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Liver cancer is the second most lethal cancer in the world with limited treatment options. Hepatocellular
carcinoma (HCC), which accounts for more than 80% of all liver cancers, has had increasing global in-
cidence over the past few years. There is an urgent need for novel and better therapeutic intervention
for HCC patients. The JAK/STAT signaling pathway plays a multitude of important biological functions
in both normal and malignant cells. In a subset of HCC, JAK/STAT signaling is aberrantly activated, lead-
ing to dysregulation of downstream target genes that controls survival, angiogenesis, stemness, immune
surveillance, invasion and metastasis. In this review, we will focus on the role of JAK/STAT signaling in
HCC and discuss the current clinical status of several JAK/STAT inhibitors.
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Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second most common cause
of cancer-related deaths worldwide [1]. The global incidence of HCC has been increasing, with an estimated range
of 600,000–800,000 new cases occurring annually [2–4]. HCC is a highly heterogenous disease with multiple risk
factors and etiologies, including chronic hepatitis B or hepatitis C virus (HBV/HCV) infections, excessive alcohol
consumption, aflatoxin exposure and diabetes or obesity-related metabolic syndromes, that vary depending on the
geographic distribution [5]. Generally, the dominant risk factors for HCC in high incidence rate countries such
as those in Asia and Africa are HBV infections and aflatoxin B exposure, whereas HVC virus infections, alcohol
consumption and metabolic syndromes are more important risk factors in low incidence regions, which include
countries in Europe, North and South America and the Middle East [6,7]. Nevertheless, about 70–80% of HCC
cases develop from a background of liver cirrhosis, with a median time to development of 10 years [8–10]. The
underlying diseased/cirrhotic liver contributes to the poor prognosis/high mortality of many HCC patients, along
with the difficulty of early diagnosis and a lack of effective late-stage treatment options.

Currently, the types of interventions available for treatment of HCC vary depending on the stage of the disease.
Early-stage HCC patients are amenable for potentially curative treatments, such as surgical resection and liver
transplantation, while patients with intermediate stage HCC are often given locoregional therapies, which include
radiofrequency ablation, transarterial chemoembolization and radioembolization [11]. Unfortunately, many HCC
cases often present at advanced and unresectable stages and systemic therapy is usually the only viable option for such
patients [12,13]. Currently, the clinical standard of care systemic treatment for advanced HCC is the small molecule
inhibitor sorafenib, a multi-kinase inhibitor targeting RAF, VEGFR 2, VEGFR 3, PDGFRβ, c-KIT, FLT-3 and
RET [14,15]. Since its approval by the US FDA in 2007, sorafenib has been the sole systemic drug for HCC for more
than a decade. However, in recent years, several other drugs have also been approved for advanced HCC, including
lenvatinib (an alternative first-line treatment), regorafenib, cabozantinib and ramucirumab (second-line treatments
for sorafenib-refractory patients) [16–19]. Lenvatinib, regorafenib and cabozantinib are multi-kinase inhibitors, like
sorafenib, whereas ramucirumab is a monoclonal antibody against VEGFR2. Important targets of lenvatinib include
VEGFR 1-3, FGFR 1-4, PDGFRα, RET and c-KIT; for regorafenib, VEGFR 1-3, PDGFRβ, FGFR 1, c-KIT,
RET and B-RAF; and for cabozantinib, VEGFR 1-3, MET and AXL.
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Figure 1. JAK/STAT signaling pathway overview. (1) Ligands such as cytokines and growth factors bind to
transmembrane receptors, activating receptor-associated JAKs. (2) JAKs phosphorylate cytoplasmic tails of receptors,
(3) recruiting STATs to the receptor and become phosphorylated by JAKs. (4) Activated STATs dimerize and (5)
translocate into the nucleus where they bind to DNA and (6) activate transcription of target genes such as those
involved in regulating cell growth.

Nevertheless, while these drugs have shown clinical benefits, the improvements in patient survival and outcome
remain marginal [5]. The effectiveness of these treatments has also been hampered by the development of drug
resistance and underlying liver dysfunction [12,20]. Even for curative treatments, disease recurrence represents a major
drawback, with a 5-year incidence rate of over 70% [21]. These factors explain why HCC remains a highly difficult
cancer to treat. Hence, there is an urgent need to develop better therapeutic strategies, especially for advanced HCC
patients. In this regard, given the multitude of molecular signaling pathways that contribute to HCC development,
targeted therapy based on identification and understanding of these molecular mechanisms provides a promising
alternative/approach for treatment of HCC.

JAK/STAT signaling pathway
Aberrant activation of various intracellular signaling pathways involved in cell growth, differentiation, apoptosis and
survival have been found to contribute to HCC development and progression [22,23]. These include known oncogenic
signaling pathways such as Wnt/β-catenin pathway, PI3K/Akt/mTOR pathway, Ras/Raf/MAPK pathway and
JAK/STAT pathway [23].

