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Abstract
Human epidermal growth factor receptor 2–positive breast cancer (HER2+BC) is a common malignancy that is prone to
recurrence and metastasis in the early stages, resulting in a poor prognosis for patients. Many studies have suggested that
targeted therapy promotes clinical outcomes in HER2+BC. With the introduction of trastuzumab in 1998, the prognosis of
patients with early HER2+BC has improved significantly. However, owing to obstinate drug resistance and adverse events, the
addition of new agents in standardized treatment has become a research hotspot. These promising agents include antibodies,
antibody-drug conjugates, tyrosine kinase inhibitors, and anti-HER2 combined therapies. This article provides a brief description
of the biology of BC and the expression of HER2, with the aim to provide an overview of the therapeutic landscape of HER2+BC
by reviewing research results and introducing the latest evidence to provide a reference for clinical treatment.
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Introduction

Breast cancer remains the primary disease burden in women
worldwide.1 Breast cancer can be divided into several sub-
types, with different subtypes leading to different therapeutic
sensitivities and prognoses.2 HER2 is overexpressed in 15%–

20% of all breast cancers plays an indispensable role in the
progression of breast cancer.3 As a result, HER2 is regarded as
an effective target for the genomic therapy of various tumors.4

By forming homodimers or heterodimers, HER2 can drive
tumor growth and activate downstream signaling pathways,
which promote cell proliferation, survival, and angiogenesis.5

HER2-targeted therapy has been authorized by the Food and
Drug Administration (FDA) because it greatly improves the
prognosis of HER2-positive breast cancer (HER2+BC).
Chemotherapy plus 1 year of adjuvant HER2-targeted therapy
is the standard regimen for HER2+BC. Trastuzumab is the
most typical HER2-targeted agent, and the use of trastuzumab
in 1998 inspired patients with HER2+BC. For metastatic
breast cancer (MBC) with HER2 overexpression, trastuzumab
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enhances the clinical benefits of chemotherapy.6 Moreover,
the addition of trastuzumab has been shown to halve the
recurrence rate in patients with HER2+BC.7 Although the
treatment is valid, some obstinate drug resistance and AEs
associated with trastuzumab affect the quality of life of pa-
tients during the course of treatment. Therefore, several tar-
geted agents have been explored and approved in recent
decades (Figure 1). Further enhancement of the effect of
targeted therapy has become the focus of research into
HER2+BC. Therefore, there is an urgent need to develop
novel and acceptable targeted agents for patients.8

This article provides a brief description of the biology of
BC and the expression of HER2, with the aim to provide an
overview of the therapeutic landscape of HER2+BC by
reviewing research results and introducing the latest evi-
dence to provide a reference for clinical treatment.

Breast Cancer Biology and Expression
of HER2

According to routine immunohistochemical (IHC) param-
eters, breast cancers can be classified into four molecular
subtypes (Table 1).9 Different subtypes have different gene
expression patterns, which are closely associated with
therapeutic responses. Patients with hormone receptor-
positive tumors receive endocrine therapy, while a few
receive chemotherapy. Patients with HER2-positive tumors
receive HER2-targeted therapy in combination with che-
motherapy, while those with triple-negative breast cancer
usually receive chemotherapy only.10

HER2 oncogenes are located on chromosome-1711 and
are responsible for encoding transmembrane receptor ty-
rosine kinases.12 The HER2 oncogene is a member of the

Figure 1. Timeline of the findings of HER2 and the development of HER2-positive breast cancer regimens. HER: Human epidermal growth
factor receptor, EGF: Epidermal growth factor, EGFR: Epidermal growth factor receptor, TDM-1: Ado-trastuzumab emtansine, BC: Breast
cancer, FDA: Food and Drug Administration, DS-8201: Trastuzumab deruxtecan.

Table 1. Four Molecular Subtypes of Breast Cancer.

