shown in Figure 21, the Bayesian predictive model for each bench blasting is
dynamically adjusted and gradually becomes steady with the increasing input data. Com-
pared with the single regression line of the LS fit, the regression zone of the Bayesian
fits is composed of a series of similar single regression lines and expresses the estimation
uncertainty by the variability of those regression lines. The Bayesian predicted results
shown in Figure 22 show that the differences between the LS predicted results and the
on-site observations are large, while the Bayesian predicted results cover both of them.
The cumulative distribution function curve of the predicted damage depth presented in
Figure 22a indicates the probability of that the damage depth induced by the 4th bench
blasting is below the corresponding on-site observations is about 0.86. The cumulative dis-
tribution function curve presented in Figure 22b indicates the probability of that the damage
depth induced by the 9th bench blasting is below the corresponding on-site observations is
about 0.99. The cumulative distribution function curves presented in Figure 22c,d indicate
the probabilities of that the damage depths induced by the 14th and 19th bench blasting
are below the corresponding on-site observations are about 0.92. All the probabilities of
predicted results being below corresponding observations are all above 0.85.
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Figure 22. Typical Bayesian predicted results: (a) The 4th bench blasting; (b) The 9th bench blasting; (c) The 14th bench blasting; (d)
The 19th bench blasting.

The proposed Bayesian approach uses only parts of the blasting vibration monitoring
and sonic test data that are originally required for controlling the vibration and damage of
the remaining rock masses, and no additional data are further required. Developing the
predictive model in the Bayesian approach using the natural frequency instead of the
PPV helps reduce the measurement work and the prediction deviation, because at least
five blasting vibration monitoring points along a line are demanded in exploring the
blasting vibration attenuation law that is used to predict the PPV while just one blasting
vibration monitoring point at the upper bench toe is enough for extracting the natural
frequency of rock masses. By using the Bayesian linear regression, the new blasting
vibration monitoring and sonic test data can be added into the input dataset to update
the predictive model. Furthermore, the Bayesian predicted result is not the distinct point
but a distribution containing some statistical characteristics that describe the damage
state more appropriately and scientifically. Further studies will be considered to integrate
the statistical characteristics into the current description and codes of the damage and
vibration control.

6. Conclusions

Considering the benefits that the natural frequencies of rock masses are intrinsic char-
acteristics and relatively simple to obtain without knowing the near-field vibration data,
a relationship between the blast-induced damage and natural frequency of rock masses
was firstly developed. The damage depth representing the blast-induced damage is pro-
portional to the change in the natural frequency. The blast-induced damage was obtained
through sonic tests and the natural frequencies were extracted by picking PSD peaks of
blasting vibration monitoring data. Based on the developed relationship and available vi-
bration and sonic data, a Bayesian approach was then proposed to predict the blast-induced
damage of high rock slopes using vibration and sonic data. The procedures of the Bayesian
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approach are divided into two major steps, namely establishing the predictive model and
producing the predicted results. The Bayesian predictive models of the damage depth were
firstly developed by undertaking the Bayesian linear regression. There exists uncertainty
in the Bayesian estimates that was expressed by the variability of the regression lines of
the Bayesian fits. The damage depth for the next bench blasting could be predicted by
inputting the change rate in the natural frequency of rock masses to the predictive models.
Finally, the Bayesian approach was applied in the Baihetan Hydropower Station, and the
probabilities of predicted results being below corresponding observations are all above
0.85. The proposed Bayesian approach that makes the best of numerous monitoring data
and includes the uncertainty in the predicted results is practical and efficient. This study
focuses on predicting the blast-induced damage of high rock slopes and the presented case
study at Baihetan Hydropower Station provides a reference for similar projects.
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