The JAK/STAT signaling pathway plays important roles in many cellular functions, including cell proliferation,
stem cell maintenance and differentiation as well as modulation of the immune/inflammatory response [24].
JAK/STAT signaling has also been reported to regulate liver regeneration and gluconeogenesis [25]. The JAK/STAT
pathway can be activated by various cytokines and growth factors, such as interleukins, interferons and EGF family
members, which bind to their respective transmembrane receptors. The cytoplasmic tails of some of these receptors
are associated with Janus kinases (JAKs) that become activated upon ligand-induced conformational change of
the receptors. These activated JAKs then phosphorylate tyrosine residues on the cytoplasmic tail of the receptor,
creating docking sites for a family of signal transducers and activators of transcription, known as STATs. Upon
binding to the receptor, these STATs are phosphorylated by JAKs, become activated and form dimers, which then
translocate to the cell nucleus. Subsequently, the STAT dimers recognize and bind to specific promoter sequences
to activate transcription of their target genes, for example, CCND1, BIRC5 and Mcl-1 (Figure 1) [26].
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Figure 2. Schematic structures of JAK and STAT proteins. (A) JAK proteins contain a FERM domain that associates
with receptors, a SH2 domain that binds phosphorylated tyrosine residues and two kinase domains JH1 and JH2.
Arrowheads indicate phosphorylation sites (tyrosine residues) required for JAK activation. (B) STAT proteins contain a
coiled coil domain for dimerization, a DBD, a SH2 domain and a TAD for transcriptional activation of target genes.
Arrowheads indicate the conserved tyrosine residue that needs to be phosphorylated for STAT activation. N and C
represents the amino- and carboxy-terminal ends respectively.
DBD: DNA-binding domain; TAD: Transactivation domain.

In humans, there are four members in the JAK family – JAK1, JAK2, JAK3 and TYK2. The JAK proteins
contain two adjacent kinase domains that serve different functions (Figure 2A). JH1 domain performs the typical
phosphorylation of STATs and receptors, while the JH2 domain regulates JH1 [24]. Additionally, JAKs also contain
a FERM domain (4.1 protein, ezrin, radixin and moesin) that is responsible for interacting with receptors and a
SH2 (Src homology 2) domain that binds to phosphorylated tyrosine residues [27,28].

The human STAT protein family comprises of seven members: STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B and STAT6. These proteins share several functional domains, including the SH2 domain, which recognizes
phosphorylated tyrosine residues on the receptors, and activated STAT proteins, and a coiled-coil domain, which
enables dimerization of activated STATs as well as interaction with other proteins (Figure 2B) [27]. In addition to
binding to DNA, the DNA-binding domain is also involved in nuclear translocation of STAT dimers. STATs also
contain a C-terminal transactivation domain necessary for activation of transcription.

Homeostatic regulation of JAK/STAT signaling is mediated by negative regulators that work at multiple levels
of the pathway. These include phosphatases that remove phosphate groups from JAKs and STATs, some SOCS
proteins that can competitively bind to receptor binding sites of STATs and can target JAK/STATs for proteasomal
degradation, as well as protein inhibitors of activated STAT (PIAS), which prevents DNA binding and nuclear
translocation of STATs [24,29]. As transcription of SOCS genes are regulated by STATs, this negative feedback loop
provides an additional level of control over the pathway and ensures that activation of JAK/STAT signaling is
transient.

While the JAK/STAT pathway appears relatively simple compared with other intracellular signaling pathways,
the diversity of ligands and receptors that can activate the pathway as well as the relationship between different JAKs
and STATs contribute to its complexity and the range of cellular responses. For example, STAT3 and STAT5A/B
have been found to promote cancer progression while STAT1 has tumor suppressive effects [24,30].

Many studies have shown that the JAK/STAT pathway is often deregulated in cancer, including HCC. In fact,
STAT3 was reported to be constitutively active in up to 60% of the HCC cases [31]. An increase in inflammatory
signaling, growth factor stimulation, oxidative stress and epigenetic silencing of SOCS genes were some of the
contributing factors for the upregulated JAK/STAT signaling [31]. Furthermore, 9% of HBV-related HCC cases
contained missense mutations in JAK1, which were found to increase phosphorylation of JAK1 and STAT3,
allowing cytokine-independent growth [32].

The role of STAT3 in HCC
STAT3 is generally accepted as a bona fide oncogene in promoting HCC development. Activation of STAT3 as a
transcription factor leads to the expression of several genes which contribute to the various hallmarks of cancer,
highlighting the essential role of STAT3 in HCC (Figure 3).
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Figure 3. The role of STAT3 in hepatocellular carcinoma. The regulation of target genes and proteins by STAT3
promotes the progression of hepatocellular carcinoma by contributing to key hallmarks of tumorigenesis. Shown in
green are genes and proteins which are upregulated while genes in red are inhibited by STAT3 activation.

STAT3 in survival & proliferation
The oncogenic and proliferative potential of STAT3 was first reported in 1999 [33]. Cells with constitutively
activated STAT3 express higher levels of CCND1, which drives cell cycle progression from the G1 to S phase [33].
The pharmacological inhibition of the JAK2/STAT3 pathway has shown a marked downregulation of CCND1
and growth arrest at the G0/G1 phase in HCC cell lines [34]. The proliferative properties of STAT3 were also
observed in vivo. Nude mice injected with cells harboring STAT3 clones grew tumors at the site of injection
as opposed to STAT3-negative cells [33]. Similarly, the introduction of STAT3-specific short-hairpin RNA in
diethylnitrosamine-induced HCC mice models failed to induce tumor development, supporting the oncogenic
role of STAT3 in HCC [35]. Conversely, the inhibition of STAT3 activity via antisense oligonucleotides (ASOs)
successfully mitigated tumor growth, leading to a reduction in tumor volume and doubling of survival time in
orthotopically-implanted HCCLM3 mice models of HCC [36].

