
Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by 
lymphocytes, dendritic cells, and endothelium and modulated 
during inflammatory bowel disease

Thangaraj Karuppuchamy1,2, En-hui Behrens1,2, Pedro González-Cabrera3, Gor Sarkisyan3, 
Lauren Gima1,2, Joshua D. Boyer1,2, Giorgos Bamias4, Paul Jedlicka5, Marisol Veny1,2, 
David Clark1,2, Robert Peach6, Fiona Scott6, Hugh Rosen3, and Jesús Rivera-Nieves1,2

1Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San 
Diego, La Jolla, CA

2VA San Diego Healthcare System, San Diego, CA

3Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines 
Road, La Jolla, CA

4Academic Department of Gastroenterology, Laikon Hospital, Athens, Greece

5Department of Pathology, University of Colorado Health Sciences, Aurora, CO

6Receptos Inc. 3033 Science Park Road, La Jolla, CA

Abstract

The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, 

yet its mechanism of action is unknown. Here we examine the cell subsets that express S1P1 in 

intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after 

administration of DSS, after colitis induced by transfer of CD4+CD45RBhi cells and by crossing a 

mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes 

that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 

expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and 

endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 

expression, while the enzymes that control tissue S1P levels in mice and humans with IBD were 

uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 

reduced T cell velocity and induced S1P1 degradation and retention of naïve but not effector T 

cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P 

levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due 
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to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier 

function.

INTRODUCTION

Antibodies that target lymphocyte traffic (i.e. natalizumab, vedolizumab) are effective 

therapeutics for IBD1–3, yet they are expensive to produce and administer. Novel drugs that 

may be administered orally have the potential to become widely used alternatives. A recent 

trial of the selective S1P1 agonist (ozanimod) in patients with ulcerative colitis (UC)4 has 

met all primary and secondary endpoints, while a new phase 2 trial in patients with Crohn’s 

will soon begin recruiting subjects. Yet, little is known regarding the potential mechanisms 

of action of this drug, or its cellular targets in the intestine, either in UC or Crohn’s.

S1P is a pleiotropic sphingolipid metabolite with diverse physiological and immunological 

functions.5, 6 The concentration gradient of S1P between tissues (low) and blood (high) 

regulates S1P1-mediated lymphocyte egress from thymus and lymph nodes to circulation.7 

S1P signals through five G-protein-coupled receptors (S1P1-5).8, 9 S1P1, originally known as 

endothelial differentiation gene-1 (Edg-1) inhibits angiogenic sprouting and enhances cell-

to-cell adhesion by regulating VE-cadherin at endothelial junctions during embryogenesis.10 

In adult vertebrates, it regulates vascular and lymphatic permeability, astrocyte proliferation, 

neuronal protection11, lymphocyte egress and marginal B cell migration in secondary 

lymphoid organs12, 13 heart rate14, endothelial integrity15 and ischemia-reperfusion injury.16 

Thus, there is a vast array of possibilities for the mechanisms of action of compounds that 

bind and signal through this receptor.

Herein we used preclinical IBD models and intestinal biopsies from patients with IBD to 

investigate the role of the S1P pathway on the pathogenesis of the disease. First, we 

analyzed the expression of S1P1 on cells isolated from the intestine and mesenteric lymph 

nodes (MLN) and assessed the modulation of S1P1 under conditions of acute and chronic 

inflammation. Second, we analyzed the expression of key enzymes that regulate S1P levels 

in mouse models and in patients with IBD. Finally, we assessed the effect of the non-

selective agonist FTY720 on lymphocyte behavior and S1P1 expression.

RESULTS

Lymphocytes, dendritic and endothelial cells (EC) of intestinal lamina propria and MLN 
express S1P1

To identify the cellular targets for S1P1-selective agonists we assessed the surface expression 

of S1P1 on T and EC using commercial antibodies. S1P1 expression was not different, 

compared with isotype on freshly isolated cells (Fig. S1) or after culture for 24 hours in 

FBS/S1P-free media to allow receptor resensitization (data not shown). We then assessed 

S1P1 expression on cells from intestinal LP and MLN isolated from S1P1-eGFP mice17. 

S1P1 signal was readily observed on CD4, CD8, B cells, DC and EC (CD45negCD31+). 

Cells from C57BL6/J mice (without eGFP: eGFPneg) served as controls (Fig. 1A–D). 

Immunohistochemistry confirmed the expression of S1P1 on intestinal EC (which exhibited 
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the strongest signal), within the villous microvasculature and submucosal vessels (Fig. 1D1). 