Subtype ER,PR HER2 Ki67

Luminal A ER- and/or PR-positive Negative Low (<15%)
HER2-negative Luminal B ER- and/or PR-positive Negative High (>30%)
HER2-positive Luminal B ER- and/or PR-positive Positive Any
Triple negative Both negative Negative Any
HER2-positive Both negative Positive Any

Abbreviation: ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PR, progesterone receptor.
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Figure 2. Liner structures and corresponding ligands of the epidermal growth factor receptor family. EC: Extracellular domain, TM:
Transmembrane domain, D: Domain. IC: Intracellular domain, TK: Tyrosine kinase domain, APR: Amphiregulin, NRG: Neuregulin, BTC:
Betacellulin, HER: Human epidermal growth factor receptor, EPR: Epiregulin.

Figure 3. Biological mechanism of HER2 and summary of targeted therapies for HER2-positive breast cancer. HER: Human epidermal growth
factor receptor, ADCs: Antibody-drug conjugates, TKI: Tyrosine kinase inhibitor, CAR: Chimeric antigen receptor, CD3: Cluster of
differentiation 3, TCR: T-cell receptor, PD-1: Programmed death-1, PD-L1: Programmed death-ligand 1, TDM-1: Ado-trastuzumab
emtansine, DS-8201: Trastuzumab deruxtecan.
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epidermal growth factor receptor (EGFR) family (also known as
ErbB), together with HER1, HER3, and HER4 (Figure 2). By
forming homodimers (with HER2) or heterodimers (with HER1,
HER3, or HER4), tyrosine residues in the cytoplasmic domain
undergo autophosphorylation, which activates downstream
signaling pathways (mainly the PI3K/AKT/mTOR and Ras/Raf/
MEK/MAPK pathways) and causes adverse biological reactions
(Figure 3). HER2 amplification is defined as a vital independent
adverse prognostic factor,13 and HER2+BC is more invasive and
more likely to relapse and metastasize in the early stage.14

Most patients with HER2+BC are insensitive to en-
docrine therapy.15 The emergence of HER2-targeted
agents has significantly improved the quality of life of

patients, and trastuzumab has significantly improved the
survival of patients with early HER2+BC. However, drug
resistance and adverse events (AEs) reduce the therapeutic
effect. Hence, novel agents have been explored by sci-
entists and are currently undergoing clinical trials (Table
2).

Therapeutic Antibodies

Several novel antibodies have been identified. Compared to
trastuzumab, they either have greater specificity to combine
with the HER2 receptor, or they can bind to extra epitopes to
enhance activity and generate greater immunologic responses.

Table 2. Summary of Major Phase III trials in HER2+BC.

Trial
Numbers of
patients Race

Line of
therapy Regimen

ORR
(%)

PFS
(months)

OS
(months)