In addition, STAT3 is known to drive the expression of anti-apoptotic genes such as BCL2, BCL2L1, BIRC5
and MCL1 [37–40]. Simultaneously, STAT3 inhibits the expression of pro-apoptotic proteins such as TP53, BAX
and CHOP [41,42]. Inhibition of STAT3 by JAK2 inhibitor, AG490, further induced apoptosis in HCC cell line,
Hep3B, by downregulating the expression of anti-apoptotic proteins Bcl-xL and survivin [34]. Additionally, STAT3
has also been implicated in the development of sorafenib resistance in HCC cell line Huh7 by the regulation
of anti-apoptotic protein, Mcl-1 [43]. The overexpression of JAK1/2 and constitutive phosphorylation of STAT3
(Tyr705) results in the nuclear localization of STAT3 and expression of Mcl-1 [43]. Knockdown of STAT3 led
to a downregulation of Mcl-1 expression in vitro, rendering the cells sensitive to sorafenib-induced cell death.
Collectively, these findings demonstrate that STAT3 promotes cell survival and drug resistance while allowing
HCC cells to evade apoptosis and continue proliferating.

STAT3 in angiogenesis
STAT3 can promote angiogenesis by regulating the expression of several pro-angiogenic modulators in the tumor
microenvironment. These are traditionally attributed to the bFGF, VEGF and HIF-1 axis [28,44,45]. STAT3 activation
was shown to regulate the expression of Akt, a key regulator of Hif-1 expression [45]. Hif-1, together with STAT3,
function as transcriptional activators of VEGF by binding to the VEGF promoter [45]. VEGF secreted by the cells can
then bind to receptors on endothelial cells and stimulate the formation of new blood vessels. Conversely, inhibition
of STAT3 has also been shown to downregulate the activation of the PI3K/Akt pathway and subsequent Hif-1 and

Hepat. Oncol. (2020) 7(1) future science group



JAK/STAT signaling in hepatocellular carcinoma Review

VEGF expression [44,45]. The use of anti-STAT3 ASOs can also lead to a reduction in tumor microvessel density
as a result of decreased circulating VEGF and bFGF levels in vivo [36]. Therefore, elevated STAT3 levels facilitate
tumor development by upregulating pro-angiogenic factors, thereby providing tumors with greater perfusion and
promoting tumor growth.

STAT3 in immunity & inflammation
STAT3 plays a key role in regulating the inflammatory and immune environment of the tumor. STAT3 activation
in tumor cells aids in evasion of immune surveillance during hepatocarcinogenesis through several mechanisms,
one of which is by maintaining an activation loop with the immune cells present in the tumor microenvironment.
Activation of STAT3 in tumor cells by IL-6 triggers a downstream inflammatory response, inducing the expression
and secretion of STAT3-activating cytokines and chemokines such as IL-6 and IL-1b [46]. Consequently, these
secreted factors activate STAT3 signaling in the surrounding stromal cells, which also synthesize and secrete the
same cytokines, resulting in a paracrine tumor-stroma positive feedback or activation loop [47].

This continuous activation of STAT3 modulates the tumor immune microenvironment, ensuring that it is
conducive for the tumor cell. The activation of STAT3 in regulatory dendritic cells derived from carcinoma-
associated fibroblasts leads to increased secretion of IDO in vitro [48]. IDO impairs T-cell proliferation and
response, promoting the survival of the tumor cells. Additionally, STAT3 induces the differentiation of monocytes
into myeloid-derived suppressor cells in vitro, further impeding T-cell function and suppressing the antitumor
immune response [49].

Apart from IL-6, immune cells may also respond to other interleukin and inflammatory molecules present in
the microenvironment, leading to STAT3 activation. For instance, the presence of IL-4 leads to the activation of
STAT3 in macrophages, inducing a polarization from the antitumoral M1 phenotype into the pro-tumorigenic
M2 phenotype both in vitro and in vivo [50]. The presence of M2 macrophages in the microenvironment promotes
proliferation, invasion and migration of HCC cells [50].

The tumor-promoting effects of STAT3 signaling is further established when tumor progression is inhibited upon
blockade of the IL-6/STAT3 pathway, resulting in an alteration of the cytokines present in the microenvironment.
Specifically, TGF-β and IL-10 levels were reduced while type I interferon expression was elevated, which reactivates
natural killer cells and recovers the antitumor immune response [51].

In summary, STAT3 activation is essential in modulating the immune cells and cytokines present in the tumor
microenvironment to ensure that the tumor cells can evade apoptosis and survive. Targeting STAT3 therefore offers
a potential immunotherapy for HCC by suppressing the tumor immune microenvironment.