The dimmer signal of T cells and DC was not visible under the same conditions. High 

endothelial venules (HEV) and lymphatics in the periphery of B cell follicles of MLN 

showed the strongest signal (Fig. 1D2), whereas the signal from lymphocytes was 

undetectable. Overall, the observed expression pattern was consistent with a role of S1P1 on 

the regulation of key cellular elements known to control such as cell traffic to and from the 

intestine, gastrointestinal associated lymphoid tissue and peripheral circulation.

Naïve and central memory CD8+T cells and subsets of effector T cells from intestine and 
MLN predominantly express S1P1

Naive (CD44negCD62L+) and CM (CD44+CD62L+) CD4+T cells in ileal LP and MLN 

showed higher median fluorescent intensity (MFI) for S1P1 compared with effector 

(CD44+CD62L−) CD4+T cells. Similarly, naïve and CM CD8+T cells showed higher S1P1 

MFI than effectors. However, CD8+T cells from LP and MLN showed higher S1P1 MFI than 

CD4+T cells isolated from the same tissue (Fig. 2A–C). In line with these ex vivo findings, 

we observed reduced S1P1 expression in splenocytes from S1P1-eGFP mice following in 
vitro activation with PMA/ionomycin or antibodies against CD3/CD28 (Fig. S2). Thus, our 

results show that naïve and CM CD8+T cells isolated from MLN exhibit the highest 

expression of S1P1.

Activated mucosal dendritic cells show high S1P1 expression

We then examined S1P1 expression on immature and activated DC subsets, based on their 

co-stimulatory molecule expression (i.e. CD40, CD80, CD86) (Fig. 2D–F). Activated DCs 

(CD40+, CD80+, CD86+) in ileal LP and MLN of WT/S1P1-eGFP mice showed 

significantly higher MFI for S1P1, compared with those immature DC with low 

costimulatory molecule expression. These results demonstrate that the state of DC 

maturation correlates with the expression of S1P1.

Subset of CD4 from MLN coexpresses high levels of S1P1 and gut homing molecules

Effector T cells that have the ability to recirculate are critical for the maintenance of 

intestinal inflammation in IBD.18 As gut tropism is mediated through the expression of 

intestinal-selective cell adhesion molecules, we hypothesized that if S1P1 participates in the 

recruitment of pro-inflammatory, effector T cells, then it should be co-expressed with these 

gut-specific factors. To test our hypothesis, we analyzed S1P1 expression on effector 

(CD62LnegCD44+) CD4 and CD8 subsets that expressed the critical gut homing molecules 

CCR9 and integrin β7. We found no significant differences in expression of S1P1 on either 

CD4 or CD8 effectors that were localized within the ileal LP. However, in the MLN the CD4 

subset with the highest expression of integrin β7 and CCR9 also showed the highest 

expression for S1P1 (Fig. S3). In contrast, only a much smaller percentage of the CD8 

within the MLN coexpressed high levels of S1P1, integrin β7 and/or CCR9. This suggests 

that there might be differences in the recirculation potential of CD4 and CD8 effectors.
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Acute inflammatory signals did not modulate S1P1 expression on T cells

We induced colitis in S1P1-eGFP mice by the administration of DSS in drinking water. 

Colitis was confirmed by weight loss, shortening of colon length at necropsy and 

histologically evident inflammation after 7 days (Fig. 3A–D). We did not observe significant 

differences in S1P1 expression between CD4+T and CD8+T lymphocytes isolated from the 

colon, MLN or blood of colitic animals compared with untreated controls (Fig. 3E, F). Thus, 

S1P1 expression on T cells is not readily responsive to acute inflammatory signals.

Surface expression of S1P1 on mucosal effector CD4+T cells is increased in mice with 
chronic colitis

Colitis was induced by transfer of Treg-depleted CD4+CD45RBhi T cells, isolated from 

S1P1-eGFP mice into Rag1−/− mice. Controls were co-transferred with regulatory T cell-

enriched CD45RBlo cells. The development of colitis was indicated by weight loss at 3 

weeks after cell transfer and confirmed by significant changes in the histological scores of 

mice transferred with CD4+CD45RBhi cells compared with controls (Fig. 4A–C). The 

frequency of CD4+T cells increased in colonic LP, MLN and blood of mice with chronic 

colitis (Fig. 4D, E) which showed higher MFI for S1P1 in all lymphoid compartments, 

compared with those co-transferred with CD4+CD45RBlo cells (Fig. 4F). Thus, unlike acute 

DSS colitis, S1P1 expression on effector T cells is modulated by chronic inflammatory 

signals.