CLEOPATRA
(NCT00567190)18

T:808
E:402
C:406

White, Black,
Asian, Other

First line E: Pertuzumab +
Trastuzumab + Docetaxel

C: Placebo + Trastuzumab +
Docetaxel

E:80.2
C:69.3

E:18.7
C:12.4

E:56.5
C:40.8

PEONY
(NCT02586025)20

T:329
E:219
C:110

Asian First line E: Pertuzumab +
Trastuzumab + Docetaxel

C: Placebo + Trastuzumab +
Docetaxel

E:88.6
C:78.2

E:NA
C:NA

E:NA
C:NA

SOPHIA
(NCT02492711)26

T:536
E:266
C:270

White, Black,
Asian, Other

≥Second
line

E: Margetuximab +
Chemotherapy

C: Pertuzumab +
Chemotherapy

E:25.2
C:13.7

E:5.8
C:4.9

E:21.6
C:19.8

EMILIA
(NCT00829166)41

T:978
E:490
C:488

White, Black,
Asian, Other

Second line E: T-DM1
C: Lapatinib + Capecitabine

E:46.3
C:30.8

E:9.6
C:6.4

E:30.9
C:25.1

TH3RESA
(NCT01419197)42

T:602
E:404
C:198

White, Asian,
Other

≥Second
line

E: T-DM1
C: Physician’s choice

E:31.0
C:9.0

E:6.2
C:3.3

E:22.7
C:15.8

NALA
(NCT01808573)57

T:621
E:307
C:314

White, Black,
Asian, Other

≥Second
line

E: Neratinib + Capecitabine
C: Lapatinib + Capecitabine

E:32.8
C:26.7

E:5.6
C:5.6

E:21.0
C:18.7

ExteNET
(NCT00878709)58

T:2840:
E:1420
C:1420

White, Black,
Asian, Other

≥Second
line

E: Neratinib
C: Placebo

E:NA
C:NA

E:NA
C:NA

E:NA
C:NA

PHENIX
(NCT02973737)61

T:279
E:185
C:94

Asian ≥Second
line

E: Pyrotinib + Capecitabine
C: Placebo + Capecitabine

E:68.6
C:16.0

E:11.1
C:4.1

E:NA
C:NA

PHOEBE
(NCT03080805)61

T:267
E:134
C:133

Asian ≥Second
line

E: Pyrotinib + Capecitabine
C: Lapatinib + Capecitabine

E:67.2
C:51.5

E:12.5
C:6.8

E:NA
C:NA

HER2CLIMB
(NCT02614794)64

T:612
E:410
C:202

White, Black,
Asian, Other

≥Second
line

E: Tucatinib + Trastuzumab
+ Capecitabine

C: Placebo + Trastuzumab +
Capecitabine

E:40.6
C:22.8

E:7.8
C:5.6

E:21.9
C:17.4

BOLERO-3
(NCT01007942)71

T:569
E:284
C:285

White, Black,
Asian, Other

≥Second
line

E: Everolimus + Trastuzumab
+ vinorelbine

C: Placebo + Trastuzumab +
vinorelbine

E:40.8
C:37.2

E:7.0
C:5.8

E:23.5
C:24.1

Abbreviation: C, group of control; E, group of experiment; NA, not available; NCT, National Clinical Trial; ORR, objective response rate; OS, overall survival;
PFS, progression-free survival; T, total numbers; TDM-1, ado-trastuzumab emtansine.
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Pertuzumab

Pertuzumab is a humanized recombinant monoclonal antibody. In
addition to preventing the formation of homodimers and triggering
antibody-dependent cell-mediated cytotoxicity (ADCC), which is
also triggered by trastuzumab, pertuzumab can combine with
HER2 in other regions, restrain the heterodimer (HER2/HER3),
and block downstream signaling pathways (Figure 3).16,17

Pertuzumab was first found to be useful in MBC with a
combination of trastuzumab and docetaxel in the CLEOPATRA
study. The study showed that the regimen extended the median
progression-free survival (PFS) to 18.5 months compared to
12.4 months in the placebo group.18 Later, to determine whether
pertuzumab played a role in neoadjuvant therapy of HER2+BC, a
phase II trial, NeoSphere, was conducted.19 The results showed a
significantly higher pathologic complete response (pCR) in the
treatment group than that in the placebo group (45.8%vs 29.0%;P
= .014). It is worth mentioning that the PEONY study, which was
conducted in Asians, also confirmed that the application of per-
tuzumab in neoadjuvant therapy was beneficial in patients with
HER2+BC.20

APHINITY, a phase III clinical trial, showed that pertu-
zumab could lower the risk of invasive disease-free survival
(iDFS) compared to placebo (hazard ratio [HR] = .81; 95%
confidence interval [CI], .66–1.00; P = .045). Therefore,
pertuzumab has been approved as an adjuvant treatment for
HER2+BC.21 In addition, the regimen (trastuzumab plus
pertuzumab and docetaxel) could extend the overall survival
(OS) to 56.5 months in patients with HER2+MBC.22 It is
worth noting that this regimen is relatively safe and does not
cause additional cardiotoxicity.

According to the latest National Comprehensive Cancer
Network (NCCN) clinical practice guidelines in oncology
(Version 2.2022), trastuzumab and pertuzumab combined with
chemotherapy are the first-line regimens for neoadjuvant che-
motherapy.23 However, there is no precise evidence to support
whether the regimen is useful for patients with tumors <2 cm in
diameter and without axillary lymph node metastasis.