STAT3 in cancer stem cells
The activation of STAT3 has been demonstrated to correlate with cancer stem cell markers that confer stem
cell-like properties to tumor cells. STAT3 activation has been shown to correlate with the self-renewing side
population/CD44-positive (SP/CD44+) cells in HCC [52]. CD44 is traditionally reported to maintain cell pop-
ulations with cancer stem cell-like properties in HCC [53]. Inhibition of STAT3 via small molecule inhibitors
significantly reduced the SP/CD44+ cells in vitro and diminished the tumor formation capacity in vivo. This
demonstrates the potential of targeting STAT3 in controlling the population of cells containing stem cell-like
properties in HCC [52]. Additionally, STAT3 phosphorylation and activation have also been reported to regulate
the expression of other cancer stem cell markers in HCC, namely CD133 and NANOG [54,55]. Inhibition of STAT3
led to a reduction in the population of cancer stem-like cells in vitro and impeded the tumor-initiating capacity of
HCC cells in vivo. STAT3 has also been implicated in the maintenance of the stem cell-like population of cells in
HCC via the upregulation of the Notch signaling pathway [56]. Attenuation of the IL-6/STAT3 pathway led to a
deactivation of the Notch pathway, hindering the growth and invasion of HCC cells [56]. Collectively, the evidence
demonstrates the role of STAT3 in maintaining the population of cells with stem cell-like and tumor initiating
capacities in HCC. Thus, targeting STAT3 offers a promising strategy to reduce the population of cancer stem cells
with self-renewal capabilities in HCC tumors.

STAT3 in HCC metabolism
STAT3 is implicated in the adaptation of metabolic processes in cancer cells to allow efficient generation of energy
biomolecules like ATP [57]. Bi et al. showed that STAT3 and PKM2 can be activated and enhance the Warburg
effect in HCC [58]. The Warburg effect occurs when cancerous cells transform significant amounts of glucose into
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lactate regardless of oxygen availability. PKM2 is a key enzyme that regulates this process, which allows tumor cells
to meet the energetic demands for expansive proliferation. Bi et al. observed that in transformed hepatic progenitor
cells, the consumption of glucose, production of lactate and ATP levels were all decreased following the use of
a small molecule inhibitor of STAT3 (Stattic) in vitro [58]. Additionally, this inhibition of STAT3 also decreased
phospho-PKM2 expression [58]. This suggests that STAT3 regulates the expression of PKM2 and, in turn, plays a
key role in altering cancer cell metabolism to meet the energetic demands of the disease. Targeting STAT3 can thus
help to mitigate this aspect of HCC and reduce tumor growth.

STAT3 in invasion & metastasis
STAT3 plays a role in promoting the invasive capacities of HCC cells by regulating the expression of MMPs, such
as MMP-2 and MMP-9 [36,59]. Secreted MMPs cleave the extracellular matrix in the tumor microenvironment,
removing the physical barrier for cancer cells to invade into the surrounding tissue. Li et al. showed that anti-STAT3
ASOs reduced MMP-2 and MMP-9 expression levels in vitro [36]. Consequently, this inhibited lung metastasis
formation and significantly prolonged survival time [36]. Zhao et al. also demonstrated that inhibition of STAT3
phosphorylation by CTS successfully impeded the invasion of HCC cells which was induced by peri-tumor
fibroblasts [60]. Besides, STAT3 can also induce the invasiveness of HCC tumors by upregulating the expression
of epithelial–mesenchymal transition proteins such as Slug and Twist [61,62]. In fact, targeting STAT3 led to a
reduction in these proteins, while simultaneously increasing the expression of adhesion protein, E-cadherin, to
reduce the metastatic potential of the cells both in vitro and in vivo [63].

Furthermore, STAT3 may promote the invasiveness of HCC by regulating alternative oncogenic pathways
involved in metastasis. One such pathway is the PI3K/Akt2 signaling pathway, which modulates cell adhesion and
invasion both in vitro and in vivo [64,65]. Zhang and colleagues demonstrated that STAT3 performs this function by
regulating the expression of AKT2 [65]. HCC cells transfected with STAT3-specific small interfering RNAs (siRNAs)
induced a downregulation of AKT2 expression along with its target genes, leading to a significant reduction in the
invasive properties of the cells in vitro [65]. The direct crosstalk between the JAK/STAT and PI3K/Akt2 pathway
further supports the role of STAT3 in promoting invasion and metastasis in HCC.

Overall, these studies demonstrate that STAT3 is a key regulator in the progression and development of HCC
through its involvement in various aspects of tumorigenesis and metastasis. Thus, STAT3 offers a viable therapeutic
target for treatment of HCC patients, allowing for early intervention by clinicians before the disease worsens.

The role of other STATs in HCC
Previous studies have shown that STAT1 and STAT2 exhibit antiproliferative effects in HCC both in vitro and in
vivo [66]. The suppression of STAT1 activity was shown to correlate with the progression of HCC and prognosis
in a set of HCC patient samples [67]. Additionally, suppression of STAT1 activity correlated with VEGF levels
in HCC patients, indicating that STAT1 may exert its antitumorigenic properties by inhibiting angiogenesis [67].
Notably, the antitumorigenic properties of STAT1 correlate with the activity of STAT1 instead of the expression
levels of the protein itself. In a recent study, the authors found that elevated expression of STAT1 without activation
(i.e., unphosphorylated STAT1) was observed in HCC patients [68]. The presence of unphosphorylated STAT1 was
able to sustain growth in HCC cell lines in vitro [68]. This is an important finding in guiding the development of
drug targets against STAT1 as a therapeutic strategy. Specifically, it demonstrates that inducing STAT1 expression
is not sufficient in treating HCC and might worsen the disease. Instead, specific activation of STAT1 serves as a
more viable therapeutic strategy for HCC.

