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ABSTRACT

The brain is a large and complex network of
neurons. Specific neuronal connectivity is thought
to be based on the combinatorial expression of the
52 protocadherins (Pcdh) membrane adhesion
proteins, whereby each neuron expresses only a
specific subset. Pcdh genes are arranged in
tandem, in a cluster of three families: Pcdha,
Pcdhb and Pcdhc. The expression of each Pcdh
gene is regulated by a promoter that has a regula-
tory conserved sequence element (CSE), common
to all 52 genes. The mechanism and factors
controlling individual Pcdh gene expression are cur-
rently unknown. Here we show that the promoter of
each Pcdh gene contains a gene-specific conserved
control region, termed specific sequence element
(SSE), located adjacent and upstream to the CSE
and activates transcription together with the CSE.
We purified the complex that specifically binds the
SSE–CSE region and identified the CCTC binding-
factor (CTCF) as a key molecule that binds and ac-
tivates Pcdh promoters. Our findings point to CTCF
as a factor essential for Pcdh expression and
probably governing neuronal connectivity.

INTRODUCTION

The brain consists of a large and complex organism-
specific network of neurons. A fundamental question in
neurobiology is where and how the structure of this
network is encoded in each organism’s genome, i.e. how
individual neurons acquire unique identities that enable
them to create highly-specific synaptic connections,
leading to the formation of an organism-specific network.
There are several well-established examples for such mech-
anisms: the olfactory system, in which individual olfactory

neurons express only 1 out of 1300 olfactory receptor
genes, and establish connections based on the receptor
expressed (1), and the Down-Syndrome-Cell-Adhesion-
Molecules (Dscam) that regulate neural circuit formation
in Drosophila (2–4). In mammals, it was hypothesized that
the precise patterns of neuronal connectivity are largely
determined by neuronal membrane molecules called
protocadherins (Pcdh), which promote specific inter-
neuron connections. These molecules are encoded by the
clustered Protocadherin (Pcdh) genes (5–11) that represent
the largest subgroup in the cadherin superfamily (12,13).
The Pcdh genes are present in all known vertebrate
genomes, including mammals, chicken, zebrafish, fugu,
and coelacanth (13) and are highly conserved in
mammals. The Pcdh genes were shown to be highly ex-
pressed during neural development, creating Pcdh proteins
that are concentrated in the synaptic region. As the brain
matures, the expression level of the Pcdh genes decreases
(10,12,14–17). Gene-knockout studies have demonstrated
that Pcdh gene products play a crucial role in proper
axonal projection, synaptic formation and neuronal
survival (18,19).

Pcdh genes are located on human chromosome 5 (13)
and on mouse chromosome 18 (20,21). In each neuron,
Pcdh genes are expressed monoallelically, each allele is
independently regulated, i.e. one variable exon is ex-
pressed from the paternal chromosome and another
variable exon from the maternal chromosome, creating a
combinatorial expression at the cell level (22,23). There
are 52 tandem-arranged Pcdh genes in human that are
divided into three families: Pcdha (15 genes), Pcdhb
(16 genes), and Pcdhg (21 genes), which are further
subdivided into Pcdhga and Pcdhgb (21).

In the Pcdha and Pcdhg families, each gene has a
specific variable exon (24) that is linked to three
constant exons (a structure similar to that of immuno-
globulins and T-cell-receptors). In the Pcdhb family,
each gene includes a variable exon only. Linking of a
specific variable exon with the three constant exons in
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the Pcdha and Pcdhg genes is done by alternative splicing
(as opposed to gene recombination used in immunoglobu-
lin genes). Prior to splicing, each precursor mRNA
transcribed by the Pcdha and Pcdhg genes, is of high mo-
lecular weight, since it includes all downstream variable
exons (25). During splicing, only the 50-most variable exon
is cis-spliced to the first constant exon to generate func-
tional mRNAs (13,21,26).

Assuming that each cluster expresses, at the most, one
gene from each allele, this unusual Pcdh expression may
provide sufficient diversity to represent at least 1.5 million
unique individual cell labeling (see materials and methods
for the calculation). Each Pcdh variable exon is preceded
by a distinct promoter, and all promoters contain a similar
highly conserved core motif of �22 bp, the conserved
sequence element (CSE) (26,27). In addition, long-range
cis-regulatory DNA elements in the Pcdha gene cluster,
HS5-1 and HS7, were identified and found to possess
enhancer activity in reporter assays (28). Interestingly,
both elements are conserved among vertebrates and also
include a CSE. The Pcdha genes are likely to be regulated
by methylation as the transcription of specific Pcdha genes
was found to be significantly correlated with the methyla-
tion state of the first exon. On the other hand, mosaic or
mixed methylation states of the CSE in the promoters
were associated with both active and inactive transcription
(29). Presently, the mechanisms underlying promoter
choice and promoter activity are largely unknown.

In the present study, we investigated the mechanism
underlying Pcdh gene transcription. Using bioinformatics
methods, we have identified a sequence element located
near the CSE that is highly conserved among mammals
but, unlike the Common Sequence Element, is unique to
each of the 52 Pcdh genes. We termed the identified
element specific sequence element (SSE). The 20-bp-long
SSE is essential for transcription and can activate tran-
scription only in the presence of the CSE. We have
purified the complex that binds the SSE–CSE region and
identified CCTC-binding factor (CTCF) as a factor that
binds the promoters of Pcdh genes through the common
CSE and the SSE elements. Remarkably in the context of
Pcdh genes CTCF plays an essential positive role in tran-
scription. Our findings point to CTCF as a factor that is
essential for Pcdh expression and probably for the control
of neuronal connectivity.

MATERIALS AND METHODS

Bioinformatics analysis of the Pcdh promoters

Regulatory elements such as enhancers and locus control
regions are highly conserved among different mammalian
species. To identify regions containing putative DNA
elements that regulate Pcdh expression, we compared the
genomic DNA upstream to the first exon of each gene in
the three Pcdh families (a, b and g). Human, chimp,
mouse, rat and dog promoter regions from �1000
relative to the TSS were retrieved from UCSC Genome
Browser (http://genome.ucsc.edu/). This analysis revealed
new conserved sequences located immediately upstream
of the previously identified CSE. These regions are

more conserved among species (orthologs) than among
family members within the same species (paralogs)
(Supplementary Figure S1).
For calculation of combinational Pcdh diversity, we

used binomial coefficients: the number of ways to
choose K elements from N is n

k

� �
¼ n!

k!ðn�kÞ! for 0 � k � n:
The calculation is as follows: the number of ways to

choose two variable exons from 13 (for Pcdha), 13!/
11!� 2!, multiplied by choose 2 from 15 (for Pcdh�),
15!/13!� 2!, multiplied by choose 2 from 19 (for Pcdh g),
19!/17!� 2!, is equal to 1.5 million unique labels. This
calculation does not take into account that the
Pcdha and Pcdhg proteins also form oligomers (30),
which can further increase the molecular diversity at the
cell surface.

Plasmid construction

The promoter regions of the a6 and a3 genes (�217 and
�219 relative to translation start site, respectively) were
cloned by genomic PCR into pGL3-Basic (Promega) using
the HindIII site. The a6, a3 and deletions promoters
region was amplified using primers that introduce a
HindIII restriction site at the end of the PCR products
(Supplementary Data S1, primers 17–20 and 28–30); For
the mutatgenesis of the aSSE linker addition, we used
oligonucleotides containing the mutated or linker se-
quences flanked by KpnI in 50 and NheI in 30 sites
located immediately upstream and downstream, respect-
ively, to the aSSE site (Supplementary Data S1, primers
21–27 and 31–51). All plasmids constructed in this study
were verified by DNA sequencing.