S1P1 expression increased on T cells isolated from mice with chronic ileitis

To further examine the role of chronic inflammation on S1P1 expression in mice with an 

intact immune system, we generated TNFΔARE/S1P1-eGFP mice (referred to as 

TNFΔARE) by crossing heterozygous TNFΔARE (TNFΔARE/+/S1P1
wt/wt) with 

S1P1
eGFP/eGFP (referred to as WT) mice. The intensity of S1P1 expression was higher only 

on naïve CD4+T cells and naïve and central memory CD8+T cells isolated from the ileal LP 

of TNFΔARE/S1P1-eGFP mice. By contrast in the MLN all CD8 subsets (naïve, effector, 

CM) as well as naive and effector CD4+T cells showed significantly higher MFI for S1P1 

compared with uninflamed mice (Fig. 5A, B). There was a significant increase in the 

number of CD11chi/MHCIIhi DC in ileal LP, MLN and spleen (***p<0.001; *p<0.05 and 

*p<0.05, respectively) of TNFΔARE/S1P1-eGFP mice compared with WT mice (Fig. 5C) 

and the expression of S1P1 was significantly higher in DC from all compartments compared 

with those of uninflamed WT counterparts.

Endothelial S1P1 expression was also increased in TNFΔARE mice, where there were 

numerous S1P1-expressing microvessels throughout the intestinal submucosa and muscularis 

(Fig. 5D). Increased S1P1 eGFP signal likely reflects the altered vascular density in the 

inflamed ileal mucosa of TNFΔARE mice (Video S1, S2) and suggest that S1P1 is 

modulated by chronic inflammatory signals not only on T cells, but also on EC.

The enzymatic pathways that control tissue S1P levels are similarly dysregulated in 
intestinal tissues from mouse models and human IBD

We then compared the mRNA expression of critical enzymes that phosphorylate sphingosine 

(kinases: Sphk1, Sphk2), dephosphorylate S1P (phosphatases: Sgpp1, Sgpp2), degrade S1P 
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(lyase, Sgpl1), as well as of the transporter that transfers S1P from intracellular to 

extracellular compartments (Spns2) in uninflamed and inflamed intestine from mice and 

humans. We observed a uniform pattern of dysregulation, in which mRNA expression of 

inducible sphingosine kinase-1 was upregulated, while kinase-2 was downregulated. Both 

phosphatases were often downregulated, while mRNA for the transporter was increased in 

most preclinical models and human IBD (Fig. 6). This pattern of dysregulation suggests 

alterations in the S1P gradient between intestine, lymph nodes and blood, which may serve 

as a retention signal within intestine.

FTY720 decreases the velocity of MLN T cells and differentially alters the proportion of 
circulating lymphocytes in ileitic mice

To examine the effects of S1PR agonists on lymphocyte behavior within MLN, we imaged 

MLN explants of TNFΔARE mice that had received T cells from DsRed mice, before and 

after administration of FTY720-P. T cell velocity decreased after addition of FTY720-P 

within MLN (Fig. 7A) and the directionality of the cell movement was also altered.

TNFΔARE/S1P1-eGFP mice treated with FTY720 for 6 weeks exhibited peripheral 

lymphopenia, with lower number of blood CD4+T cells (**p<0.01), CD8+T cells (**p<0.01) 

and B220+ cells (***p<0.001) compared with vehicle-treated controls (data not shown). The 

lymphopenic effect was greater on circulating naïve and central memory CD4 and CD8 than 

on effectors (Fig. 7B). In addition, the MFI for S1P1 on CD4+T cells; CD8+T cells and 

B220+ and endothelial cells were significantly lower in TNFΔARE/S1P1-eGFP mice after 

FTY720 treatment, compared with vehicle-treated controls (Fig. 7C). As the GFP tag is at 

the carboxy terminus, the decreased S1P1 signal is not due to internalization but due to S1P1 

degradation. Taken together, these results show that S1PR agonists alter cell behavior within 

the MLN, predominantly decrease naïve and CM T cell subsets from circulation and induce 

degradation of the receptor on lymphocytes and EC.

DISCUSSION

The dual efficacy of alpha-4 integrin blockade (Natalizumab) in multiple sclerosis (MS) and 

Crohn’s has set a precedent for parallel trafficking mechanisms between these immune-

mediated diseases. The therapeutic efficacy of S1PR agonists in MS and UC might represent 

the next example of shared pathogenetic mechanisms. FTY720, a small-molecule agonist of 

S1P1,3,4,5 was the first oral drug for the treatment of MS,19 while ozanimod, an S1P1-

selective agent, has shown efficacy in patients with UC.4 Thus, it is worthwhile to examine 

the role of the S1P pathway during immune cell traffic to the chronically inflamed intestine. 