Similar to STAT1, STAT2 exhibits anticancer properties in HCC. STAT2 can exert its antitumorigenic properties
in HCC by functioning as a transcription regulator of oncogenes. Testoni et al. showed that, in response to IFN-α
induction, phosphorylated STAT2 directly binds to the the P2p73 promoter of oncogene DNp73 [69]. As a result,
STAT2 recruits Ezh2 to the promoter to induce histone 3 lysine 27 methylation and hence the transcriptional
repression of the oncogene [69]. The detailed antitumorigenic roles of STAT1 and STAT2 in HCC, however, still
remain relatively unclear.

While the detailed role and function of STAT4 in HCC is not well established, several publications have
demonstrated that STAT4 likely functions as a tumor suppressor in HCC. In these studies, the authors reported
a significantly lower expression level of STAT4 in HCC tumors as compared with the normal tissues [70,71].
Furthermore, the knockdown of STAT4 via siRNAs in these two independent studies led to enhanced proliferation
of HCC cell lines in vitro. In addition, several studies investigating polymorphisms in HCC patients have identified
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a specific STAT4 polymorphism (rs7574865) which increases the risk of HBV-related HCC in several cohorts,
including Chinese, Thai, Korean, Vietnamese and Caucasian. This specific rs7574865 STAT4 variant also showed
a corresponding reduction in STAT4 mRNA expression levels [72–76]. However, there are still no conclusive studies
detailing the exact role of the variant.

The distinct functions of both isoforms of STAT5 (STAT5a and STAT5b) in HCC is still unclear and shows
context specificity. Upregulation of STAT5 has been observed in HCC patients, suggesting that STAT5 exhibits
pro-oncogenic properties [77]. Specifically, one group identified that STAT5b, and not STAT5a, was a driver of
epithelial–mesenchymal transition in HBV-dependent HCC in vitro [78]. Several mouse models of HCC, however,
have suggested that STAT5 exhibits hepatoprotective properties instead [66,79–81]. One group showed that STAT5
acts as a tumor suppressor in the context of hyperactive growth hormone signaling. In the study, the authors
demonstrated that mice with hyperactive growth hormone signaling and a synthetic loss of STAT5 rapidly developed
HCC as a result of increased compensatory STAT3 activation [79]. In a second study, Yu et al. demonstrated that
in CCl4-induced HCC mouse models, STAT5 functions as a tumor suppressor by upregulating the expression
of CDKN2B and CDKN1A [81]. Ablation of STAT5 in vivo led to a reduction in the p15INK4B protein levels, a
compensatory activation of STAT3 and tumor progression [81]. Kaltenecker et al., however, did not witness a more
aggressive HCC phenotype when STAT5 was lost in their diethylnitrosamine-induced mice models [82]. Taking the
evidence together, they suggest that the function of STAT5 is extremely complex and context-dependent, thereby
calling for deeper investigation into the role of STAT5 in HCC in humans.

Targeting the JAK/STAT pathway for HCC treatment
Different JAK/STAT inhibitors are already being studied for their clinical relevance in various cancers, including
HCC. Two main classes of molecules that have been used are small molecule inhibitors and siRNAs (Table 1).

Targeting JAKs
As JAKs function upstream of STATs along the signaling axis, it acts as a feasible target to inhibit the downstream
effects of the JAK/STAT pathway. Currently, WP1066, pacritinib, cryptotanishinone and ruxolitinib are common
JAK inhibitors being studied for their relevance in human diseases; however, these compounds are still in preclinical
stages for HCC treatment.

Studies into brain and bladder cancers have demonstrated the efficacy of WP1066, which inhibits JAK2. In
malignant glioma cells, WP1066 downregulated downstream targets of STAT3 such as Bcl-xL, Mcl-1 and c-myc.
The drug also selectively activated BAX, induced apoptosis and downregulated several anti-apoptotic proteins. Thus,
these findings indicate a strong correlation between WP1066 and programmed cell death. Currently, WP1066 is
being investigated for brain metastasis in clinical trials (NCT01904123) [83,86]. Similarly, another study by Tsujita
et al. showed that WP1066 demonstrated efficacy by promoting apoptosis of bladder cancer cells [84]. In HCC,
WP1066 has been shown to inhibit MMPs and neutralize the activity of UCK2, which reduced the migration
and invasion abilities of HCC cell lines [85]. Collectively, these insights demonstrate the potential of WP1066 as a
treatment approach in HCC.

Another potent and selective JAK2 inhibitor is pacritinib, which was observed to have clinical efficacy for
myelofibrosis patients when compared with the current best available treatment in a randomized Phase III trial
(NCT02055781) [87]. Overall, the outcome showed improved total symptom score reduction and effective spleen
volume reduction in pacritinib-treated patients compared with the best available treatment. Pacritinib was also well
tolerated and adverse events were uncommon, with patients generally presenting mild gastrointestinal toxic effects.
In another study, Jensen and colleagues used patient-derived brain tumor-initiating cells and demonstrated that
pacritinib was able to reduce cell viability in these cells with satisfactory results [86]. Moreover, the team determined
the compatibility of pacritinib in combination with temozolomide, the current standard of care chemotherapy for
glioblastoma multiforme. This combination in mice xenografts led to an improvement in median survival, from
52 to 62.5 days, and reduced tumor growth. Thus, this study demonstrates the potential of pacritinib, as the JAK
inhibitor could prolong survival periods in clinically relevant models. In HCC, pacritinib was found to reduce liver
fibrosis in mouse models that mimic clinical HCC development and progression from hepatic steatosis [88]. High
levels of CK-18, which predicts for increased fibrosis, was also effectively reduced in these mice upon treatment
with pacritinib [88]. Given that liver fibrosis occurs in most patients with HCC, the antifibrotic effects of pacritinib
observed in relevant disease models offer promising clinical applications for HCC treatment.
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Table 1. Clinical status of Jak/STAT inhibitors.
Classification: small
molecule inhibitors

Indication Target Clinical status Findings/results Ref.