Margetuximab

Margetuximab (MGAH22) is a chimeric murine monoclonal
antibody. Unlike trastuzumab, MGAH22 is designed with an
engineered Fc portion to increase affinity for the activating Fcγ
receptor and to decrease affinity for the inhibitory Fcγ receptor,
thereby increasing the ADCC response.24 In a phase I trial,
MGAH22 exhibited antitumor activity and no cardiotoxicity in
patients treated with anti-HER2 therapy.25 A crucial phase III trial,
SOPHIA, showed that the regimen of MGAH22 plus chemo-
therapy improved PFS compared to the trastuzumab group (HR =
.76; 95%CI, .59–.98, P = .03).26 As a result, MGAH22 combined
with chemotherapy has been approved by the FDA for the
treatment of HER2+MBC. Further phase II trials, such as
MARGOT and NCT04262804, are currently recruiting
volunteers.27

ZW25

ZW25 is a bispecific antibody; in contrast to trastuzumab,
ZW25 can combine two HER2 epitopes simultaneously to
increase specificity and improve efficacy (Figure 3). In most
HER2-overexpressed cancers, ZW25 shows high activity in
vivo and in vitro.28 In a phase I clinical trial, ZW25 was
effective in patients with HER2+BC, with a 33% objective
response rate (ORR).29 Recently, a phase I/II trial
(NCT02892123) has been conducted. Part 1 was completed
with no dose-limiting toxicity, but two common AEs were
reported - diarrhea and infusion-related reaction (all grade 2).
In part 2, 13 patients with MBC were included in the study,
seven of whom improved and six failed. In part 3, which is
ongoing, scientists will assess the safety, tolerance, and ef-
ficacy of the combination with specific chemotherapy.30

MM-111

Unlike the HER2/HER2 homodimer regulated by trastuzu-
mab, MM-111 is a fusion antibody consisting of fully human
anti-HER2/HER3 single chains linked by modified human
serum albumin. It precisely obstructs the combination of
heregulin (HRG) and HER3, and blocks ligand-induced
signaling and tumor growth. A series of preliminary studies
have evaluated the curative effect of MM-111 in the regimen
of patients with HER2-positive solid tumors, such as MM-111
monotherapy (NCT00911898), MM-111 plus trastuzumab
and chemotherapy regimen (NCT01304784), and MM-111
plus trastuzumab and lapatinib regimen (NCT01097460).31

MCLA-128

MCLA-128 is a humanized bispecific antibody that contains
two arms (“dock” HER2 arm and “block” HER3 arm) and
targets extracellular domains, which prevents the phosphor-
ylation of HER3 and downstream oncogenic signaling.32 In a
phase I trial, large doses of MCLA-128 were administered to
ten patients with breast cancer, and the results revealed a
considerable clinical benefit rate of 70%. Another phase II trial
(NCT03321981) is proceeding.33

Ertumaxomab

The trifunctional immunoglobulin ertumaxomab is an inte-
grated bispecific antibody.34 Traditional treatment with tras-
tuzumab only affects the EGFR family; however,
ertumaxomab can simultaneously target HER2 and cluster of
differentiation 3 (CD3) presented on T cells, and activate
Fcgamma receptors of innate effector cells. According to these
characteristics, ertumaxomab acts as a bridge between tumor
cells and immune cells. ADCC can be enhanced by activating
the adjunctive cells. In addition, they can relate immune ef-
fector cells and tumor cells in a short time and display
powerful antineoplastic activity.35 A phase I trial confirmed
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that ertumaxomab resulted in one complete response (CR)
case and several partial response (PR) cases. A maximum
tolerated dose of 100 μg is recommended, and cytokine release
is the most related AE.36 Phase II trials concerned with er-
tumaxomab (NCT00522457, NCT00452140) were termi-
nated because of changes in the development plan or focus on
other projects. Although there is currently no clear conclusion,
ertumaxomab could still be an appropriate adjuvant for anti-
HER2 therapy.

