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Abstract

Due to the recent advances in high-throughput sequencing technologies, it becomes possi-

ble to directly analyze microbial communities in human body and environment. To under-

stand how microbial communities adapt, develop, and interact with the human body and the

surrounding environment, one of the fundamental challenges is to infer the interactions

among different microbes. However, due to the compositional and high-dimensional nature

of microbial data, statistical inference cannot offer reliable results. Consequently, new

approaches that can accurately and robustly estimate the associations (putative interac-

tions) among microbes are needed to analyze such compositional and high-dimensional

data. We propose a novel framework called Microbial Prior Lasso (MPLasso) which inte-

grates graph learning algorithm with microbial co-occurrences and associations obtained

from scientific literature by using automated text mining. We show that MPLasso outper-

forms existing models in terms of accuracy, microbial network recovery rate, and reproduc-

ibility. Furthermore, the association networks we obtain from the Human Microbiome

Project datasets show credible results when compared against laboratory data.

Author summary

Microbial communities exhibit rich dynamics including the way they adapt, develop, and

interact with the human body and the surrounding environment. The associations among

microbes can provide a solid foundation to model the interplay between the (host) human

body and the microbial populations. However, due to the unique properties of composi-

tional and high-dimensional nature of microbial data, standard statistical methods are

likely to produce spurious results. Although several existing methods can estimate the

associations among microbes under the sparsity assumption, they still have major difficul-

ties to infer the associations among microbes given such high-dimensional data. To

enhance the model accuracy on inferring microbial associations, we propose to integrate

multiple levels of biological information by mining the co-occurrence patterns and inter-

actions directly from large amount of scientific literature. We first show that our proposed

method can outperform existing methods in synthetic experiments. Next, we obtain credi-

ble inference results from Human Microbiome Project datasets when compared against

laboratory data. By creating a more accurate microbial association network, scientists in
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this field will be able to better focus their efforts when experimentally verifying microbial

associations by eliminating the need to perform exhaustive searches on all possible pairs

of associations.

Introduction

Microbes play an important role both in environment and human life. However, the way

microbes affect the human health remains largely unknown. Knowledge of the microbial inter-

actions can provide a solid foundation to model the interplay between the (host) human body

and the microbial populations; this can serve as a key step towards precision medicine [1].

Unfortunately, understanding microbes interactions is difficult, as most microbes cannot be

easily cultivated in standard laboratory settings. However, the recent increase of quality and

reduced costs of sequencing technologies (e.g., shotgun or PCR directed sequencing [2])

enable researchers to collect information from the entire genome of all microbes under differ-

ent environment conditions. As a result, various datasets ranging from earth ecosystem to

human microbiome have been made publicly available under the Human Microbiome Project

[3] or the Earth Microbiome Project [4].

In this paper, we aim at analyzing the networks of associations (putative interactions)

among the microbes of human microbiome in order to understand how microbes can affect

the human health. To this end, there exist several challenges: First, the amount of sequenced

data that corresponds to human microbiome available from public websites is scarce. To date,

one of the largest metagenomic datasets of human niches is the NIH Human Microbiome

Project (HMP) [3] which only provides a few hundreds of healthy individual samples (n) of

various body sites, while the number of measured microbes (p) usually ranges from hundreds

to thousands. As a consequence, the number of associations (p(p − 1)/2) is much greater than

the number of samples (i.e., high-dimensional data). Another big challenge stems from the

nature of the data itself. Sequencing data only provides the relative abundance of various spe-

cies; this is because the sequencing results are a function of sequencing depth and the biologi-

cal sample size [5]. Therefore, from a statistical standpoint, the relative taxon abundance falls

into the class of compositional data [6]; this causes statistical methods such as Pearson or

Spearman correlations (which work with absolute values) to generate spurious results.