Here, we show that naïve and central memory and subsets of gut homing effectors 

(particularly CD8+) T cells, activated DC and EC express S1P1. Although acute 

inflammatory signals did not increase S1P1 expression on T cells, chronic inflammatory 

signals upregulated S1P1, not only on T cells, but also on endothelium. We found a very 

similar pattern of dysregulation of the enzymes that control tissue S1P levels in inflamed 

mouse and human intestine, with induction of S1P synthesis and suppression of degradation, 

which suggests that S1P levels in the intestine are altered. FTY720 promoted S1P1 
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degradation and predominantly depleted naïve and central memory T cells from circulation, 

while effector T cells mobilized to the periphery.

In the past, even the basic characterization of cell subsets that express S1P receptors has 

been challenging, as these receptors internalize upon ligand binding, where they may be 

degraded or recirculate back to the cell surface.20 Technical aspects are further complicated 

by the lack of reliable reagents. Indeed, a commercially available anti-S1P1 antibody did not 

detect differences in antibody binding on any cell type.

Antibodies that target alpha-4 integrins, such as vedolizumab and natalizumab ameliorate 

IBD by interfering with the traffic of antigen-experienced gut-homing effector T cells, which 

are recruited to the intestine at postcapillary venules. Yet effector cells lack L-selectin 

(CD62L), which has been linked to S1P1 expression.21 Interestingly, we observed that 

although L-selectin-expressing naïve and central memory CD4+T and CD8+T cells 

expressed S1P1, there were subsets of effectors CD4+ and CD8+ within the MLN that also 

exhibited high S1P1 expression. Interference with recruitment of gut-homing effector (rather 

than naïve) T cells at postcapillary venules is most in line with the mechanism of action of 

natalizumab and vedolizumab. Consistent with a potential role for S1P1 at this level, we 

observed S1P1-expressing microvessels localized to submucosal areas. In MLN S1P1 was 

predominantly observed within HEV-like structures within germinal centers and surrounding 

T cell zones of MLN, consistent with its known role on naïve T cell traffic. This pattern of 

expression within key cellular mediators of leukocyte recruitment to intestine and associated 

lymphoid tissues suggests that the S1PR agonists might act though additional mechanisms, 

beyond naïve T cell retention within thymus and lymph nodes.

S1P plays a role on the migration of DC from skin and lung to draining lymph nodes22, 23 

and that of mature bone marrow DCs via S1P3.6, 24 Activated DCs migrate to lymph nodes 

to initiate T cell and B cell responses, based upon the cues obtained from the environment. 

CD80 (B7.1) and CD86 (B7.2) expressed by activated DCs are critically important for 

initiation of T cell responses, 25 as well as the CD40/CD40L pathway which also 

participates in T cell priming and differentiation 26, thus expression of these molecules is 

reflective of their state of maturation. While within T cells, the naïve subset were 

predominant expressors of S1P1, it is the activated DCs that had the most S1P1 expression. 

This pattern is consistent with a potential role for S1P1 on the migration of activated DC 

from LP to MLN, enabling critical encounters with naïve T cells. Modulation of DC-T cell 

encounters represents an additional potential point of control for S1PR agonists in IBD.

In the gut, S1P1 downregulation is required for the establishment of tissue residence, 

particularly of CD8 subsets.21 However, the clinical evidence suggests that there is also a 

pathogenically relevant recirculating T cell pool, as blockade of α4β7-MAdCAM-1 

interactions offers clear therapeutic benefit in IBD.1, 2 While the differences in S1P1 

expression on subsets of gut-homing molecule-expressing effectors (CD44+/CD62Lneg) 

within intestine were negligible, within the MLN, the majority of the CD4 with high surface 

expression of CCR9 and integrin β7 also had the most total S1P1, suggesting that these cells 

might be poised to recirculate. By contrast, within the CD8, those that exhibited high S1P1 

had the least surface gut homing receptors. This might account for differences in the relative 
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trafficking abilities of T cells, with the majority of effector CD4 but only a minority of CD8+ 

effectors being poised to recirculate.