Transient transfection assays and RNA analysis

The 293T and SH-SY5Y cells were maintained and
transfected as described (31). HEC1-B cells (human endo-
metrial cancer cell line) were maintained in Minimum
essential medium (Eagle) with 2mM L-glutamine and
Earle’s BSS adjusted to contain 1.5 g/l sodium bicarbon-
ate, 0.1mM non-essential amino acids, and 1.0mM
sodium pyruvate, 90%; fetal bovine serum, 10%. All
transfections were performed by using Lipofectamine
2000 (Invitrogen).
For reporter assays, subconfluent cells were trans-

fected in a 24-well plate using 750 ng luciferase reporter
plasmid, 25 ng CMV-GFP, 50 ng Rous sarcoma virus
(RSV) promoter-driven Renilla luciferase reporter
plasmid, At 24 h after transfection, cells were harvested
and their luciferase and Renilla luciferase activities
were measured. The mean and the SD values were
determined for each construct based on four independent
transfections.
For determining the effect of CTCF depletion on the

activity of the reporter gene, SH-SY5Y cells were grown
on 10-well plates and transfected with CTCF siRNA
(Origene, cat # SR307273), or Scrambled siRNA-Scr
(Origene, cat # SR30004) as a negative control at a con-
centration of 10 nM. Twenty-four hours later, the cells
were split to 12-well plates. After an additional 72 h
(96 h after siRNA transfection) the cells were transfected
with 1.5 mg luciferase reporter plasmid, 50 ng CMV-GFP,
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100 ng Rous sarcoma virus (RSV) promoter-driven Renilla
luciferase reporter plasmid. At 24 h after second transfec-
tion, cells were harvested and their luciferase and Renilla
luciferase activities were measured. The mean and the SD
values were determined for each construct based on four
independent transfections.
For determining the effect of CTCF depletion on the

activity of the endogenous Pcdh mRNA levels, HEC1-B
cells were grown on 6-well plate and tranfected with
10 nM CTCF siRNA (Origene, cat # SR307273), or
Scrambled siRNA-Scr (Origene, cat # SR30004) as a
negative control. One hundred and twenty hours later
total RNA was extracted using Tri-reagent (MRC Inc.).
cDNAs were synthesized from 1 mg of total RNA in a 20 ml
reaction volume using the SuperScript III Reverse
Transcriptase (Invitrogen) and random primers as per
the manufacturer’s instructions. Quantitative real time
PCRs were performed in duplicate using the Applied
Biosystems 7300 Real-Time PCR System (Applied
Biosystems). Independent PCRs were performed using
the same cDNA for genes of interest and the GAPDH
gene which serves as an internal control, using the
SYBR� Green PCR Master Mix (Applied Biosystems).
Gene-specific primers were designed for the genes of
interest and for the GAPDH gene using Primer
Express� software (Applied Biosystems). The sequences
of the primer pairs are listed in Supplementary Data S3,
primers 1–5.

Electrophoretic mobility shift assay and ‘super-shift’ assay

DNA oligonucleotides containing the a6SSE–CSE or
a3SSE–CSE or a12SSE–CSE or SP1 sequences
(Supplementary Data S2, oligonucleotides 1–2, 10 and
18) were fluorescently labeled on the 50-end with Cy5,
HEX, or FAM (Integrated DNA Technologies, Inc).
The oligonucleotides were annealed in 20 ml in a concen-
tration of 10 pmol/ml and used as probes to the reaction.
The binding reactions containing 2 mg of poly(dI-dC)
(Sigma), 2 mg of poly(dA-dT) (Sigma), 10 mM Zn and
10 mg of HEC-1B/SH-SY5Y nuclear extract prepared as
described previously (32), with binding buffer consisting
of 25mM HEPES (pH 7.9), 50mM KCl, 1mM DTT and
10% glycerol. The reaction mix was incubated on ice for
10min after which 500 fmol probe was added for an
additional 20min. Competitor doubled stranded DNAs
(50�, 25 pmol) were added prior to the addition of the
probe (Supplementary Data S2, oligonucleotides 3–9,
11–17 and 19–21). The muted doubled stranded DNA se-
quences have the same sticky ends. The reactions were
separated by native electrophoresis at 4�C in a 6.5%
polyacryamide gel with 1� Tris–Glycine buffer at 185V.
The gel visualized with the Typhoon 9400 instrument
(Amersham Biosciencs). Supershift assays were carried
out with antibodies to CTCF (Abcam ab70303, ab37477,
ab37478), BUB3 (Abcam ab4180) and YY1 (Abcam
ab12132). Methylation assays were carried out using
methylated competitor DNA in 50- to 100-fold excess.
The competitor DNA was synthesized with methyl Cs
instead of Cs in two places of CpG sequences
(Integrated DNA Technologies, Inc).

Fractionation of nuclear extract by Macro-prep high S
cation exchange column

SH-SY5Y nuclear extract prepared as described previous-
ly was incubated with washed Macro-prep high S cation
exchange support beads (Bio-Rad) at 4�C for 30min.
Flow through fractions where collected after separation
from the beads using centrifugation at 500G for 4min.
Elution with 200, 400 and 800mM KCl buffers
containing 25mM HEPES (pH 7.9), 1mM EDTA,
1mM dithiothreitol and 10% glycerol was performed
using centrifugation at 500G for 4min. Dialysis over
night was performed on eluted fractions using 10KDa
dialysis bag (Thermo scientific) in dialysis buffer
described previously. A fraction of all the eluted sam-
ples was analyzed on SDS–PAGE gradient acryl amid
gel 4–12.5% (GEBA) with 1� Tris–Glycine 0.1% SDS
buffer at 130V for 1 h.

Affinity purification and western blot

Affinity magnetic FG plain beads were prepared as
follows: oligonucleotides of the a6 and a6_mut sequences,
with phosphorylated GGGG or CCCC at the 50-end
of the forward and reverse complement, respectively,
were synthesized (Integrated DNA Technologies, Inc)
(Supplementary Data S2, oligonucleotides 22–23).

The oligonucleotides were annealed and then ligated
using T4 ligase 5U/ml (Fermentas) using the manufacturer
ligation buffer for 16 h in 4�C to generate a concatamer of
5–15 repeats. The muted sequence has the same sticky
ends. The ligated DNA was then phenol–chloroform ex-
tracted and desalted using Nick column (GE healthcare)
equilibrated with water. The ligated samples were run on
agarose electrophoresis gel to verify that the ligation
process has succeeded (Supplementary Figure S5). The
ligated DNA was then immobilized to 10mg magnetic
FG plain beads (Tamagawa seiki Co. Ltd) by incubation
at 50�C for 24 h. The immobilized beads where then
washed with 2.5M KCl and incubated with 1M
ethanoamine (pH 8) over night for masking. Prior to puri-
fication the immobilized beads were washed three times
using a magnetic stand in washing buffer containing
25mM HEPES (pH 7.9), 100mM KCl, 1mM EDTA,
1mM dithiothreitol and 10% glycerol. Crude nuclear
extract or elution fraction collected from cation fraction-
ation was incubated with beads at 4�C for 4 h using
rotator in binding buffer containing 2 mg of poly(dI-dC)
(Sigma), 1 mg of poly(dA-dT) (Sigma) consisting of 25mM
HEPES (pH 7.9), 50mM KCl, 1mM dithiothreitol and
10% glycerol. Beads were then washed four times using
a magnetic stand with washing buffer previously
described. Bound proteins were then eluted from the
beads using a magnetic stand with elution buffer at
room temperature for 30min consisting of, 25mM
HEPES (pH 7.9), 1M KCl, 1mM EDTA, 1mM
dithiothreitol and 10% glycerol. Dialysis over night was
performed on a fraction of the sample using dialysis bag
(Thermo scientific) in dialysis buffer described previously.
A fraction of the sample was sent to Mass-spec analysis
for protein identification. Tandem mass spectrometry
(MS/MS) analysis coupled with liquid chromatography
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(LC) was carried out by the Smoler Proteomics Center
(Faculty of Biology, Technion, Israeli Institute of
Technology, Israel). Top candidates are those proteins
that were identified by mass spectrometry analysis follow-
ing DNA affinity purification only from the wild-type
SSE–CSE but not detected at the elution of the mutated
SSE–CSE sequences in three repeats.