To infer microbe associations for both compositional and high-dimensional data, several

algorithms have been developed. A pioneering method called SparCC [7] applies log-ratio

transform on compositional data and directly approximates the correlation among microbes

based on sparsity assumption of microbial associations. However, SparCC does not consider

the influence of errors in compositional data; this may reduce the correlation estimation accu-

racy. More precisely, SparCC approximates the basis variance (i.e., the variance of composi-

tional data) under the assumption that average correlations are small. Second, the iterative

procedure used to estimate the magnitude of correlations can exceed value 1; this may cause

poor approximations if one tries to remedy the problem by setting up the threshold value to 1

or -1 for the estimated correlations; these series of approximations may reduce the correlation

estimation accuracy quite significantly. SPIEC-EASI [8] calculates the covariance of the log-

ratio transformed data to approximate the covariance of the absolute abundance of microbes;

then, it uses either neighborhood selection (mb) [9] or graphical Lasso (gl) [10] to estimate the

conditional dependencies among microbes. CCLasso [11] is similar to SPIEC-EASI which

applies log-ratio transform on compositional data and imposes a l1 penalty on the inverse

covariance matrix of the microbes and then solves it to obtain a sparse covariance matrix.
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However, it is not clear whether or not CCLasso can obtain a consistent estimator on the

inferred microbial covariance without showing consistency analysis (see consistency analysis

for graphical Lasso in S1 File section 8).

We note that although the above methods can estimate the covariance among microbes

under the sparsity assumption, they still have major difficulties to infer the associations among

microbes given such high-dimensional data. To solve the problem caused by high-dimensional

data, we propose to integrate multiple levels of biological information to enhance the model

accuracy on inferring microbial associations. Indeed, an increasing amount of scientific litera-

ture provides a large amount of data which can be mined not only for the co-occurrence of

microbes, but also to predict microbes associations directly. For instance, pioneering work

[12] considers automated analysis of the co-occurrence of bacterial species through statistical

testing approaches (e.g., Fisher’s exact test). Recently, Lim et al. [13] incorporated machine

learning techniques to automatically identify and extract microbial associations directly from

the abstracts of scientific papers. Finally, Wang et al. [14] and Li et al. [15] use prior biological

knowledge to reconstruct genes interaction networks.

To the best of knowledge, we are the first to consider experimentally verified biological

knowledge as a priori information to derive microbial association networks. To this end, we

transform the original problem of microbial associations estimation into a graph structure

learning problem where nodes represent microbes and edges represent (pairwise) associations

among microbes. With this new problem formulation, the graphical Lasso algorithm becomes

suitable to infer the microbial association network. We also integrate the text mining results

from the scientific literature as prior knowledge for inferring the microbes graph structure; the

proposed algorithm Microbial Prior Lasso (MPLasso) turns out to be more accurate than other

existing methods on inferring the microbial associations. The proposed MPLasso pipeline is

shown in Fig 1.

We assess the performance of MPLasso in the presence of prior knowledge by first compar-

ing it against other previously proposed methods (e.g., CCLasso, REBACCA [16], SparCC,

SPIEC-EASI, and CCREPE [17]) through synthetic data generated from different graph struc-

tures (run time comparisons of existing methods are summarized in S1 File section 1 and S1

Table). We show that our proposed MPLasso outperforms all these methods in terms of area

under the precision-recall curve (AUPR) and accuracy (ACC) of network associations predic-

tion. Next, we evaluate the HMP datasets of two different sequencing techniques (shotgun and

16S ribosomal RNA (rRNA)) at five different body sites and compare the reproducibility of the

estimated results. Taken together, our contributions are three fold:

1. First, we integrate the graph learning algorithm (graphical Lasso) with a priori knowledge

by mining the co-occurrence of microbes in literature. To the best of our knowledge, we are

the first to integrate these two different algorithms to infer the association networks among

microbes.

2. Second, we show that our proposed method, MPLasso in the presence of prior knowledge,

outperforms all other previously proposed methods for inferring graph structures on differ-

ent synthetic datasets. Additionally, the MPLasso accuracy on edge recovery rate is up to

95%, on average.

3. Third, we show that MPLasso can robustly and accurately estimate the associations

among microbes with a reproducibility up to 90%. Additionally, the associations found

with our approach correlate well with the experimental findings reported in the scientific

literature.
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Materials and methods

Acquisition and transformation of microbial count data

In this paper, we consider high-throughput comparative metagenomic data obtained from the

next-generation sequencing (NGS) platforms. More specifically, two types of gene sequencing

data are considered: 16S rRNA and shotgun data. Shotgun data analyses are accomplished by

unrestricted sequencing of the genome of all microorganisms present in a sample; on the con-

trary, the domain of 16S rRNA is restricted to bacteria and archaea. Data obtained from the

human microbiome project (HMP) have a curated collection of sequence of microorganisms

associated with the human body from both shotgun and 16S sequencing technologies.