The present study provides insight into the regulation of S1P1 expression by inflammatory 

signals. On the one hand, chemical injury to the colonic mucosa, which induces an acute 

inflammatory response and is primarily mediated by innate immunity, did not affect S1P1 

expression on colonic T cells, despite the presence of severe acute inflammation. On the 

other hand, chronic inflammatory signals demonstrate a strong inductive effect on effector 

CD4+T cell S1P1 expression, following development of chronic colitis induced by transfer 

of Treg-depleted CD4+T cells. However, this more representative model of human IBD still 

lacks the complexity of an intact immune system, as Rag−/− mice are devoid of functional 

CD8 and B cells, even after CD4 reconstitution. TNFΔARE mice bear a deletion of the 

AAUU-rich region of the TNF gene and develop chronic Crohn’s-like transmural ileitis and 

arthritis27 that lasts throughout the animal’s lifetime. By crossing TNFΔARE mice with 

S1P1-eGFP mice we were able to comprehensively assess S1P1 expression on relevant 

intestinal immune cell subsets. 9, 28 We observed increased T cell recruitment into the ileal 

LP and MLN of TNFΔARE/S1P1-eGFP mice and S1P1 expression increased on several 

CD4+ and CD8+ subsets within inflamed ilea and most T cell subsets isolated from MLN. 

S1P1 was similarly upregulated on DC isolated from ilea, MLN and spleen of inflamed mice 

and S1P1-expressing microvessels were abundant in inflamed ilea of TNFΔARE/S1P1-eGFP 

mice, particularly in the region of postcapillary venules. The role of S1P on vascular 

integrity is well-known and genetic deletion of S1P1 results in colonic vascular 

fragility.29, 30 It is conceivable that administration of S1PR agonists may exert functional 

effects at the level of the postcapillary venules, such as tightening the barrier or 

downregulating endothelial integrin ligands (e.g. MAdCAM-1, VCAM-1). Indeed, most 

effective IBD therapies are known to act through more than a single mechanism.

Further control of the S1P system takes place at the level of enzymatic regulation of its 

tissue concentration. Once again, chronic inflammatory signals appear to be important 

determinants, as we observed an almost uniform pattern of expression in both preclinical 

models and patients with IBD. Different from the effects on S1P1 expression, enzyme 

dysregulation was observed even during acute colitis. In particular, the inducible sphingosine 

kinase-1 (Sphk1) and the intra- to extracellular S1P transporter, Spinster homolog 2 (Spns2) 

were upregulated, whereas the degrading enzymes (S1P lyase1: sgpl1 and phosphatases: 

sgpp1, 2) were downregulated. Cyster and colleagues had shown that just reducing lyase 

activity increased tissue S1P levels, thus this expression pattern likely results in alterations 

of the tissue to blood S1P gradient,7 which may promote lymphocyte retention within 

inflamed tissues. As expected, FTY720 induced marked lymphopenia and induced S1P1 

degradation on lymphocytes and EC, predominantly altered the percentage of naïve and 

central memory CD4+ and CD8+ T cells, while unexpectedly increasing the percentage of 

effector T cells in peripheral blood. We speculate that functional antagonists such as 

FTY720 and ozanimod that induce S1P1 degradation may therefore promote escape from 

S1P-mediated retention and mobilization of critical gut homing CD4+ effectors. Once in 

circulation the lack of survival signals may result in apoptosis of pathogenic gut homing T 

cells and decreased inflammation.
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FTY720 sequesters lymphocytes within lymph nodes, presumably preventing them from 

reaching sites of inflammation in immune-mediated diseases.11, 12 Previous studies had 

shown that FTY720 prevented inflammation in the DSS-induced and the CD4+CD62L+ T 

cell transfer model of colitis.31 It also ameliorated IL-10−/−32, CD45RBhi33, and oxazolone 

colitis34 but not TNBS-induced colitis.35 An antibody against S1P1 prevented T cell 

chemotaxis towards S1P36 arguing for the popular T cell centric mechanism of action of 

S1PR agonists.

Although ozanimod’s selectivity for S1P1 may be advantageous over FTY720, a previous 

trial of another S1P1-selective agonist (KRP-203) was discontinued early due to a lack of 

clinical response in UC (www.novctrd.com). KRP-203 had previously shown to attenuate 

chronic colitis in IL-10 deficient mice,37 a model considered to be representative of human 

UC. It is tempting to speculate that this might be due to inherent differences in the 

compound’s pharmacological properties or due to small sample size or premature 

assessment of trial endpoints. The anti-inflammatory effects of all anti-trafficking strategies 

improve with time, perhaps due to the long lives of effector lymphocytes, while most clinical 

trial endpoints continue to be assessed between 6–8 weeks, likely based on our experience 

with TNF inhibitors.

In conclusion, based on the expression of S1P1 and the functional effects of S1PR agonists 

on lymphocytes, DC and endothelium we envision a tripartite mechanism of action for these 

family of drugs. Such mechanism may combine the retention of naïve T cells at secondary 

lymphoid organs with the mobilization of effector T cells from intestine and subsets of 

activated DC to inductive sites, as well as the modification of endothelial barrier function, 

with a resultant net effect of attenuation of intestinal inflammation.