WP1066 Bladder cancer
Malignant glioma
Metastatic melanoma
HCC

JAK2 Phase I
(NCT01904123)

(Pre-clinical for HCC)

In vitro studies: in bladder and brain cancer cells, pre-clinical studies
show promotion of apoptosis. Awaiting results for metastatic
melanoma and malignant glioma in clinical trials (NCT01904123).
In HCC: WP1066 was shown to inhibit MMPs and reduce migration
and invasion of HCC cancer cells.

[83–85]

Pacritinib Malignant glioma
Myelofibrosis
HCC

JAK2 Phase III
(NCT02055781)

(Pre-clinical for HCC)

In vitro studies: pacritinib decreased BTIC viability and
sphere-forming potential. Improved response to TMZ in
TMZ-resistant BTICs was also observed.
In vivo studies: in orthotopically xenografted mice, pacritinib
combined with TMZ showed penetration of the blood-brain
barrier and led to overall median survival improvement.
Phase III: for myelofibrosis and thrombocytopenia patients
including those prior anti-Jak therapy, the twice-daily dosing of
pacritinib was more effective than the best available treatment for
reducing splenomegaly and symptoms.
In HCC: in vivo studies showed fibrosis biomarker CK18 was
effectively reduced by pacritinib. Fibrotic areas were also reduced
in the mouse liver.

[86–88]

CTS Esophageal cancer
HCC

JAK2,
STAT3

Pre-clinical In vitro and in vivo studies: migration and tumor growth of
esophageal cancer cells was impeded with CTS. Inhibition of cell
growth in mice xenografts was also observed without significant
effect on body weight.
In HCC: CTS was shown to promote apoptosis and immune
response in vitro and in vivo. CTS also helped convert immune cells
to the tumor suppressive M1 phenotype.

[60,89,90]

Ruxolitinib
(INCB018424)

Leukemias
HCC

JAK1/2 Approved

Phase II
(NCT00674479)

(Pre-clinical for HCC)

Approved for myelofibrosis, polycythemia vera, graft-vs-host
disease.
Phase II: modest antileukemia activity and an acceptable toxicity
profile were seen in refractory leukemias. This includes post
myeloproliferative neoplasm acute myeloid leukemia patients.
In HCC (preclinical): Ruxolitinib was shown to inhibit
colony-forming abilities and cell proliferation.

[91,92]

Stattic NPC
HCC

STAT3 Pre-clinical In vitro studies: reduced growth and increased apoptosis of NPC
was observed with Stattic. The drug also sensitized NPC to cisplatin
and ionizing radiation.
In HCC: Stattic-attenuated radiotherapy and reduced cancer
functions such as invasiveness, survival and proliferation.

[93,94]

OPB-111077 Advanced HCC STAT3 Phase I
(NCT01942083)

The drug was compatible with advanced HCC patients that failed
sorafenib therapy. Limited preliminary efficacy outcomes were
shown.

[95]

OPB-31121 Advanced cancer
Solid tumor
HCC

STAT3 Phase I
(NCT00657176)
PhaseI/II
(NCT01406574)

(NCT00657176): OPB-31121 was relatively well tolerated and has
preliminary antitumor activity in solid tumors.
In HCC (NCT01406574): limited survival benefits and insufficient
antitumor activity were shown

[96,97]

Napabucasin
(BBI608)

Gastric cancer
HCC

STAT3 + Paclitaxel:
Phase I
(JapicCTI-142420)
Phase III
(NCT02178956)
+ Sorafenib:
Phase Ib/II
(NCT02279719)

(JapicCTI-142420): for Japanese patients with gastric cancer, the
combination of napabucasin with paclitaxel was tolerated. No
dose-limiting toxicities were observed and two patients reported
partial response, stable disease and progressive disease each. Trial
is ongoing for NCT02178956.
In HCC (NCT02279719): recommended Phase II dose was
determined for napabucasin and safely combined with sorafenib
at full dose. Encouraging antitumor activity seen in HCC patients
with no prior systemic chemotherapy.

[98,99]

AZD9150 Advanced cancers
DLBCL
Lymphoma
HCC

STAT3 Phase I/II
(NCT01563302)
Phase I/Ib
(NCT01839604))

(NCT01563302): in a subset of heavily pretreated DLBCL patients,
AZD9150 was well tolerated and efficacious.
In HCC (NCT01839604): maximum tolerated dose for AZD9150 was
determined with preliminary activity and few serious adverse
effects.

[100,101]

BTIC: Brain tumor-initiating cell; CTS: Cryptotanshinone; DLBCL: Diffuse large B-cell lymphoma; HCC: Hepatocellular carcinoma; NPC: Nasopharyngeal carcinoma; TMZ: Temozolomide.