For the 16S rRNA data, we consider the high-quality sequencing reads in 16S variable

regions 3-5 (V35) of HMP healthy individuals from Phase one production study (May 1,

2010). The taxonomy classification of the 16S rRNA are performed using either mothur

(HMMCP) [18] or QIIME (HMQCP) [19] pipelines. The resulting table for operational taxo-

nomic units (OTUs) at each body site of the human samples can be obtained from http://

hmpdacc.org/HMMCP/ and http://hmpdacc.org/HMQCP/. For the shotgun data (HMASM),

we obtain data from http://hmpdacc.org/HMASM/ and use the trimmed sequences as inputs

to the metaphlan2 [20] pipeline which can generate the OTU abundance for each sample.

The OTU table can be represented by a matrix D 2 Nn×p whereN represents the set of natu-

ral numbers. di ¼ ½di
1
; di

2
; . . . ; di

p� denotes the p-dimensional row vector of OTU counts from

the ith sample (i = 1, . . ., n). To account for different sequencing depths for each sample, the

raw count data (di) are typically transformed into relative abundances (x) by using log-ratio

transform [6]. Statistical inference on the log-ratio transform of the compositional data (x) can

Fig 1. Our proposed framework of inferring microbial association network. We conduct two different sets of experiments, namely, synthetic and real data. For the

synthetic experiment, we generate data based on different graph structures and evaluate the performance of our proposed algorithm by using three performance

metrics (i.e., L1, ACC, and AUPR). For the real data experiments, the prior information is obtained through automated text-mining. Since there is no “gold standard”

network to evaluate performance, we evaluate the reproducibility of inferred networks instead.

https://doi.org/10.1371/journal.pcbi.1005915.g001
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be shown to be equivalent to the log-ratio transform on the unobserved absolute abundance

(d) as: log xi
xj

� �
¼ log di=m

dj=m

� �
¼ log di

dj

� �
: Here, we apply the centered log-ratio (clr) transform

as follows:

c ¼ clrðxÞ ¼ ½ log ð
x1

mðxÞ
Þ; log ð

x2

mðxÞ
Þ; . . . ; log ð

xp

mðxÞ
Þ� ð1Þ

where mðxÞ ¼ ð
Qp

i¼1
xiÞ

1
p is the geometric mean of the composition vector x. The resulting vec-

tor c is constrained to be a zero sum vector.

The covariance matrix of the clr transform C = Cov[clr(c)] can be related to the covariance

matrix of the log-transformed absolute abundances Γ = Cov[log D] via the relationship [6, 8]

C = UΓU, where U ¼ Ip � 1

p J, where Ip is the p-dimensional identity matrix, and J is the p-

dimensional all-ones vector. For the case where p>> 0, the finite sample estimator (Ĉ) serves

as a good approximation of Γ̂; therefore, the finite sample estimator (Ĉ) serves as the basis on

inferring the correlations among microbes. To account for the zero counts in samples, we add

pseudo count to the original count data to avoid numerical issues when using the clr
transform.

Microbial Prior Lasso (MPLasso)

To infer the pairwise associations among microbes, we can transform the original inferring

problem into a graph learning problem where each node represents an OTU (e.g., taxon) and

each edge represents a pairwise association between microbes; the resulting graph is an undi-

rected graph G ¼ ðV; EÞ, where V and E represent the node and edge sets, respectively.

Suppose the observed data (d) are drawn from a multivariate normal distribution N(d|μ, S)

with mean μ and covariance S. The inverse covariance matrix (precision matrix) O = S−1

encodes the conditional independence among nodes. More specifically, if the entry (i, j) of the

precision matrix Oi,j = 0, then node i and node j are conditionally independent (given the

other nodes) and there is no edge among them (i.e., Ei,j = 0).

However, microbial data usually come with a finite amount of samples (n) but with high

dimensionality (p); this makes the graph inferring problem intractable since the number of

variables (
pðp� 1Þ

2
) is greater than n. To solve this problem, an important assumption that needs

to be made is to assume that the underlying (true) graph is reasonably sparse. One suitable

algorithm to select the precision matrix under sparsity assumption is to utilize the graphical

Lasso proposed previously [8, 10].