For western blot, a fraction of the sample was analyzed
on SDS–PAGE gradient acryl amid gel 4–12.5% (GEBA)
with 1� Tris–Glycine 0.1% SDS buffer at 130V for 1 h,
transferred to nitrocellulose membranes blots, and probed
with anti-CTCF (Abcam ab70303) and anti-Histone H3
(Abcam ab1791) antibodies. Secondary antibodies con-
sisted of goat anti-rabbit conjugated to IRDye800 or to
IRDye680 (LI-COR Biosciences), were used and then the
membrane was scanned for infrared signal using the
Odyssey Imaging System (LI-COR Biosciences).

Production of CTCF Proteins in vitro

Full-length human CTCF (pET-7.1) and the 11ZF CTCF-
binding domain (pET-11ZF) which were verified in several
papers (33,34), were kindly donated by V. Lobanenkov
(National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Rockville, MD, USA).
These plasmids along with Luciferase T7 Control DNA,
which serves as a positive control, were synthesized using
the TnT� T7 Quick Coupled Transcription/Translation
System (Promega). The in vitro synthesized proteins were
labeled with a fluorescently labeled lysine amino acid
using the FluoroTect GreenLys labeling system according
to the manufacturer’s instructions (Promega). We verified
the identity of the plasmids using restriction enzyme
analysis and SDS–PAGE analysis which verified that the
synthesized proteins have the correct molecular mass
(Figure 6A).

RESULTS

Identification of a novel cis-element in the promoters of
the Pcdh genes

In order to identify the regulatory elements that
control Pcdh expression, we first looked for additional
segments in the Pcdh cluster that are conserved among
mammalian species, namely: chimp, mouse, rat, dog and
human. The 1000 bp upstream of each of the 52 Pcdh
V-exons from the above species were aligned. This
analysis revealed novel highly conserved regions located
immediately upstream of the previously defined conserved
sequence element, CSE (16,35,36) (Figure 1). Interestingly,
unlike the CSE which is common to the promoters of all
families, these conserved regions, although they may have
common regions, are unique to each gene (Supplementary
Figure S1). We therefore termed these regions, Specific
Sequence Elements (SSE). All 52 occurrences of the CSE
and the 52 unique SSEs are highly conserved in mammals
(Supplementary Figure S1). The SSEs we analyze consists
of a(1 to 13)SSE, b(1 to 16)SSE, ga(1 to 12)SSE and gb(1
to 7)SSE. The Pcdh�C1, �C2, Pcdh�C3, �C4, and �C5
were omitted from this analysis.

The aSSE is essential for Pcdh transcriptional activity

To investigate the transcriptional control of the Pcdh gene
clusters we chose to focus on the Pcdh� family. We first
examined the expression of all the Pcdh� genes in
HEC-1B, 293T and SH-SY5Y cell lines by RT–PCR and
found that each of these cell lines expresses at least one
Pcdh� gene (Figure 2A). While the CSE has been previ-
ously shown to be important for the transcription of Pcdh
genes (16,35,36) we wished to examine the function of the
newly discovered aSSE in the Pcdh� family, and for this
purpose Pcdh�6 was selected. The a6 promoter containing
the a6SSE and the CSE was cloned in front of a luciferase

Figure 1. Schematic representation of the Pcdh gene cluster promoters. Genomic organization of the Pcdh genes, with tandem variable region exons
(blue), promoter regions (turquoise) and constant region exons (red). Each promoter region contains an SSE followed by a CSE, which is common to
all genes of the family. V, variable region; C, constant region.
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reporter gene (Figure 2B). Upon transfection into
HEC-1B, 293T and SH-SY5Y cell lines, this promoter
fragment displayed a high transcriptional activity com-
pared to the promoter-less (basic) reporter gene in all
these cells (Figure 2C, WT columns). When the a6SSE
or a6SSE plus CSE were deleted (�a6SSE or �a6SSE-
�CSE, respectively) the transcriptional activity was seve-
rely diminished in all the cell lines (Figure 2C). Likewise,
point mutations in the CSE (CSEmut) also diminished
transcription (Figure 2C), in agreement with previous
reports (16,35,36). We also examined the SSE function
of the Pcdh�3 gene promoter (a3SSE) and found it to be
essential for a3 promoter activity (Figure 2C, fourth
panel). These findings confirm that CSE is crucial but
not sufficient for Pcdh expression and also requires in
addition the SSE to drive the Pcdh transcription.
To investigate a6SSE further, a6SSE mutants were

created by site-directed mutagenesis (Figure 3A, Mut1–
Mut4). The a6SSE Mut2 construct reduced the transcrip-
tional activity to the level of the promoter-less (basic)

construct, Mut3–Mut4 promoters caused reduction of
70% while Mut1 did not have a significant effect on the
transcription level (Figure 3A).

To determine whether the distance between the SSE and
the CSE is important for their function we increased the
spacing between the SSE and the CSE sites by 5, 10 and
15 bp, which corresponded to �0.5, 1 and 1.5 helical turns
(5nLinker, 10nLinker and 5nLinker). The results revealed
that the transcriptional activity was reduced to the level of
promoter-less construct in all the examined cell lines, re-
gardless of the size of the spacer that was introduced
(Figure 3B). These findings suggest that the specific
location of the SSE relative to the CSE is crucial for
their promoter activity.

Identification of a specific DNA-binding complex that is
aSSE and CSE dependent

To investigate further the mechanism underlying aSSE–
CSE activity we analyzed the proteins that interact with

Figure 2. aSSE and CSE activate transcription cooperatively. (A) The expression profile of all the Pcdh� genes in HEC-1B, 293T and SH-SY5Y cell
lines by RT–PCR, (Supplementary Figure S2). Gray and black boxes indicate for absence or presence of Pcdh� mRNA, respectively. (B) A scheme
depicting the sequences of a6SSE–CSE WT and mutants (b–d). (C) WT (a6SSE–CSE and a3SSE–CSE) and the mutated promoters (fused to firefly
luciferase reporter gene) were transfected into HEC-1B, 293T and SH-SY5Ycell lines together with RSV-Renilla that serves as internal control. The
parental pGL3-basic (Basic) was also transfected as a control. Twenty-four hours post-transfection firefly and renilla luciferase activities were
measured. The normalized results are the mean of at least four independent experiments (±SD).
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the aSSE–CSE region. A fluorescently labeled DNA
fragment comprising the a6SSE–CSE sequence was
incubated with a nuclear extract prepared from HEC-1B
cells and then subjected to electrophoresis mobility shift
assay (EMSA). Two major complexes were formed

between the DNA and the extract (Figure 4A). The
complexes were competed out by excess (50-fold) of un-
labeled a6SSE–CSE DNA (Figure 4A, lane 2) but not by
excess of the non-relevant Sp1 sequence DNA (Figure 4A,
lane 3).

Figure 3. Sequence requirements for the function of a6SSE–CSE as transcriptional elements. (A) Successive blocks within aSSE (underlined) in the
a6SSE–CSE promoter were mutated (Mut1-Mut4). The wild-type and mutated constructs were transfected into HEC-1B, 293T and SH-SY5Y cell
lines together with RSV-Renilla that serves as internal control. Twenty-four hours post-transfection firefly and Renilla luciferase activities were
measured. The normalized results are the mean of at least four independent experiments (±SD). (B) Linkers of 5, 10 and 15 bp (5nLinker, 10nLinker
and 5nLinker) were introduced between a6SSE and CSE and their effect was analyzed as described earlier.
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To examine the importance of the a6SSE–CSE region,
competition assays with excess of various types of un-
labeled DNA were performed: (i) DNA with mutations
in either a6SSE, CSE or both (ii) DNA with spacing

between the a6SSE and CSE regions. We found that the
complex was not competed out by excess DNA containing
mutations in either the CSE (Figure 4B, lane 4), a6SSE
(Figure 4B, lane 5), both (Figure 4B, lane 6) or mut2