CTS is a plant-based quinone extracted from the root of Salvia miltiorrhiza Bunge that has inhibitory effects
on the JAK/STAT pathway. In preclinical studies, CTS was shown to induce apoptosis, inhibit proliferation and
reduce the migration of esophageal squamous cell carcinoma. In mice, tumor growth was effectively reduced with
CTS treatment, with minimal effects on body weight, indicative of its low toxicity profile. Therefore, CTS has
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been shown to be a viable alternative for the treatment of esophageal squamous cell carcinoma [89]. In HCC,
CTS treatment was found to inhibit the proliferation of mouse hepatoma cells by promoting cell apoptosis via
JAK/STAT signaling. Furthermore, CTS was shown to promote immune response in vivo and aid in the conversion
of macrophages to the M1 phenotype in vitro, allowing for increased proinflammatory and antitumor properties [90].

Ruxolitinib, a small molecule inhibitor of JAK1 and JAK2, was the first JAK inhibitor to be approved by
the FDA (for primary myelofibrosis). Recently, a Phase II study of ruxolitinib in relapsed/refractory leukemia
(NCT00674479) demonstrated satisfactory results, with limited grade 3 or higher toxicity [91]. Significant response
was observed in 17% of postmyeloproliferative neoplasm acute myeloid leukemia patients, with complete remission
in two patients. While ruxolitinib has been widely studied for the treatment of blood malignancies, studies in HCC
are still preclinical. Ruxolitinib was shown to inhibit cell proliferation and colony-forming abilities in HCC cell
lines [92]. Additionally, using HCC patient-derived xenograft models, tumors with JAK1 mutations (JAK1S703I)
were observed to have increased sensitivity toward ruxolitinib as compared with other JAK1 mutant or wild-type
tumors [102].

Targeting STAT3
Besides indirectly inhibiting STAT3 via JAKs, STAT3 can also be directly inhibited using small molecule compounds
such as stattic, OPB-111077, OPB-31121, napabucasin or AZD9150, an siRNA.

Stattic has been shown to inhibit the activation, dimerization and translocation of STAT3 independent of its
phosphorylation status [103]. In nasopharyngeal carcinoma (NPC) cell lines, Stattic promotes antitumor effects by
decreasing the expression of STAT3-mediated CCND1 [93]. Furthermore, Stattic was shown to induce apoptosis and
inhibit cell viability, effectively impeding cancer growth in vitro [93]. As a combination therapy, Stattic was shown
to synergize well with other treatments such as cisplatin, as evidenced by the lowered IC50 values in NPC cells,
demonstrating increased drug potency [93]. In HCC cell lines, Stattic promoted apoptosis induced by radiotherapy
and reduced tumor cell survival and invasiveness in a dose-dependent manner [94].

In a Phase I study by Yoo et al., OPB-111077 was administered to sorafenib-refractory HCC patients to examine
toxicity and safety profiles [95]. The drug was well tolerated overall, with limited patients experiencing dose-limiting
toxicities and no treatment-related deaths reported. Unfortunately, preliminary outcomes showed limited efficacy,
with zero cases of complete or partial response and a median progression-free survival of 1.4 months. Nevertheless,
further investigations of OPB-111077 for combination therapy can be considered due to its acceptable safety
profile.

Another STAT3 inhibitor is OPB-31121 which has been evaluated in a Phase I study for advanced solid tumors
(NCT00657176) [96]. Common adverse events observed were gastrointestinal and included nausea, vomiting and
diarrhea. Evaluable dose-limiting toxicities included grade 3 diarrhea and grade 3 vomiting. Overall, 800 mg/day
was determined as the maximum tolerated dose. Stable disease was seen in eight patients, while disease progression
was present in ten patients. Furthermore, OPB-31121 showed tumor shrinkage in one colon cancer and one
rectal cancer patient. Hence, although the side effects are not ideal, the study demonstrates preliminary efficacy of
OPB-31121 in advanced solid tumor patients. However, in a Phase I study by Okusaka et al. (NCT01406574),
OPB-31121 showed poor antitumor efficacy in advanced HCC patients [97]. Despite six out of 25 patients having
stable disease (≥8 weeks), the toxic side effects associated with the peripheral nervous system limited potential
long-term usage of the drug.

Napabucasin is a STAT3 inhibitor that has been found to have preliminary clinical efficacy. In a clinical trial
of napabucasin combined with paclitaxel (JapicCTI-142420), the two drugs were shown to be well tolerated in
Japanese patients with gastric cancer [98]. Common adverse effects reported were generally mild and gastrointestinal,
but concurrent administration with loperamide was able to control these negative effects. Napabucasin was found
to have a satisfactory safety profile. Two patients in the study demonstrated preliminary signs of clinical activity
in which partial response was achieved. In one of these patients, even after paclitaxel was discontinued at cycle
7, partial response was maintained until cycle 21 with napabucasin treatment alone. Collectively, this study
demonstrates that drug combinations with napabucasin are a viable treatment approach with potential survival
benefits and hence a Phase III trial is ongoing for this combination in gastric and gastroesophageal junction cancers
(NCT02178956) [98]. In preclinical studies of HCC, napabucasin promoted apoptosis in vitro and suppressed tumor
growth in orthotopic mouse models [104]. Using another orthotopic HCC resection mouse model, napabucasin
treatment was also observed to decrease the incidence of recurrence after surgery (hepatectomy), which is likely
mediated by inhibition of the IL-11/STAT3 signaling axis [104]. In addition, AFP and proliferating cell nuclear
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antigen levels were also reduced after treatment with napabucasin. Hence, there is evidence that targeting STAT3
signaling can reduce tumor growth and mitigate the risk of recurrence. Currently, napabucasin is being evaluated
in a phase Ib/II clinical trial in combination with sorafenib for HCC (NCT02279719).