As shown in Fig 2, we propose to utilize the information obtained from the scientific litera-

ture in order to construct the prior matrix P 2 Rp×p, where each entry Pi,j 2 [0, 1] represents

the prior probability of associations between taxon i and taxon j. We can impose different

amounts of penalties on the precision matrix; this is different from the standard formulation

where the penalty (ρ) imposed on the precision matrix is the same. Therefore, by incorporating

the prior information into the penalty matrix (P), the proposed MPLasso can be formulated as

follows:

Ω̂ ¼ arg max
Ω

flog detðΩÞ � trðΩĈÞ � rjP
Ωj
1
g ð2Þ

where Ĉ is the empirical covariance of the microbial data, and O is the precision matrix of the

estimated associations among microbes. Here det and tr denote the determinant and the trace

of a matrix, respectively. |O|1 is the L1 norm, i.e., the sum of the absolute values of the elements

of O and
 represents the component-wise multiplication. When the value of Pi,j is large, this
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directly puts a heavy penalty and represents a weaker association between taxa and vice versa.

This way, by imposing the prior information, we can accurately infer the associations among

microbes.

Automated text-mining of microbial associations from literature

We extract two types of data to be used as priors for our model. One type of data is from the

microbial co-occurrence in literature that examines the number of abstracts where two taxa

appear together and compares this to random chance. The second type of data is from the

machine learning-based method that extracts the full details of the interaction, including the

sign and direction of the interaction.

To acquire the prior knowledge (P) of microbial associations from reported experiments

and published papers, we utilize the PubMed database (https://www.ncbi.nlm.nih.gov/

pubmed/) that contains a massive amount of papers with abstracts. For the 16S rRNA data

where the taxonomy level can only be achieved at the genus level, we adopt the statistical test-

ing method (i.e., Fisher’s exact) [12] to identify the pairwise associations derived from the

microbial co-occurrence in literature. On the other hand, for the shotgun data where the tax-

onomy level can be up to species level, we adopt both the microbial co-occurrence in literature

and the machine-learning-based methods [13] to obtain such associations.

We modify the code available on https://github.com/CSB5/atminter that utilizes the Entrez

search system to query all the possible combinations of taxon-taxon pairs from the data. More

specifically, the query “taxon i AND taxon j” for genus (species) level are performed on

PubMed database in order to obtain the number of papers that corresponds to this query term.

Fig 2. Comparison of our proposed MPLasso and graphical Lasso (GLasso) on inferring the same compositional

data in a small example. (a) The edges of the true network are shown with red lines. (b) The entities of the

compositional data matrix shown with denser colors represent higher values (c) Given the prior network where blue

and black edges are correct and wrong information, respectively, the MPLasso can still accurately estimate the graph

structure with one missing edge and only one wrongly estimated edge (black edge). (d) GLasso wrongly estimates

several edges along with missing edges.

https://doi.org/10.1371/journal.pcbi.1005915.g002
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Acquisitions of abstract’s content follow a similar way where the query term follows the format

“species i AND species j” for each pair of species. Note that, all text-mining procedures are

completely automated; that is, users only need to specify the species pairs and the tool will

extract the information automatically (and comprehensively) from the PubMed database.

Microbial co-occurrence in scientific literature. We use Fisher’s exact test, which only

requires the number of abstracts, to examine the microbial co-occurrence in scientific litera-

ture. For example, the query “taxon i AND taxon j” returns four numbers: (1) ni: the number

of abstracts that contains only taxon i, (2) nj: the number of abstracts that contains only taxon

j, (3) ni,j: the number of abstracts that contain both taxa i and j, and (4) M: the number of

abstracts that contain neither taxa i and j (see S6 Table). Next, by creating a 2-by-2 contingency

table using the above four numbers (see S7 Table for an example), Fisher’s exact test can be

used to examine the probability that the number of abstracts where two taxa co-appear occurs

at a higher rate than chance expectation. Note that we use the Bonferroni correction [21] to

correct the p-value in order to deal with large amounts of candidate associations from the Fish-

er’s exact test.

If taxa pair hi, ji is rejected by the alternative hypothesis with high statistical significance

(i.e., calculated p-value< 0.001), we put a larger penalty on entry (i, j) of the prior matrix P.

This way, we narrow down the solution space for candidate association pairs (see S10 Table);

MPLasso can effectively select the associations from these candidate pairs within this restricted

space. In this respect, prior information will not dominate the results, but rather improve the

algorithm’s accuracy and robustness.