Figure 4. Gene-specific complex binds to the aSSE–CSE. (A) EMSA using HEC-1B cell nuclear extract and a fluorescently labeled double stranded
oligonucleotide containing aSSE–CSE sequence as a probe. Lane 1, the probe is incubated with HEC-1B nuclear extract. Competitor DNAs were
added to the reactions in lanes 2 and 3 as indicated on the top. The sequences of the oligonucleotides used for binding and competition are shown on
the top. (B) aSSE–CSE display cooperative DNA binding activity. EMSA using HEC-1B cell nuclear extract and a fluorescently labeled double
stranded oligonucleotide containing a6SSE–CSE as a probe. Unlabeled competitor DNAs were added to the reactions as indicated in the top panel.
The sequences of the oligonucleotides used for binding and competition are shown earlier. (C) The specific complex is shown to bind with high
affinity to a6SSE–CSE. EMSA using SH-SY5Y cell nuclear extract and a fluorescently labeled double stranded oligonucleotide containing a6SSE–
CSE as a probe. Unlabeled aSSE–CSE sequences of Pcdh� genes as competitor DNAs were added in excess to the reactions as indicated in the top
panel. The sequences of the oligonucleotides used for binding and competition are shown earlier. (D) Competition assay for a3SSE–CSE and to
a12SSE–CSE specific complex. EMSA using HEC-1B cell nuclear extract and a fluorescently labeled double stranded oligonucleotide comprising of
a3SSE–CSE as a probe in the left panel and a12SSE–CSE as a probe in the right panel. Unlabeled competitor DNAs were added to the reactions as
indicated in the top panel. The specific DNA complex and the free probes are indicated by arrows.
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a6SSE (Figure 4B, lane 7). In addition, a 5-bp linker
between the a6SSE and CSE also failed to compete
(Figure 4B, lane 8) indicating that the spacing between
the elements is important for binding. These results are
consistent with the effect of the mutations and the linker
on promoter activity (Figure 3B) and suggest that the two
elements are critical for the DNA binding complex.

A recent study reported that the CSE shows mosaic
methylation or hypo-methylation, regardless of transcrip-
tion level (29). Our findings also show that CpG methyla-
tion of the aSSE–CSE regions does not affect complex
formation (Supplementary Figure S3).

Next, we carried out competition assays with a similar
DNA sequence derived from the other promoters of the
Pcdh� cluster (with a1SSE–CSE, a2SSE–CSE, . . . ,
a13SSE–CSE) and of the Pcdh� cluster, gA2SSE–CSE.
Remarkably, the complex was not competed out by
excess of most of the Pcdha SSE–CSE and not by excess
the Pcdh gA2SSE–CSE (Figure 4C). We similarly analyzed
the complex that binds to the a3SSE–CSE (Figure 4D, left
panel) and the a12SSE–CSE (Figure 4D, right panel).
A competition assay was performed, in which the
a3SSE–CSE or a12SSE–CSE labeled DNA probes were
competed out by excess of unlabelled DNA from parallel
regions of other Pcdh genes (Figure 4D). The a3SSE–CSE
and a12SSE–CSE complexes failed to be competed out by
SSE–CSE regions corresponding to other genes in the
cluster. The results suggest the existence of a unique com-
ponent for each SSE that confers specificity of the
complex that binds to each promoter of the Pcdh�.

Purification of the aSSE–CSE complex and its
identification by mass spectrometry

To further characterize aSSE–CSE binding proteins, we
developed a purification scheme composed of two chro-
matographic steps (Figure 5A). First, SY5Y nuclear
extract was loaded onto Macro-prep high S cation
exchange column and proteins were eluted by increased
salt concentrations. The fractions where analyzed by
EMSA and the a6SSE–CSE specific complex was found
in the 800mM KCl fraction (Figure 5B, lane 2), resulting
in �3-fold enrichment. Next, the 800mM fraction was
subjected to DNA affinity chromatography using
magnetic nanoparticles (37). The affinity matrix was
generated by chemical cross-linking immobilization to
the magnetic nanoparticles the a6SSE–CSE or the
a6SSE–CSE_mut DNAs that were multimerized. The
a6SSE–CSE_mut DNA was mutated in both the a6SSE
and the CSE elements and served as negative control.
After incubation of the 800mM enriched fraction with
the DNA-beads, unbound and eluted fractions were
analyzed by EMSA using a6SSE–CSE DNA (Figure
5B). It was apparent that the a6SSE–CSE was efficiently
depleted from the unbound fraction of the a6SSE–CSE
DNA containing beads (Figure 5B, lane 3). In contrast,
in the unbound fraction of the a6SSE–CSE_mut the
specific complex was still present (Figure 5B, lane 4).
Consistently, the elution of the a6SSE–CSE DNA
affinity contained the a6SSE–CSE complex whereas the
complex was completely absent from the elution of the

mutated DNA beads (Figure 5B, lanes 5 and 6). This puri-
fication step resulted in approximately a 13-fold enrich-
ment. To identify the proteins that specifically bind to
a6SSE–CSE, the affinity eluted fractions of both a6SSE–
CSE and a6SSE–CSE_mut DNA were subjected to com-
parative mass-spectrometry. The top significant candi-
dates from mass-spectrometry analysis of proteins that
specifically bind to the a6SSE–CSE are depicted in
Table 1.
To test which of the proteins identified by the

mass-spectrometry binds specifically to a6SSE–CSE, we
examined whether antibodies against these factors inter-
fere or ‘super-shift’ the a6SSE–CSE complex in EMSA.
Three different anti-CTCF antibodies were added to the
reaction mix. The first anti-CTCF antibody (ab70303)
eliminated the specific transcription complex
(Supplementary Figure S4) while the two other
anti-CTCF antibodies (ab37477, ab37478) retarded the
migration of the specific transcription complex and a
slower migration was formed instead of the original one
(Figure 5C, lanes 2 and 3). Interestingly this was the case
also for another, non-specific complex which was
super-shifted with anti-BUB3 antibody (Figure 5C, lane
5). In addition we used an antibody for YY1, a transcrip-
tion factor that appeared in the mass-spectrometry results
in both the a6SSE–CSE and in the control a6SSE–
CSE_mut DNA. The addition of anti-YY1 to the
reaction mix retarded another complex that binds to the
a6SSE–CSE fluorescently labeled probe (Figure 5C, lane
4), which was not specific to these elements. Inspection of
the sequence a6SSE–CSE DNA that was used as a probe
revealed the presence of a perfect YY1 binding site at the
30-end of the fragment which was unaffected by the mu-
tations. These results imply that there are several
protein-DNA complexes formed between the nuclear
extract and the a6SSE–CSE labeled DNA probe and
provide validation that the purification scheme we
utilized led to the identification of relevant proteins.
Next, we examined the effect of the CTCF antibody on
the complexes formed with a DNA fragment from other
members of the Pcdh� family (a12SSE–CSE and a3SSE–
CSE) or from another family (ga2SSE–CSE). The same
pattern, which eliminated the specific complex
(ab70303), was observed with all these probes
(Supplementary Figure S4). These findings are consistent
with in vivo data as analysis of the recently released
ChIP-seq data from UCSC genome-browser and from
Handoko et al. (38) which revealed that CTCF was
associated with the promoter of each of the Pcdh genes
in vivo.
To further validate that CTCF binds specifically to the

SSE–CSE we performed western blot following affinity
purification using anti-CTCF (Abcam ab70303). The
CTCF was depleted from the unbound fraction of the
WT but not the mutated DNA beads. Consistently,
CTCF was exclusively eluted from the WT and not in
the muted affinity column (Figure 5D).
To gain further support that SSE–CSE is directly

bound by CTCF, we used in vitro transcribed and
translated full-length human CTCF and 11ZFs fragments
(Figure 6A) in EMSA. A specific retarded complex was
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observed using 11ZFs protein for DNA promoters of
several members of the Pcdh� family: a6SSE–CSE
(Figure 6B, lane 8), a12SSE–CSE (Figure 6B, lane 1)
and a3SSE–CSE (Figure 6B, lane 4). Recombinant
luciferase protein prepared by the same in vitro translation
reaction was used as a negative control for site-specific
DNA-binding experiments (Figure 6B, lanes 2, 4, 13).
No complex observed, however, with the full-length
CTCF (Figure 6B, lane 7) possibly since the DNA
binding domain of CTCF in the full-length context is
masked or not properly folded. The specificity of the inter-
action was confirmed by a competition assays with excess
of unlabeled DNA sequence of WT (Figure 6B, lane 9) and
DNA with mutations in either CSE (Figure 6B, lane 10)
a6SSE (Figure 6B, lane 11), or both (Figure 6B, lane 12).