Antibody-Drug Conjugates (ADCs)

ADCs transmit different cytotoxic drugs to tumors using
mAbs. These drugs not only decrease toxicity in normal
tissues, but also have increased targeting ability and efficiency.
Ado-trastuzumab emtansine (T-DM1) is a representative drug
approved by the FDA for the treatment of HER2+MBC, and is
composed of cytotoxic agents such as trastuzumab and em-
tansine.37 Because T-DM1 combines with HER2, the con-
jugate can be transported into tumor cells. Subsequently,
emtansine is released, which causes the inhibition of tubulin
and finally leads to apoptosis.38 In addition, T-DM1 can block
downstream signaling pathways (Figure 3).39 Phase I/II trials
have demonstrated that the addition of TDM-1 results in an
excellent response, with better ORR and PFS.40 EMILIAwas
a critical phase III trial, which showed that T-DM1 plus ca-
pecitabine significantly lengthened the median PFS and OS
(HR = .53; 95% CI, .37-.76; P < .05). Based on these results,
T-DM1 gained acceptance and was used as a second-line
treatment for HER2+MBC patients.41

Despite the obvious clinical efficacy of T-DM1, its inherent
characteristics hamper its potency. Therefore, scientists have

focused on the development of new HER2-targeted ADCs.
Different ADCs represent various combinations of affiliative
antibodies, linker drugs, and payloads. The novel ADCs are
summarized in Table 3.42 A novel ADC named trastuzumab
deruxtecan (DS-8201) appeared recently, and quickly gained
FDA approval. DS-8201 consists of trastuzumab, a cleavable
linker, and a topoisomerase I inhibitor. DS-8201 can affect
both antigen+ tumor cells and neighboring antigen-tumor cells
in vivo, and can overcome T-DM1 resistance, which might be
an appropriate regimen for patients with T-DM1 relapsed or
refractory.43 A preliminary phase I trial demonstrated the
safety, pharmacokinetics, and antitumor activity of DS-8201
in patients with HER2+BC.44 A phase II trial, DESTINY-
Breast01, confirmed that DS-8201 has persistent antitumor
activity in patients with HER2+BC.45 However, interstitial
pulmonary disease was reported as one of the major AEs in
this trial, which became the focus of subsequent phase III
trials.46 The early results of a randomized phase III trial,
DESTINY-Breast03, were published at the latest ESMO
meeting. The 12 month-PFS rate of patients was 75.8% with
DS-8201 and 34.1% with T-DM1 (HR = .28; 95% CI, .22-.37;
P < .001).47 According to the NCCN guidelines, DS-8201 has
replaced TDM-1 as the second-line regimen of choice for the
systemic treatment of patients with advanced HER2+BC.23

Tyrosine Kinase Inhibitors (TKIs)

TKIs are suitable candidates for the treatment of various
malignancies. They bind to tyrosine kinases competing with
adenosine triphosphate (ATP), inhibit phosphorylation of
residues, and block downstream signaling pathways, all of
which suppress tumor cell proliferation and metastasis (Figure

Table 3. Summary of Novel ADCs Applied in HER2-Positive Breast Cancer.

ADCs Antibody Payload Linker drug DAR
Developmental

phase

DS-8201 Trastuzumab Exatecan derivative
(topoisomerase I inhibitor)

Maleimide glycynglycynphenylalanyn-
glycyn peptide (cleavable)

7-8 Phase II, phase III
ongoing

PF-
06804103

Engineered anti-
HER2 antibody

Aur0101 (tubulin inhibitor) Valine-citrulline (cleavable) 4 Phase I ongoing

PT-DM1 Trastuzumab DM1 maytansinoid Sulfo-SMCC (cleavable) 3.5-4.2 Phase I ongoing
HER2-

vc0101
Trastuzumab Aur0101 (tubulin inhibitor) Valine-citrulline (cleavable) 4 Phase I ongoing

SYD985 Trastuzumab Duocarmycin (DNA
targeting)

Valine-citrulline (cleavable) 2.8 Phase I/II, phase III
ongoing

ARX788 Engineered anti-
HER2 antibody

Monomethyl auristatin F
(tubulin inhibitor)

Para-acetylphenylalanine (not cleavable) 1.9 Phase I ongoing

MEDI4276 Biparatopic anti-
HER2 antibody

Tubulysin (tubulin inhibitor) Maleimidocaproyl (cleavable) 4 Phase I

ZW49 ZW25 Monomethyl auristatin E
(tubulin inhibitor)

Unknown cleavable linker Unknown Phase I ongoing

RC48 Hertuzumab Monomethyl auristatin E
(tubulin inhibitor)