Machine learning-based approach. In [13], the authors train the support vector machine

[22] based on the manually curated abstracts and classify interactions into three categories:

positive, negative, and no interaction. We use the pre-trained model provided by [13] to clas-

sify the abstracts of the species pairs obtained from the PubMed database. For example, for

the hStreptococcus mitis, Actinomyces naeslundiii query, we obtain 65 abstracts that contain

both taxa names. By concatenating these abstracts into a single file, the pre-trained classifier is

able to classify this pair as either interacting or non-interacting. More specifically, if species

pair hi, ji is classified as interacting, then we put a smaller penalty on entry (i, j) of the prior

matrix P. In this respect, the species pair hi, ji is more likely to be selected by MPLasso. Note

that these experimentally validated interactions take precedence over (and we effectively

ignore) the prior information obtained from the Fisher’s exact test.

Model selection

To select the optimal penalty parameter (ρ), we use the Bayesian information criterion (BIC)

[23] which is a standard method for model selection. The BIC for Gaussian graphical models

takes the form:

BIC ¼ � 2lnðOÞ þ jEj log ðnÞ ð3Þ

where |E| is the number of edges in the association network, n is the sample size, and

lnðΩÞ ¼ n
2
½ log ðdetðΩÞÞ � trðΩĈÞ�. Based on (3), we choose ρ that minimizes BIC.

Results

Experiments with synthetic data

To show the effectiveness of our proposed model, we first compare our model against several

state-of-the-art models: CCREPE, SparCC, REBACCA, CCLasso, SPIEC (mb) and SPIEC (gl).

All these codes have been implemented using the R language. We set up p-value at 0.05 for
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CCREPE and the threshold of correlation for SparCC at 0.1 (see S1 File section 1 for precise

simulation settings for each algorithm).

For MPLasso in real datasets, the true underlying network is only partially known and con-

tains spurious information. To assess our algorithm performance with imperfect prior infor-

mation, we consider prior information with different precision levels, where the precision

level is defined as the number of true edges over the total number of edges in the prior infor-

mation. The total number of edges in the prior network is set to be equal to the number of

edges in the true underlying network. Therefore, a precision level of 0.1 indicates that 10% of

the edges in the prior network are true edges, whereas the other 90% are spurious ones (see S1

File section 7 for details of introducing priors). We report the results we obtained for 0.5 preci-

sion level in the synthetic experiments while more results for different precision levels can be

found in S1 File section 3 and S2 Fig.

Data generation. We simulate the compositional data from the additive log normal distri-

bution with a given mean and covariance matrix ln d * N(μ, S), xi ¼
diPp

i¼1
di

, where μ and S

represent the mean and covariance, respectively; d is the sample generated from a multivariate

logarithm normal distribution, and x is a compositional vector. To evaluate the performance

of our model to recover different network structures, we report three representative network

structures: cluster, band(4), and scale-free graph in Table 1, and two other graphs (random

and hub) in S2 Table. Different sparsities on graph structure can strongly affect network recov-

ery, and thus the network topologies we reported span a range of sparsity where band(4) is the

least sparse followed by cluster and scale-free graphs.

We use the package in [24] to generate the precision matrix (Θ) and the positive definite

covariance matrix S = Θ−1 for each graph (see S1 File section 2 and S1 Fig). The covariance

matrix is then computed to generate multivariate normal samples (d). Since the number of

samples can be around the same order as the number of OTU in real datasets, we generate a

small number of samples to evaluate the performances of MPLasso and other methods.

More specifically, we evaluate 6 different combinations, namely, (p = 50, n = (50, 100, 200))

and (p = 100, n = (100, 200, 400)). For each combination, we simulate 100 runs and calculate

the mean value and standard deviation for all performance metrics. In addition to additive

log normal distribution, we have included a new set of experiments to show that our

proposed algorithm is able to deal with zero-inflated distributions. More precisely, we

choose the negative binomial distribution that is suggested to be more suitable to model the

microbial count data [25]. Same experimental setting of parameters (as the additive log normal

distribution) are considered, and experimental results are presented in S6 and S7 Figs, S4 and

S5 Tables.