The in vitro data provides strong evidence for the novel
interaction of CTCF with highly conserved CSE-SSE se-
quences present in the Pcdh gene promoters. These se-
quences were sufficient for function, for binding and for
biochemical purification of CTCF.

CTCF is essential for Pcdha expression

To investigate further the role of CTCF in regulation of
Pcdh expression, we tested whether knocking down the
endogenous CTCF would affect Pcdh promoter activity.
SH-SY5Y cells were transfected with siRNA against
CTCF or a scrambled negative control. Seventy-two
hours post-transfection Pcdh�6 promoter-luciferase
reporter genes were transfected into these cells and

Figure 5. Purification of aSSE–CSE DNA-bound proteins. (A) Schematic diagram of the purification procedure. (B) Binding activity of a6SSE–CSE
to the purified fractions was assessed by EMSA using the a6SSE–CSE as a probe. Lane 1, the probe is incubated with SH-SY5Y nuclear extract.
Lane 2, with the 800mM KCl elution fraction of the cation exchange. The flow-through (lanes 3 and 4) and the eluted fractions (lanes 5 and 6) of the
affinity purification stage of a6SSE–CSE DNA (a6) and a6SSE–CSE_mut DNA (a6_mut), respectively. (C) Identification of the proteins that bind to
the a6SSE–CSE using specific antibodies according to the MS results. Lane 1, the probe is incubated with SH-SY5Y nuclear extract; lanes 2 and 3
EMSAs were carried out in the presence of two different CTCF antibodies, lane 4 YY1 antibody; lane 5 BUB3 antibody. The specific DNA
complexes, ‘super-shift’ (SS) complexes and the free probes are indicated by arrows. (D) Western blot analysis of CTCF protein in the flow-through
and in the eluted fractions of the affinity purification stage of a6SSE–CSE DNA (a6) and muted DNA (a6_mut).
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Table 1. Significant candidate proteins which specifically bind to the a6SSE–CSE identified by mass-spectrometry analysis

Accession
Number

Protein name Gene symbol Function Number of
peptides

1 P49711 Transcriptional repressor CTCF Transcription regulator and chromatin
insulator

4

2 O43684 Mitotic checkpoint protein BUB3 Involved in spindle checkpoint function 3
3 O14776 Transcription elongation

regulator 1
TCR1 Regulates transcriptional elongation and

pre-mRNA splicing
3

4 Q9P016 Thymocyte nuclear
protein 1

THYN1 May be involved in the induction of apoptosis 3

5 P18615 Negative elongation
factor E

NELFE Part of a complex which represses RNA poly-
merase II transcript elongation

2

6 A6NFI3 Zinc finger protein 691 ZN316 May be involved in transcriptional regulation 3
7 P51858 Hepatoma-derived growth

factor
HDGF Acts as a transcriptional repressor 2

8 Q96K17 Transcription factor BTF3
homolog 4

BT3L4 Basic transcription factor—unknown 2

9 P06748 Nucleophosmin NPM Involved in diverse cellular processes such as
ribosome biogenesis, centrosome duplication,
protein chaperoning, histone assembly, cell
proliferation, and regulation of tumor sup-
pressors TP53/p53 and ARF

2

10 Q9H5H4 Zinc finger protein 768 ZN768 May be involved in transcriptional regulation 2
11 O60828 Polyglutamine-binding

protein
PQBP1 Involved with transcription activation 2

12 Q6DD87 Zinc finger protein 787 ZN787 May be involved in transcriptional regulation 2
13 Q86U70 LIM domain-binding

protein 1
LDB1 Binds to the LIM domain of a wide variety of

LIM domain-containing transcription factors
3

14 A6NFI3 Zinc finger protein 316 ZN316 May be involved in transcriptional regulation 3
15 Q99417 C-Myc-binding protein MYCBP Stimulates the activation of E box-dependent

transcription by MYC
5

16 Q5T6F2 Ubiquitin-associated
protein 2

UBAP2 The function of this protein has not been
determined

5

17 Q6PJG2 Uncharacterized protein
C14orf43

CN043 unknown 6

Figure 6. Recombinant CTCF binds specifically to several aSSE–CSE DNA sequences. (A) SDS–PAGE analysis of the full-length CTCF and 11ZF
CTCF-binding domain proteins, which were synthesized in vitro from the pET-7.1 and pET-11ZF constructs. Luciferase T7 Control DNA no
plasmid were used for positive and negative controls, respectively. The in vitro synthesized proteins are fluorescently labeled. Positions of the
molecular mass protein markers (on the left) are indicated. The white arrows point to the positions of the in vitro synthesized proteins.
(B) EMSAs using in vitro-translated luciferase, human CTCF full-length (FL), 11ZF or SH-SY5Y nuclear extract with aSSE–CSE sequences as
probes. Lanes 1–3, a12SSE–CSE probe, lanes 4–6, a3SSE–CSE probe and lanes 7–14, a6SSE–CSE probe. The proteins used for binding and the
competitor DNA are indicated on the top. The specific complexes between the probe and the recombinant proteins or the nuclear extract are
indicated by arrows.
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luciferase activity was determined 24 h later. Down-
regulation of endogenous CTCF by siRNA-CTCF but
not scrambled siRNA was confirmed by western blot
analysis with anti-CTCF (ab70303) (Figure 7A). The
results clearly show that CTCF siRNA but not scrambled
siRNA severely diminished the luciferase activity directed
by the WT Pcdh�6 promoter by >3-fold (Figure 7A). This
reduction in luciferase activity was specific to Pcdh
because siRNA-CTCF did not affect the luciferase
activity driven by the SV40 promoter (Figure 7A).
To gain further support for the involvement of CTCF in

the transcriptional activity of endogenous Pcdh mRNA,
we measured the mRNA levels of Pcdh�6 and Pcdh�12 in
HEC1-B cells that selectively expressed these genes, fol-
lowing knock down of CTCF by siRNA (Figure 7B). In
these cells CTCF protein level was decreased by 80%
whereas its levels were unchanged by the scrambled
siRNA. Down-regulation of CTCF caused similar reduc-
tion in the levels of the endogenous Pcdh�6 and Pcdh�12
mRNA levels. As a positive control, we selected the c-Myc
gene, for which CTCF was known to act as a repressor
(39), and found that c-Myc levels were up-regulated as
expected. These findings strongly suggest that CTCF
acts as a major activator of Pcdh genes.

DISCUSSION

In the present study we have identified a novel specific
element (SSE) found in the promoters of all 52 Pcdh

genes, positioned immediately upstream of each CSE. In
contrast to the CSE, SSEs are rather unique sequences and
much less conserved between paralogs of the same gene
family. We have shown that Pcdh promoter activity was
governed by the combined activity of the newly identified
SSE and the CSE. Thus, while CSE is indeed crucial for
transcription, it is definitely not sufficient. Using DNA
binding assay we found a nuclear complex that specifically
interacts with aSSE–CSE in vitro. Subsequently, we have
isolated and identified CCTC-binding-factor (CTCF) as
the protein that binds and specifically binds and regulates
the SSE–CSE in each promoter region of the Pcdh. First,
we found that CTCF binds in a highly specific manner to
the promoter region of several representative genes from
the Pcdh� and Pcdhg families in vitro. Second, knocking
down CTCF down-regulated the expression of endogen-
ous active Pcdh genes as well as Pcdh promoter-driven
reporter gene. These findings suggest that CTCF binds
to the promoters of the clustered Pcdh genes and is
acting as a master positive regulator of all the Pcdh
genes. Our findings are consistent with previous reports
that show that binding of CTCF to the target site is
methylation-independent (40,41).