MC-Val-Cit-PAB (cleavable) 4 Phase I, phase II
ongoing

Abbreviation: ADCs, antibody-drug conjugates; DAR, drug-to-antibody ratio.
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3). Therefore, TKIs may be beneficial in patients with early
HER2+BC. To date, two HER2-targeted TKIs have been
approved by the FDA: lapatinib and neratinib, while several
novel TKIs are currently undergoing clinical research.48While
it is difficult for monoclonal antibodies to traverse the blood–
brain barrier (BBB), some TKIs can cross easily, which may
represent an effective solution for the metastasis of the central
nervous system (CNS) in HER2+BC.42

Lapatinib

The FDA-approved lapatinib is an effective oral TKI. It can
reversibly inhibit HER1 and HER2 receptors, block the
downstream pathways (mainly PI3K/AKT/mTOR and Ras/
Raf/MEK/MAPK pathways), and ultimately inhibit the pro-
liferation and development of tumor cells.49 According to the
FDA, the regimen of lapatinib plus capecitabine is effective in
patients with MBC. As lapatinib can cross the CNS, it has the
potential to improve the prognosis of CNS MBC.50 Studies
have shown that short-term treatment with lapatinib (1-7 days)
induces cell cycle arrest, apoptosis, and autophagy. However,
long-term treatment (3-6 months) may result in acquired drug
resistance.51 Unfortunately, its well-known AE, diarrhea,
limits its clinic use.52

Neratinib

Neratinib is an FDA-approved oral TKI, which irreversibly
inhibits members of the EGFR family (except HER3).
Compared to lapatinib, neratinib is more valid and consis-
tent.53 By lowering the phosphorylation of each protein kinase
domain, it blocks downstream pathways, which eventually
decreases both cyclin D1 expression and RB phosphoryla-
tion.54 As neratinib and trastuzumab have different mecha-
nisms, their combination may be promising.55

A phase II trial, NEFERT-T, showed that the administration
of neratinib led to fewer CNS recurrences. The most frequent
AE was diarrhea (20%, grade 3-4).56 A phase III trial named
NALA confirmed that a regimen of neratinib plus capecitabine
could lower the cumulative incidence of CNS metastasis.57

Another phase III trial, ExteNET, explored patients with 1-
year neratinib treatment followed by 1-year trastuzumab
treatment. In the 5-year follow-up study, the neratinib group
showed a survival rate of 90.2%, while the placebo group
showed a survival rate of 87.7%, confirming its clinical ef-
ficacy. In addition, subgroup analysis suggested that the se-
quential use of neratinib was more beneficial for hormone
receptor (HR)-positive patients.58

Pyrotinib

Pyrotinib was developed exclusively in China and has similar
biological mechanisms to neratinib.59 Phase I trials showed
that a single application of pyrotinib was efficient and safe for
patients with advanced HER2+BC.60 A recent randomized

phase II trial (NCT02422199) assessed the clinical efficacy of
pyrotinib plus capecitabine, and the results showed that the
regimen had a higher ORR (79%) and a longer median PFS
(18.1 months). Moreover, phase III trials, including PHENIX
and PHOEBE, confirmed that pyrotinib plus capecitabine
could achieve longer median PFS (11.1 months, 12.5 months).
Based on the above conclusions, this regimen has won re-
gional recognition in China.61

Tucatinib

Tucatinib is a new oral TKI, and in an in vitro model with
HER2-overexpressed cells, tucatinib blocked the phosphor-
ylation of HER2 and protein kinase B (PKB).62 A phase Ib
trial showed that the combination of tucatinib and TDM-1 had
expectant outcomes in HER2+MBC.63 Tucatinib is a prom-
ising drug because it does not bind to EGFR, which reflects
lower toxicity and indicates the possibility of traversing the
BBB. HER2CLIMB is a phase III trial that assessed the
clinical efficacy of tucatinib plus trastuzumab and capecita-
bine in patients with HER2+MBC. The results showed that
this regimen increased PFS compared to the placebo group
(25% vs 0%, HR = .48; P < .01). Hence, the FDA recently
authorized this regimen for adjuvant therapy in patients with
advanced HER2+MBC.64 Other phase III trials, such as
HER2CLIMB02 and HER2CLIMB04, have attempted to
further assess the availability of tucatinib in MBC.65

Afatinib

Afatinib is a TKI that irreversibly inhibits HER1, HER2, and
HER4 receptors.66 A phase II trial (NCT01325428) assessed
the possibility of applying afatinib in patients with inflam-
mation or MBC.67 A phase III trial, LUX-Breast 1, attempted
to add afatinib to the regimen for patients treated with che-
motherapy plus trastuzumab.68 However, the result showed
lower OS than the placebo group, and common AEs such as
diarrhea and rash were inevitable. Consequently, the potency
of afatinib needs to be investigated in further research.