METHODS

Mice

Edg-1eGFP/eGFP mice, hereafter referred to as S1P1-eGFP mice, developed as described17 

were used as controls and for the induction of acute colitis by DSS. Rag1−/− mice 

(B6.129S7-Rag1tm1Mom/J), DsRed mice (005441; 00Tg(CAG-DsRed*MST) 1Nagy) were 

purchased from Jackson (Bar Harbor, ME). The B6.129S-Tnftm2Gkl/Jarn (TNFΔARE) strain 

was previously described.27, 38 TNFΔARE mice were crossed with S1P1-eGFP+/+ transgenic 

mice17 to generate TNFΔAREΔARE/+/S1P1-eGFP+/+ mice. Institutional Animal Care and 

Use Committees (IACUC) of the University of California San Diego and The Scripps 

Research Institute approved all the animal procedures.

Tissue fixation, paraffin embedding & histological scoring

Tissues were prepared as described and severity of inflammation assessed in a blinded 

fashion by a pathologist (Paul Jedlicka). 39, 40

Cell isolation

Spleen, MLN and lamina propria (LP) mononuclear cells were isolated as previously 

described.9
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Flow cytometry

Cells from indicated compartments were suspended in 1X phosphate buffered saline (PBS) 

with 2% fetal bovine serum (FBS), supplemented with Fc block and stained with anti-mouse 

antibodies against S1P1 (713412) (R&D Systems, MN, USA); CD4 (RM4-5), CD62L 

(MEL-14), CD44 (IM7), CD11b (M1/70), CD31 (MEC13.3), CD80 (16-10A1), CD40 

(3/23), β7 (FIB504), CD45RB (C363-16A) (Biolegend, San Diego, CA), CD8 (53-6.7), 

B220 (RA3-6B2), CD45 (3-F11), MHCII (M5/114.15.2), CD11c (N418), CD86 (GL1), 

CD103 (2E7), CCR9 (eBioCW-1.2) (eBioscience, San Diego, CA) or corresponding isotype 

controls. Cells were washed twice and fixed in BD stabilizing fixative (BD Biosciences, San 

Jose, CA). Flow cytometry analyses were performed using a Cytek DxP8 (Cytek, Fremont, 

CA). Data was analyzed using FLOWJO software (Tree Star Inc.).

RNA extraction, cDNA synthesis, and real-time PCR

Total RNA was isolated using RNeasy Kit (Qiagen, Valencia, CA, USA). RNA (500 ng) was 

reverse-transcribed with a high-capacity cDNA archive kit (Applied Biosystems, Foster City, 

CA, USA). Real-time qRT-PCR assays for SPHK1 (Hs00184211_m1), SPHK2 

(Hs00219999_m1), SGPL1 (Hs00393700_m1), SGPP1 (Hs00229266_m1), SGPP2 

(Hs00544786_m1), SPNS2 (Hs01390449_g1), Sphk1 (Mm00448841_g1), Sphk2 

(Mm00445021_m1), Sgpl1 (Mm00486079_m1), Sgpp1 (Mm00473016_m1), Sgpp2 

(Mm01158866_m1) and Spns2 (Mm01249324_m1) were performed using TaqMan 

Universal Master Mix (Applied Biosystems) with GAPDH/gapdh as endogenous controls. 

Relative gene expression was calculated using the comparative CT(ΔΔCT) quantitation 

method with Applied BioSystems StepOne Software v2.3.

Immunohistochemistry and imaging

Tissues were fixed in Z-fix (Anatech, LTD) and placed into 30% sucrose/PBS for 48 h at 

4°C. Five to seven μm OCT frozen sections were permeabilized, blocked in 5% normal goat 

serum-PBST, washed and incubated overnight at 4°C with anti-GFP (Abcam, ab6556) 

primary at 1:100 diluted in PBST-1% normal goat serum. Sections were washed and 

incubated with secondary (Life Technologies; 1:1,000) and DAPI nuclear stain (Life 

Technologies, 1:10,000) prior to mounting on Vectashield (Vector Laboratories). Images 

were obtained using an Olympus BX51 microscope with MetaMorph (Molecular devices, 

CA) software.

Inflamed and normal ilea of TNFΔARE/S1P1-eGFP mice and S1P1-eGFP controls were 

imaged. Freshly prepared ileal sections were adhered (VetBondTM, 3M) to a reservoir of 

95% O2/5% CO2 superfused RPMI, were imaged by 2-photon microscopy as reported.41, 42 

Image volumes of 600 μm × 600 μm × 150 μm were obtained with a Leica SP5 confocal 

microscope and processed with Imaris (Bitplane).