CTCF is a diverse protein and has a unique structure of
11 zinc-finger-DNA binding domains which are conserved
among vertebrates. This distinct structure gives CTCF an
exceptional degree of flexibility for DNA binding site rec-
ognition, which led to the description of CTCF as a
‘multivalent’ transcription factor (42). CTCF is known

Figure 7. CTCF is essential for Pcdh� gene-expression. (A) Knocking down CTCF down-regulated the expression of a6 promoter-driven reporter
gene. Top panel, western blot analysis with either CTCF or H3 antibodies of SH-SY5Y cells transfected with siRNA-CTCF scrambled siRNA or
mock. Bottom panel, 72-h post-siRNA transfction, luciferase reporter gene driven by Pcdh�6, basic and SV40 promoters were transfected into
SH-SY5Y cell lines together with RSV-Renilla that served as internal control. Twenty-four hours post-transfection firefly and Renilla luciferase
activities were measured. The normalized results are the mean of four independent experiments (±SD). (B) Knocking down CTCF down-regulated
the expression of endogenous Pcdh� genes. Top panel, western blot analysis with either CTCF or H3 antibodies of HEC-1B cells transfected with
siRNA-CTCF scrambled siRNA or mock. Bottom panel, 120-h post-siRNA transfection, mRNA level was measured using relative quantification for
endogenous Pcdha6, Pcdha12 genes and c-Myc gene as a positive control.
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to perform numerous functions including enhancer
blocking, X-chromosome inactivation, gene imprinting,
monoallelic gene expression and promoter activation or
repression (42–46). It has been demonstrated that CTCF
can mediate contact between CTCF binding sites, to sta-
bilize intra- and inter chromosomal long range inter-
actions to affect transcription (38,47,48). Conditional
CTCF Knock out models have demonstrated that
CTCF affects transcription in enhancers of both beta
and alpha Globin loci (49,50), the HOX cluster (51), the
XITE of the X-chromosome (52) and the EBV (53).
Another recent study, which investigates the transcription-
al activity in CTCF mutant limbs, has shown that the
CTCF sites in RNA splicing may regulate the production
of specific alternative transcript variants (51).

CTCF is known to interact with diverse protein
partners that determine its specific function; hence, the
regulation of CTCF activity might be achieved by neigh-
boring factors bound to DNA. These partners factors
include the RNA polymerases I, II and III, another zinc
finger factor VEZF1 and the factors YY1, SMAD, TR
and Oct4. Each of these seems to influence, modulate or
determine the function of CTCF (54). Of particular
interest to this study is YY1 which was shown to
interact with CTCF and to function together in
X-chromosome inactivation (52). YY1 is a ubiquitous
four-zinc-finger transcription factor that has been
implicated in biological processes such as embryogenesis,
differentiation, cell proliferation and tumorigenesis (55).
Surprisingly, in the course of our research YY1 were
found to bind specifically to the SSE–CSE, most likely
through a YY1 binding site that partially overlap the
CSE of a6, a3 and a12. Although YY1 and CTCF
appeared in our experiments as distinct complexes on
EMSA, it is possible that under physiological conditions
they bind cooperatively to the promoters of Pcdh� genes.

Considering that the Pcdh gene cluster contains several
promoter elements in tandem, with only one or two are
active, and the fact that Pcdh expression is monoallelic, it
is possible that in addition to its ability to activate Pcdh
transcription, it also has a central role in insulating nearby
promoters in the monoallelic expression of Pcdh genes.
Depending on the promoter context and cell background,
CTCF may repress or activate transcription; however, its
repression function predominates. We found that CTCF
acts primarily as a positive transcription factor for the
Pcdh genes. We cannot conclude from our results that
the SSE dictates cell type specific expression. However, if
we take into account the fact that CTCF is associated with
most of the Pcdh promoters in vivo (56,57) (according to
the ChIP-seq data found in the UCSC genome browser),
as well as in conserved enhancers HS5-1 (28) and HS16–20
(58), it may well be possible that CTCF also serves as a
repressor that acts to silence the inactive Pcdh genes.
However in these studies the exact site to which CTCF
binds and the functional significance of CTCF for Pcdh
expression were not addressed. This repression can be
achieved through different conformation of DNA/
CTCF-complexes (which CTCF binding to itself) that
allow it to form chromatin hubs by selective intra- and
interchromosomal interactions bridging together specific

subsets of genomic CTCF sites. The divergence of the
CTCF-binding sequences (as a result of unique SSEs)
can serve as ‘CTCF CODE’ (59,60) encrypting inter-
actions with co-partner in a site specific manner
(through the SSEs) and establishing structure-functional
3D organization involved in regulating the expression of
individual Pcdh genes. The nature and composition of this
co-partner is yet to be determined. Profiling the gene ex-
pression pattern of several different cell lines following
profiling the DNA binding location of the CTCF and
other candidate proteins will give us a predictive mechan-
istic model for the specific regulation of the Pcdh gene
expression.
In summary, the expression of distinct Pcdh mRNAs in

individual neurons is regulated by the activation or repres-
sion of subsets of promoters preceding individual genes.
The choice of a gene included in a Pcdh mRNA appears to
be a direct consequence of promoter selection. The mech-
anism of differential Pcdh promoter activation or repres-
sion in individual neurons is therefore likely to be a key
step in regulating the cell-specific expression of distinct
Pcdh genes. Our work is, therefore, another step forward
in the effort to understand the mechanism for Pcdh gene
expression, which may have significant implications on
mammalian brain development. These findings may also
have implications to human neuronal diseases linked to
aberrant Pcdh function such as autism (61), bipolar
disorder, schizophrenia (62), auditory deficiencies (63)
and tumors (64).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–5 and Supplementary Data 1–3.

ACKNOWLEDGEMENTS

The authors would like to thank V. Lobanenkov
(National Institute of Allergy and Infectious Diseases,
National Institutes of Health, Rockville, MD, USA) for
generously providing plasmids pET-7.1 and pET-11ZF.
We would like to thank Eran Segal for help in bioinfor-
matics analysis and discussions. We would like to thank
Ido Amit for the valuable advice and insightful comments,
which were very helpful in improving our manuscript. E.S.
is the incumbent of The Harry Weinrebe Professorial
Chair of Computer Science and Biology. R.D. is the in-
cumbent of the Ruth and Leonard Simon Chair of Cancer
Research.

FUNDING

Kahn Family Research Center for System Biology of the
Human Cell; John von Neumann Minerva Center for the
Development of Reactive Systems; European Union
(FP7-ERC-AdG). Funding for open access charge:
European Union (FP7-ERC-AdG).

Conflict of interest statement. None declared.

Nucleic Acids Research, 2012, Vol. 40, No. 8 3389

http://nar.oxfordjournals.org/cgi/content/full/gkr1260/DC1


REFERENCES

1. Lomvardas,S., Barnea,G., Pisapia,D., Mendelsohn,M., Kirkland,J.
and Axel,R. (2006) Interchromosomal interactions and olfactory
receptor choice. Cell, 126, 403–413.

2. Schmucker,D., Clemens,J., Shu,H., Worby,C., Xiao,J., Muda,M.,
Dixon,J. and Zipursky,S. (2000) Drosophila Dscam is an axon
guidance receptor exhibiting extraordinary molecular diversity.
Cell, 101, 671–684.

3. Wojtowicz,W.M., Flanagan,J.J., Millard,S.S., Zipursky,S.L. and
Clemens,J.C. (2004) Alternative splicing of Drosophila Dscam
generates axon guidance receptors that exhibit isoform-specific
homophilic binding. Cell, 118, 619–633.

4. Hattori,D., Demir,E., Kim,H., Viragh,E., Zipursky,S. and
Dickson,B. (2007) Dscam diversity is essential for neuronal wiring
and self-recognition. Nature, 449, 223–227.

5. Hamada,S. and Yagi,T. (2001) The cadherin-related neuronal
receptor family: a novel diversified cadherin family at the synapse.
Neurosci. Res., 41, 207–215.

6. Shapiro,L. and Colman,D.R. (1999) The diversity of cadherins
and implications for a synaptic adhesive code in the CNS.
Neuron, 23, 427–430.