Anti-HER2 Combined Therapies

PI3K/AKT/mTOR Inhibitors

In a previous statement, we learned that the PI3K/AKT/mTOR
signaling pathway plays a vital role in HER2+BC.69 By acti-
vating this pathway, cell proliferation, survival, and angiogenesis
can be promoted, suggesting that we can attempt to delay the
progression of HER2+BC by inhibiting this pathway.5

Everolimus is a type of mTOR inhibitor. Several trials have
confirmed that the application of everolimus is beneficial in
patients with HER2+BC.70 BOLERO-3 is a phase III trial,
scientists have found that the combination regimen of everolimus
plus trastuzumab and vinorelbine improved the median PFS
compared to the placebo group (7.0 months vs 5.78 months).71
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Buparlisib, an oral inhibitor of both PI3K and mTOR,
has been hailed as an exciting discovery in the field. Ne-
oPHOEBE, a phase II trial, proved that the regimen of
buparlisib plus trastuzumab and paclitaxel resulted in a
higher RR (69% vs 33%, P = .053) and apparent decline of
Ki67 (75% vs 27%) compared to the placebo group.72

PD-1/PD-L1 Inhibitors

Programmed death-1(PD-1) and programmed death-ligand 1
(PD-L1) combine to trigger immune escape and are crucial to
tumor growth.73 As a result, PD-1/PD-L1 inhibitors have
attracted considerable attention, and existing trials have shown
that PD-1/PD-L1 inhibitors are helpful in the treatment of
triple-negative breast cancer. Although there are few studies
on HER2+BC, molecular mechanisms and in vitro trials have
indicated that PD-1/PD-L1 inhibitors have modest clinical
efficacy in HER2+BC.74

Pembrolizumab is a commonly used PD-1 inhibitor, which
can reverse trastuzumab resistance by restoring T cells to
tumor cells. A phase Ib and II trial, PANACEA, indicated that
pembrolizumab plus trastuzumab is safe and effective, with
lasting clinical efficacy.75

Another inhibitor, atezolizumab (ATEZO), can combine
with PD-L1 to block the interaction between PD-L1 and B7.1.
In a phase II trial, KATE2, the regimen of ATEZO plus T-DM1
acquired longer PFS than the placebo group (8.2 months vs
6.8 months, HR = .82; 95% CI, .55-1.23; P = .33).76 Phase III
trials are ongoing to determine the advantages of ATEZO.
HER2-targeted agents have fast action and high safety, while
PD-1/PD-L1 inhibitors have slow action and lasting efficacy,
and their combination is expected to play a better role in
further research.

HER2-Targeted Vaccines

Tumor vaccines have been explored in recent years, and
HER2-targeted vaccines are considered a potential treatment
for HER2+BC.77 Based on the characterized peptide, virus,
and tumor cells, HER2-targeted vaccines can be designed in
various forms which aim at different substance. Prior clinical
trials have shown that HER2-targeted vaccines can generate
active immunity.78 Future research should focus on the de-
velopment of multi-epitope vaccines.

NeuVax, a peptide-based vaccine, has been widely in-
vestigated. Stimulation of CD8+ T cells by NeuVax promotes
cytolysis and destroys tumor cells. NeuVax is the only HER2-
targeted vaccine that has completed a phase III clinical trial
(the PRESENT trial); however, the results indicate that the
application of NeuVax might result in a high risk of
recurrence.79

AVX901 is a virus-based vaccine, which can jointly ex-
press tumor antigen and virus genes, activating helper T cells
in vivo to trigger specific cellular and humoral immune re-
sponses. Patients will not become sources of infection because

of the low toxicity of AVX901. A completed phase I trial
(NCT01526473) has certified its feasibility.80

ETBX-021 is a virus-based vaccine, which contains a
modified adenovirus 5 that is inserted into the HER2 gene. A
phase I trial (NCT02751528) has evaluated its safety and
preclinical indices.