Induction of acute colitis by dextran sulfate sodium

10-week-old S1P1-eGFP mice received 3% dextran sulfate sodium (DSS) in the drinking 

water for 7 days. Weight loss was monitored daily and tissues were collected at day 7.
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Two-photon intravital microscopy

Cells were isolated from lymph nodes and spleen of DsRed mice, sorted using Dynabeads 

Mouse Pan T (11443D, ThermoScientific) according to the manufacturer’s protocol and 

injected (5 × 106 T cells) retro-orbitally. Cell behavior was analyzed 16 hours later in MLN 

explants by 2-photon microscopy as reported41, 42, before and after FTY720-P.

FTY720 treatment studies

FTY720 (3 mg/kg) or vehicle (control) was administered intraperitoneally to 10- to 12-

week-old TNFΔARE/S1P1-eGFP mice every other day for 6 weeks.

CD45RBhi adoptive transfer colitis studies

CD4+ splenocytes from S1P1-eGFP mice were enriched using magnetic beads (Miltenyi 

Biotec, San Diego, CA), according to the manufacturer’s protocol. CD4+CD45RBhi/

CD25neg cells and CD4+CD45RBlo cells were FACS-sorted and 2×105 CD4+CD45RBhi 

cells transferred into 8-week-old Rag1−/− mice. Control mice additionally received 1×105 

CD4+CD45RBlo cells. Tissues were harvested once the colitic group lost 10% of their initial 

body weight.

Statistical Analysis

Results are expressed as mean ± SEM unless otherwise indicated. Data were analyzed using 

GraphPad Prism 5 (GraphPad Software, Inc.). Significant differences between individual 

groups were calculated using two-tailed unpaired t test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression of S1P1 on T, B, dendritic and endothelial cells
(A, B) Flow cytometry gating strategy (left panels) and S1P1-eGFP signal of CD4+T, CD8+T 

and B cells isolated from ileal LP and MLN of S1P1-eGFP mice. Representative histograms 

(right panels) from indicated cell subsets. (C) Flow cytometry analyses of DC (CD11chi 

MHC IIhi) gated as shown, isolated from ileal LP and MLN of S1P1-eGFP mice. 

Representative histograms. (D) Flow cytometry analyses of endothelial cells 

(CD31+CD45neg) isolated from ileal LP (upper panels) of S1P1-eGFP mice. 

Immunohistochemical localization of S1P1 in ileum (D1) and on high endothelial venules 

and lymphatics of MLN (D2). Representative plots and images from three or more 

independent experiments, n≥3 or more mice/group.
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Figure 2. Expression of S1P1 is higher on naïve, central memory CD8+T cells and activated 
dendritic cells
(A) Gating strategy for naïve (CD44−CD62L+), effector (CD44+CD62L−) and central 

memory (CM: CD44+CD62L+) CD4+ and CD8+ T cells isolated from ileal LP and MLN of 

S1P1-eGFP mice. (B, C) MFI and representative histograms for S1P1 expression by naïve, 

effector and CM CD4+ and CD8+ T cells from indicated compartments. (D) Gating strategy 

for DC (CD11chigh/MHCIIhigh) isolated from the ileum and MLN of S1P1-eGFP mice and 

gated further based on their costimulatory molecule (CD40, CD80 and CD86) expression. 

(E, F) MFI and representative histograms for S1P1 expression by activated DC (CD40+, 

CD80+ and CD86+), compared with that of CD40−, CD80− and CD86− DC. *p<0.05, 

**p<0.01, ***p<0.001 by two-tailed t test. Data are shown as mean ± SEM, n=3 mice/group 

and representative histograms from three independent experiments.
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Figure 3. Acute inflammation did not modulate the expression of S1P1 on T cells
S1P1-eGFP mice were treated with 3% DSS or H2O (vehicle) for 7 days. (A, B) Weight loss 

curves and shortening of colon length (mm) of mice receiving DSS or H2O. (C) Histological 

inflammatory indices in colon of mice treated with DSS or H2O. (D) Representative 

micrographs of colon of S1P1-eGFP mice treated with DSS or H2O. (E) Flow cytometric 

analysis of CD4+T and CD8+T cells isolated from colonic LP of S1P1-eGFP mice treated 

with DSS or H2O. (F) Bar graph represents MFI for S1P1 expression by CD4+T and CD8+T 

cells from colonic LP, MLN and blood of S1P1-eGFP mice treated with DSS or H2O. 

Representative histograms. Scale bar, 200 μm. Shaded histograms are control for eGFP 

(eGFP-); line and dashed histograms are from DSS- and H2O-treated mice respectively. Data 

are shown as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 by two-tailed t test, n=5 mice/

group.
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Figure 4. Chronic inflammation upregulated S1P1 on adoptively transferred T cells after 
development of colitis
CD4+CD45RBhi cells from S1P1-eGFP mice were adoptively transferred into Rag1−/− mice. 