7. Serafini,T. (1999) Finding a partner in a crowd: neuronal
diversity and synaptogenesis. Cell, 98, 133–136.

8. Yagi,T. and Takeichi,M. (2000) Cadherin superfamily genes:
functions, genomic organization, and neurologic diversity.
Genes Dev., 14, 1169–1180.

9. Emond,M. and Jontes,J. (2008) Inhibition of protocadherin-alpha
function results in neuronal death in the developing zebrafish.
Dev. Biol., 321, 175–187.

10. Phillips,G.R., Tanaka,H., Frank,M., Elste,A., Fidler,L.,
Benson,D.L. and Colman,D.R. (2003) Gamma-protocadherins
are targeted to subsets of synapses and intracellular organelles in
neurons. J. Neurosci., 23, 5096–5104.

11. Weiner,J., Wang,X., Tapia,J. and Sanes,J. (2005) Gamma
protocadherins are required for synaptic development in the
spinal cord. Proc. Natl Acad. Sci. USA, 102, 8–14.

12. Kohmura,N., Senzaki,K., Hamada,S., Kai,N., Yasuda,R.,
Watanabe,M., Ishii,H., Yasuda,M., Mishina,M. and Yagi,T.
(1998) Diversity revealed by a novel family of cadherins
expressed in neurons at a synaptic complex. Neuron, 20,
1137–1151.

13. Wu,Q. and Maniatis,T. (1999) A striking organization of a
large family of human neural cadherin-like cell adhesion genes.
Cell, 97, 779–790.

14. Wang,X., Weiner,J.A., Levi,S., Craig,A.M., Bradley,A. and
Sanes,J.R. (2002) Gamma protocadherins are required for
survival of spinal interneurons. Neuron, 36, 843–854.

15. Blank,M., Triana-Baltzer,G., Richards,C. and Berg,D. (2004)
Alpha-protocadherins are presynaptic and axonal in nicotinic
pathways. Mol. Cell. Neurosci., 26, 530–543.

16. Frank,M., Ebert,M., Shan,W., Phillips,G.R., Arndt,K.,
Colman,D.R. and Kemler,R. (2005) Differential expression of
individual gamma-protocadherins during mouse brain
development. Mol. Cell. Neurosci., 29, 603–616.

17. Zou,C., Huang,W., Ying,G. and Wu,Q. (2007) Sequence analysis
and expression mapping of the rat clustered protocadherin gene
repertoires. Neuroscience, 144, 579–603.

18. Fukuda,E., Hamada,S., Hasegawa,S., Katori,S., Sanbo,M.,
Miyakawa,T., Yamamoto,T., Yamamoto,H., Hirabayashi,T. and
Yagi,T. (2008) Down-regulation of protocadherin-alpha A
isoforms in mice changes contextual fear conditioning and spatial
working memory. Eur. J. Neurosci., 28, 1362–1376.

19. Katori,S., Hamada,S., Noguchi,Y., Fukuda,E., Yamamoto,T.,
Yamamoto,H., Hasegawa,S. and Yagi,T. (2009)
Protocadherin-alpha family is required for serotonergic
projections to appropriately innervate target brain areas. J.
Neurosci., 29, 9137–9147.

20. Sugino,H., Hamada,S., Yasuda,R., Tuji,A., Matsuda,Y.,
Fujita,M. and Yagi,T. (2000) Genomic organization of the family
of CNR cadherin genes in mice and humans. Genomics, 63,
75–87.

21. Wu,Q., Zhang,T., Cheng,J., Kim,Y., Grimwood,J., Schmutz,J.,
Dickson,M., Noonan,J., Zhang,M., Myers,R. et al. (2001)

Comparative DNA sequence analysis of mouse and human
protocadherin gene clusters. Genome Res., 11, 389–404.

22. Esumi,S., Kakazu,N., Taguchi,Y., Hirayama,T., Sasaki,A.,
Hirabayashi,T., Koide,T., Kitsukawa,T., Hamada,S. and Yagi,T.
(2005) Monoallelic yet combinatorial expression of variable
exons of the protocadherin-alpha gene cluster in single neurons.
Nat. Genet., 37, 171–176.

23. Kaneko,R., Kato,H., Kawamura,Y., Esumi,S., Hirayama,T.,
Hirabayashi,T. and Yagi,T. (2006) Allelic gene regulation of
Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic
and biallelic expression in single Purkinje cells. J. Biol. Chem.,
281, 30551–30560.

24. Zhang,T., Haws,P. and Wu,Q. (2004) Multiple variable first
exons: a mechanism for cell- and tissue-specific gene regulation.
Genome Res., 14, 79–89.

25. Wu,Q. and Maniatis,T. (2000) Large exons encoding multiple
ectodomains are a characteristic feature of protocadherin genes.
Proc. Natl Acad. Sci. USA, 97, 3124–3129.

26. Tasic,B., Nabholz,C.E., Baldwin,K.K., Kim,Y., Rueckert,E.H.,
Ribich,S.A., Cramer,P., Wu,Q., Axel,R. and Maniatis,T. (2002)
Promoter choice determines splice site selection in protocadherin
alpha and gamma pre-mRNA splicing. Mol. Cell, 10, 21–33.

27. Wang,X., Su,H. and Bradley,A. (2002) Molecular mechanisms
governing Pcdh-gamma gene expression: evidence for a multiple
promoter and cis-alternative splicing model. Genes Dev., 16,
1890–1905.

28. Ribich,S., Tasic,B. and Maniatis,T. (2006) Identification of
long-range regulatory elements in the protocadherin-alpha gene
cluster. Proc. Natl Acad. Sci. USA, 103, 19719–19724.

29. Kawaguchi,M., Toyama,T., Kaneko,R., Hirayama,T.,
Kawamura,Y. and Yagi,T. (2008) Relationship between DNA
methylation states and transcription of individual isoforms
encoded by the protocadherin-alpha gene cluster. J. Biol. Chem.,
283, 12064–12075.

30. Murata,Y., Hamada,S., Morishita,H., Mutoh,T. and Yagi,T.
(2004) Interaction with protocadherin-gamma regulates the cell
surface expression of protocadherin-alpha. J. Biol. Chem., 279,
49508–49516.

31. Amir-Zilberstein,L., Ainbinder,E., Toube,L., Yamaguchi,Y.,
Handa,H. and Dikstein,R. (2007) Differential regulation of
NF-kappaB by elongation factors is determined by core promoter
type. Mol. Cell Biol., 27, 5246–5259.

32. Amir-Zilberstein,L. and Dikstein,R. (2008) Interplay
between E-box and NF-kappaB in regulation of A20 gene
by DRB sensitivity-inducing factor (DSIF). J. Biol. Chem., 283,
1317–1323.

33. Kurukuti,S., Tiwari,V.K., Tavoosidana,G., Pugacheva,E.,
Murrell,A., Zhao,Z., Lobanenkov,V., Reik,W. and Ohlsson,R.
(2006) CTCF binding at the H19 imprinting control region
mediates maternally inherited higher-order chromatin
conformation to restrict enhancer access to Igf2. Proc. Natl Acad.
Sci. USA, 103, 10684–10689.

34. Hancock,A.L., Brown,K.W., Moorwood,K., Moon,H.,
Holmgren,C., Mardikar,S.H., Dallosso,A.R., Klenova,E.,
Loukinov,D., Ohlsson,R. et al. (2007) A CTCF-binding silencer
regulates the imprinted genes AWT1 and WT1-AS and exhibits
sequential epigenetic defects during Wilms’ tumourigenesis.
Hum. Mol. Genet., 16, 343–354.

35. Noonan,J.P., Li,J., Nguyen,L., Caoile,C., Dickson,M.,
Grimwood,J., Schmutz,J., Feldman,M.W. and Myers,R.M. (2003)
Extensive linkage disequilibrium, a common 16.7-kilobase
deletion, and evidence of balancing selection in the human
protocadherin alpha cluster. Am. J. Hum. Genet., 72, 621–635.