In contrast to small molecule inhibitors, AZD9150 is a siRNA that targets STAT3. In a Phase Ib study
by Reilley et al., diffuse large B-cell lymphoma patients were treated with AZD9150 and the drug was well
tolerated (NCT01563302) [100]. Drug-related side effects such as fatigue, transaminitis and thrombocytopenia
were commonly observed; however, no patient withdrew treatment due to drug-related toxicities. Complete and
partial responses were observed in two patients each with a median duration of response of 10.7 months for the
complete response patients. Altogether, AZD9150 showed clinically meaningful antitumor activity and can be
considered as a safe therapy for diffuse large B-cell lymphoma. In HCC, a Phase I/Ib study was performed with
AZD9150 to evaluate its efficacy and safety profiles (NCT01839604) [101]. The study showed that AZD9150 was
well tolerated with mild and a few serious adverse events. However, further studies are needed to elucidate its
clinical efficacy.

Overall, these studies demonstrate the potential of targeting the JAK/STAT pathway in HCC. While clinical
investigations for these inhibitors are still in early stages for HCC, the beneficial effects observed in other tumor
types provide indications of possible clinical efficacy for HCC as well.

Future perspective
Activation of JAK/STAT signaling is a widely reported phenomenon in many cancers, including HCC. The
multiple cellular effects of JAK/STAT signaling and its relationship with other signaling pathways have been shown
to contribute to many key hallmarks of cancer development and progression. Thus, therapeutic targeting of activated
JAK/STAT pathway is a rational approach in tumors with such aberrant signaling. In fact, the numerous clinical
trials and studies on JAK/STAT inhibitors demonstrate the potential and efficacy of these compounds in mitigating
various cancers. Nevertheless, in the case of HCC, clinical investigations into these compounds are still in the early
stages, with limited benefits observed. As many of these studies in HCC were done using JAK/STAT inhibitors
as monotherapy, perhaps these compounds could be applied in a combinatorial therapy setting. With its role in
maintaining cancer stem-like cells, targeted inhibition of JAK/STAT could be investigated as an adjuvant therapy
for HCC, which may help to suppress or eradicate the subpopulation of cells with tumor-propagating properties.
Furthermore, as these cells often mediate chemoresistance in tumors, the use of JAK/STAT inhibitors could help
mitigate this, thus reducing the risk of drug resistance and disease recurrence, two major setbacks in the current
treatment landscape of HCC. Besides, given the highly heterogenous nature of HCC, it is likely that the response
toward JAK/STAT inhibitors among patients would be varied as well, as seen in the case of increased ruxolitinib
sensitivity in HCC patient-derived xenograft tumors with specific JAK1 mutations. Thus, it would be interesting
to see if these mutations that correlate with treatment efficacy can be applied toward stratifying HCC patients in
clinical trials to achieve better outcomes and survival. Overall, the JAK/STAT pathway is a promising therapeutic
target for HCC, although further investigations are needed to fully understand the molecular mechanisms and side
effects to improve clinical outcomes and possible personalized treatments.
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Executive summary

• Hepatocellular carcinoma (HCC) is a highly challenging disease to treat, due to factors such as lack of effective
treatments, high rate of recurrence, underlying liver dysfunction, drug resistance and heterogeneous tumor
background.

• Treatment options for HCC include surgical resection, liver transplantation, transarterial chemo- or
radio-embolization and systemic drug therapy using small molecule inhibitors such as sorafenib, lenvatinib,
regorafenib and cabozantinib.

• Many intracellular signaling pathways contribute to hepatocarcinogenesis, including the JAK/STAT pathway,
which has normal roles in regulating cell proliferation, survival and differentiation. However, deregulation of
JAK/STAT signaling is observed in many cancers and contributes to various oncogenic effects.

• In HCC, aberrant activation of JAK/STAT pathway promotes tumor growth, angiogenesis, invasion and metastasis.
JAK/STAT signaling is also implicated in maintenance of cancer stem cells with tumor-propagating abilities in HCC
as well as creation of an immunosuppressive microenvironment.

• Due to the oncogenic role of JAK/STAT activation, especially in the context of STAT3 dysregulation, targeting this
pathway represents an attractive/feasible approach for the treatment of HCC. In fact, various small molecule
inhibitors and RNA therapies that target JAKs or STATs have been developed and tested for efficacy against
tumor cells.

• While many of the JAK/STAT-targeting compounds have shown clear antitumor effects on tumor growth and
development in preclinical models of HCC, clinical investigations of these compounds for HCC are still limited.
Nevertheless, the promising results of clinical trials in other cancer types highlight the potential of inhibiting the
JAK/STAT pathway as an effective treatment for HCC.
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