Control group was co-transferred with CD4+CD45RBlo cells. (A) Weight loss curve 

suggests development of colitis after 3 weeks post cell transfer. (B, C) Histological 

assessment of colon confirmed development of colitis compared with co-transferred 

controls. (D) Gating strategy for effector CD4+T cells isolated from colon of mice with and 

without colitis. (E) Percentage of effector CD4 in mice with and without colitis. (F) MFI for 

S1P1 expression by effector CD4+T cells in colon, MLN and blood in mice with and without 

colitis. Representative histograms. Data are shown as mean ± SEM. *p<0.05, **p<0.01, 

***p<0.001 by two-tailed t test, n=4 mice/group.
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Figure 5. Chronic inflammation modulated S1P1 expression on T, dendritic and endothelial cells 
of TNFΔARE mice
(A, B) Naïve (CD44−CD62L+), effector (CD44+CD62L−) and central memory (CM: 

CD44+CD62L+) CD4+ and CD8+ T cells were isolated from ileal LP and MLN of S1P1-

eGFP (WT) and TNFΔARE/S1P1-eGFP (TNFΔARE) mice and gated as shown. Bar graph 

represents MFI for S1P1 expression by total, naïve, effector and central memory CD4+T and 

CD8+T cells from ileum LP and MLN of TNFΔARE/S1P1-eGFP mice compared with S1P1-

eGFP mice. Representative histograms. (C) Absolute counts of DC (CD11chi MHCIIhi cells) 

from ileal LP, MLN and spleen of TNFΔARE/S1P1-eGFP mice compared with S1P1-eGFP 

mice. MFI for S1P1 expression by DC in indicated tissues of S1P1-eGFP and 

TNFΔARE/S1P1-eGFP mice. Representative histograms. (D) Immunohistochemistry and 

three-dimensional reconstruction of ileum for S1P1 expression in mice with and without 

ileitis. Data are shown as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 by two-tailed t test, 

n=5 mice/group.
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Figure 6. Inflammation alters the expression of enzymes that regulate tissue S1P levels
Analyses of mRNA expression of enzymes that control S1P levels (Sphk1, sphingosine 

kinase 1; Sphk2, sphingosine kinase 2; Sgpl1, sphingosine-1-phosphate lyase; SGPP1, 

sphingosine-1-phosphate phosphatase 1; SGPP2, sphingosine-1-phosphate phosphatase 2; 

Spns2 (Spinster homolog 2) was performed by real-time qRT-PCR on intestinal tissues from 

mice and humans with IBD, compared with respective normal controls,

(A) Patients with and without ulcerative colitis (n=8/group),

(B) Patients with and without Crohn’s disease (n=8/group),

(C) Mice treated with DSS or vehicle (H2O) (n=4/group),

(D) Mice with (CD45RBHi) or without (CD45RBHi+Lo) T cell transfer colitis (n=4–6/

group),

(E) Uninflamed AKR and SAMP1/YitFc with spontaneous ileitis (n=7/group) and

(F) Normal C57BL/6 and ileitic TNFΔARE (n=9/group). Data are shown as mean ± SEM. 

*p<0.05, **p<0.01, ***p<0.001 by two-tailed t test.
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Figure 7. FTY720 reduced velocity of MLN lymphocytes, depleted naïve and central memory T 
cells from circulation and downregulated S1P1 expression on T, B and endothelial cells in mice 
with chronic ileitis
(A) Sorted T cells from DsRed mice were transferred into TNFΔARE mice. 16 hours later, 

the effect of FTY720-P on cell behavior was analyzed via intravital microscopy in MLN 

explants. Cell tracks from point of origin illustrate directional movement after FTY720-P or 

vehicle. Analyses show the effect of FTY720-P on cell velocity (data from 3 experiments, 

S.D.****p<0.0001).

(B) Percentage of circulating naïve, effector and central memory T cells in blood of 

TNFΔARE/S1P1-eGFP mice treated with FTY720 (3 mg/kg) or vehicle for 6 weeks.

(C) S1P1 expression (MFI) of CD4+T cells, CD8+T cells and B cells (B220+) from blood, 

endothelial cells (CD45− CD31+) isolated from ileal LP of TNFΔARE/S1P1-eGFP mice 
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treated with FTY720 (3 mg/kg) or vehicle for 6 weeks. (Data from 3 independent 

experiments, n=5, *p<0.05, **p<0.01, ***p<0.001 by two-tailed t test)
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