36. Noonan,J.P., Grimwood,J., Schmutz,J., Dickson,M. and
Myers,R.M. (2004) Gene conversion and the evolution of
protocadherin gene cluster diversity. Genome Res., 14, 354–366.

37. Sakamoto,S., Kabe,Y., Hatakeyama,M., Yamaguchi,Y. and
Handa,H. (2009) Development and application of
high-performance affinity beads: toward chemical biology and
drug discovery. Chem. Rec., 9, 66–85.

38. Handoko,L., Xu,H., Li,G., Ngan,C.Y., Chew,E., Schnapp,M.,
Lee,C.W., Ye,C., Ping,J.L., Mulawadi,F. et al. (2011)
CTCF-mediated functional chromatin interactome in pluripotent
cells. Nat. Genet., 43, 630–638.

3390 Nucleic Acids Research, 2012, Vol. 40, No. 8



39. Filippova,G.N., Fagerlie,S., Klenova,E.M., Myers,C., Dehner,Y.,
Goodwin,G., Neiman,P.E., Collins,S.J. and Lobanenkov,V.V.
(1996) An exceptionally conserved transcriptional repressor,
CTCF, employs different combinations of zinc fingers to bind
diverged promoter sequences of avian and mammalian c-myc
oncogenes. Mol. Cell. Biol., 16, 2802–2813.

40. Kosaka-Suzuki,N., Suzuki,T., Pugacheva,E.M., Vostrov,A.A.,
Morse,H.C., Loukinov,D. and Lobanenkov,V. (2011)
Transcription factor BORIS (Brother of the Regulator of
Imprinted Sites) directly induces expression of a cancer-testis
antigen, TSP50, through regulated binding of BORIS to the
promoter. J. Biol. Chem., 286, 27378–27388.

41. Renaud,S., Pugacheva,E.M., Delgado,M.D., Braunschweig,R.,
Abdullaev,Z., Loukinov,D., Benhattar,J. and Lobanenkov,V.
(2007) Expression of the CTCF-paralogous cancer-testis gene,
brother of the regulator of imprinted sites (BORIS), is regulated
by three alternative promoters modulated by CpG methylation
and by CTCF and p53 transcription factors. Nucleic Acids Res.,
35, 7372–7388.

42. Ohlsson,R., Renkawitz,R. and Lobanenkov,V. (2001) CTCF is a
uniquely versatile transcription regulator linked to epigenetics and
disease. Trends Genet., 17, 520–527.

43. Gaszner,M. and Felsenfeld,G. (2006) Insulators: exploiting
transcriptional and epigenetic mechanisms. Nat. Rev. Genet., 7,
703–713.

44. Filippova,G.N. (2008) Genetics and epigenetics of the
multifunctional protein CTCF. Curr. Top. Dev. Biol., 80, 337–360.

45. Klenova,E.M., Morse,H.C., Ohlsson,R. and Lobanenkov,V.V.
(2002) The novel BORIS+CTCF gene family is uniquely involved
in the epigenetics of normal biology and cancer. Semin. Cancer
Biol., 12, 399–414.

46. Shu,W., Chen,H., Bo,X. and Wang,S. (2011) Genome-wide
analysis of the relationships between DNaseI HS, histone
modifications and gene expression reveals distinct modes of
chromatin domains. Nucleic Acids Res., 39, 7428–7443.

47. Bell,A.C., West,A.G. and Felsenfeld,G. (1999) The protein
CTCF is required for the enhancer blocking activity of
vertebrate insulators. Cell, 98, 387–396.

48. Liu,Z., Scannell,D.R., Eisen,M.B. and Tjian,R. (2011) Control of
embryonic stem cell lineage commitment by core promoter factor,
TAF3. Cell, 146, 720–731.

49. Heath,H., Ribeiro de Almeida,C., Sleutels,F., Dingjan,G., van de
Nobelen,S., Jonkers,I., Ling,K.W., Gribnau,J., Renkawitz,R.,
Grosveld,F. et al. (2008) CTCF regulates cell cycle
progression of alphabeta T cells in the thymus. EMBO J., 27,
2839–2850.

50. Splinter,E., Heath,H., Kooren,J., Palstra,R.J., Klous,P.,
Grosveld,F., Galjart,N. and de Laat,W. (2006) CTCF mediates
long-range chromatin looping and local histone modification in
the beta-globin locus. Genes Dev., 20, 2349–2354.

51. Soshnikova,N., Montavon,T., Leleu,M., Galjart,N. and
Duboule,D. (2010) Functional analysis of CTCF during
mammalian limb development. Dev. Cell, 19, 819–830.

52. Donohoe,M.E., Zhang,L.F., Xu,N., Shi,Y. and Lee,J.T. (2007)
Identification of a Ctcf cofactor, Yy1, for the X chromosome
binary switch. Mol. Cell, 25, 43–56.

53. Tempera,I., Wiedmer,A., Dheekollu,J. and Lieberman,P.M. (2010)
CTCF prevents the epigenetic drift of EBV latency promoter Qp.
PLoS Pathog., 6, e1001048.

54. Weth,O. and Renkawitz,R. (2011) CTCF function is modulated
by neighboring DNA binding factors. Biochem Cell Biol., 89,
459–468.

55. Gordon,S., Akopyan,G., Garban,H. and Bonavida,B. (2006)
Transcription factor YY1: structure, function, and therapeutic
implications in cancer biology. Oncogene, 25, 1125–1142.

56. Kim,T.H., Abdullaev,Z.K., Smith,A.D., Ching,K.A.,
Loukinov,D.I., Green,R.D., Zhang,M.Q., Lobanenkov,V.V. and
Ren,B. (2007) Analysis of the vertebrate insulator protein
CTCF-binding sites in the human genome. Cell, 128, 1231–1245.

57. Kehayova,P., Monahan,K., Chen,W. and Maniatis,T. (2011)
Regulatory elements required for the activation and repression of
the protocadherin-alpha gene cluster. Proc. Natl Acad. Sci. USA,
108, 17195–17200.

58. Yokota,S., Hirayama,T., Hirano,K., Kaneko,R., Toyoda,S.,
Kawamura,Y., Hirabayashi,M., Hirabayashi,T. and Yagi,T.
(2011) Identification of the cluster control region for the
protocadherin-{beta} genes located beyond the protocadherin-
{gamma} cluster. J. Biol. Chem., 286, 31885–31895.

59. Ohlsson,R., Lobanenkov,V. and Klenova,E. (2010) Does CTCF
mediate between nuclear organization and gene expression?
Bioessays, 32, 37–50.

60. Phillips,J.E. and Corces,V.G. (2009) CTCF: master weaver of the
genome. Cell, 137, 1194–1211.

61. Morrow,E., Yoo,S., Flavell,S., Kim,T., Lin,Y., Hill,R.,
Mukaddes,N., Balkhy,S., Gascon,G., Hashmi,A. et al. (2008)
Identifying autism loci and genes by tracing recent shared
ancestry. Science, 321, 218–223.

62. Pedrosa,E., Stefanescu,R., Margolis,B., Petruolo,O., Lo,Y.,
Nolan,K., Novak,T., Stopkova,P. and Lachman,H. (2008)
Analysis of protocadherin alpha gene enhancer polymorphism in
bipolar disorder and schizophrenia. Schizophr. Res., 102, 210–219.

63. Zheng,Q., Yu,H., Washington.J.L. 3rd, Kisley,L., Kikkawa,Y.,
Pawlowski,K., Wright,C. and Alagramam,K. (2006) A new
spontaneous mutation in the mouse protocadherin 15 gene. Hear
Res., 219, 110–120.

64. Dallosso,A., Hancock,A., Szemes,M., Moorwood,K.,
Chilukamarri,L., Tsai,H., Sarkar,A., Barasch,J., Vuononvirta,R.,
Jones,C. et al. (2009) Frequent long-range epigenetic silencing of
protocadherin gene clusters on chromosome 5q31 in Wilms’
tumor. PLoS Genet., 5, e1000745.

Nucleic Acids Research, 2012, Vol. 40, No. 8 3391