Chimeric Antigen Receptor (CAR) T-Cell Therapy

Chimeric antigen receptor (CAR) T-cell therapy is a novel
approach for treating tumors. The mechanism involves editing
tumor-specific T cells, which may be more efficient in killing
tumor cells. It has been proven beneficial for several solid
tumors, including ovarian carcinoma and prostate cancer.81,82

Scientists have attempted to explore whether therapy is helpful
for HER2+ tumors. The phase I/II trial CAR-T-HER2
(NCT01935843) investigated the efficacy, feasibility, and
activity of CAR T-cell therapy for HER2+ advanced solid
tumors. Eleven patients were enrolled, among whom one
obtained PR and five achieved stable disease without severe
AEs.83 The safety and persistence of T-cells, as well as the
possibility of the application of CAR T-cell therapy in
HER2+BC, need to be further verified.

Conclusions and Future Perspectives

Breast cancer is a major disease burden on women worldwide.
Breast cancer can be classified into four subtypes based on IHC
parameters, with HER2+BC occupying 15%–20% of all cases.
The overexpression of HER2 can drive tumor growth and
activate downstream signaling pathways, and, as a result, is
extremely aggressive and has poor prognosis in terms of re-
currence and metastasis. HER2-targeted therapy is a powerful
strategy for the treatment of HER2+BC. The emergence of
trastuzumab has improved this dilemma; however, some ob-
stinate drug resistance and AEs associated with trastuzumab
have hindered its use. Treatment options for patients with
HER2+BC have changed dramatically due to the encouraging
results of numerous clinical trials. Pertuzumab has shown good
benefit, and patients who were considered likely to experience
recurrence could benefit from the combination of trastuzumab
and pertuzumab. Trastuzumab plus pertuzumab and taxanes
remain the first-line regimen for HER2+BC. Other antibodies,
such as ZW25, margetuximab, MM-111, MCLA-128, and
ertumaxomab, have shown greater specificity in combination
with the HER2 receptor or could bind to extra epitopes to
enhance activity and generate greater immunologic responses.
T-DM1 is an ADC authorized by the FDA as a second-line
agent after failure of a standard chemotherapy regimen. The
success of TDM-1 has led scientists to concentrate on the
production of new HER2-targeted ADCs such as DS-8201, PF-
06804103, PT-DM1, and HER2-vc0101. These ADCs differ in
affiliative antibodies, linker drugs, or payloads. It is well ac-
cepted that ADCs are taking the central stage as second-or third-
line regimens for HER2+BC. Adding small-molecule TKIs to
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the standard chemotherapy regimen, a third-line regimen,
significantly improved the prognosis of patients.

DESTINY-Breast03 was the first trial to compare two ADCs
in malignancy to change the standard regimen. The linker is
specifically split by tumor cells, which triggers the release of
membrane-permeable drug molecules. This “bystander effect” is
considered to be advantageous given the heterogeneity of HER2
expression in HER2+ tumors.47 In addition to the remarkable
outcome, the safety of DS-8201 is acceptable and the AEs are
within controllable ranges, which can be well managed by
monitoring. With rapid development, the future of HER2+BC
treatment will likely focus heavily on ADCs.

Although the abovementioned agents are of great value,
some patients may be insensitive to them or develop resis-
tance. Therefore, it is necessary to develop novel targeted
agents. Preclinical and clinical trials of PI3K/AKT/mTOR
inhibitors, PD-1/PD-L1 inhibitors, HER2-targeted vaccines,
and CAR T-cell therapy have provided possible anti-HER2
combined strategies. However, the AEs and higher treatment
costs need to be weighed by both clinicians and patients. To
improve the quality of life and maximally reduce drug toxicity,
one of the greatest challenges in the future is to discuss the best
combined sequence of these agents. The progress of HER2-
targeted therapy is challenging, but with deeper research, the
regimens for HER2+BC will gradually become more indi-
vidualized and precise.
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