Performance metrics. We consider three different metrics as follows:

• Area Under the Precision-Recall Curve (AUPR): We compute the AUPR and ignore the sign

of inferred edges. Precision is defined as the number of true positives, divided by the sum of

true and false positives, while Recall is defined as the number of true positives, divided by the

sum of true positive and false negatives.

• Accuracy (ACC): We estimate ACC as the number of true positives plus the true negatives,

divided by total number of pairwise correlations.

• L1 distance: The L1 distance is defined as the difference between estimated and true values.

More specifically, L1 ¼ jR � R̂j, where R is the true correlation matrix and R̂ is the esti-

mated correlation matrix.
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Performance comparisons. We report (p = 50, n = 50), (p = 50, n = 100), and (p = 100,

n = 100) in Table 1. For completeness, more experimental results are available in S2 and S3

Tables, S3 and S4 Figs. For L1 distance, all the methods are evaluated on the correlation matrix.

For ACC and AUPR, in order to have a fair comparison among different methods, the micro-

bial associations for correlation (covariance) based method (i.e., SparCC, CCREPE,

REBACCA, and CCLasso) are obtained from the inferred microbial correlation (covariance),

while for precision based methods (i.e., SPIEC (mb), SPIEC (gl), and MPLasso) is obtained

from the inferred precision matrix. As it can be seen in both Fig 3 and Table 1, our proposed

method (MPLasso) achieves the best AUPR on all the cases; this confirms that MPLasso can

accurately identify associations among microbes. However, the L1 distance is greater than

REBACCA due to the fact that MPLasso directly estimates the precision matrix of microbial

associations, not on the correlation matrix.

As we increase the OTU numbers and fix the sample size, the performance for all methods

degrades. For the case where (p = 100, n = 100), MPLasso still outperforms all other methods

in terms of ACC and AUPR. On the other hand, as we vary the sample size from 50 to 100 and

fix the number of OTU to 50, the performance of all the metrics for MPLasso increases, as

expected. When sample size equals 100, which is often the case in practice (e.g., HMP dataset),

Table 1. Performance comparison of different methods for additive log normal model.

Method L1 ACC AUPR L1 ACC AUPR L1 ACC AUPR

Cluster Graph

MPLasso 0.059 (0.005) 0.911 (0.010) 0.682 (0.024) 0.052 (0.004) 0.926 (0.009) 0.748 (0.029) 0.028 (0.002) 0.959 (0.004) 0.692 (0.023)

CCLasso 0.080 (0.008) 0.893 (0.008) 0.526 (0.029) 0.068 (0.004) 0.903 (0.008) 0.614 (0.026) 0.053 (0.005) 0.950 (0.003) 0.562 (0.027)

SparCC 0.083 (0.004) 0.892 (0.009) 0.507 (0.028) 0.069 (0.003) 0.899 (0.010) 0.590 (0.030) 0.053 (0.002) 0.949 (0.003) 0.533 (0.027)

REBACCA 0.055 (0.005) 0.896 (0.010) 0.572 (0.027) 0.042 (0.003) 0.905 (0.010) 0.629 (0.031) 0.025 (0.001) 0.950 (0.004) 0.583 (0.027)

SPIEC (mb) - 0.893 (0.010) 0.591 (0.030) - 0.901 (0.012) 0.615 (0.030) - 0.952 (0.004) 0.581 (0.026)

SPIEC (gl) 0.064 (0.006) 0.894 (0.010) 0.607 (0.024) 0.063 (0.006) 0.900 (0.011) 0.630 (0.024) 0.030 (0.003) 0.952 (0.004) 0.615 (0.026)

CCREPE 0.123 (0.011) 0.887 (0.009) 0.471 (0.022) 0.123 (0.011) 0.892 (0.009) 0.567 (0.025) 0.060 (0.005) 0.943 (0.003) 0.436 (0.022)

Band Graph

MPLasso 0.093 (0.002) 0.867 (0.007) 0.654 (0.018) 0.087 (0.005) 0.887 (0.007) 0.694 (0.019) 0.048 (0.001) 0.939 (0.002) 0.654 (0.013)

CCLasso 0.092 (0.006) 0.853 (0.003) 0.468 (0.018) 0.074 (0.004) 0.863 (0.005) 0.551 (0.024) 0.062 (0.003) 0.929 (0.002) 0.506 (0.015)

SparCC 0.087 (0.003) 0.852 (0.003) 0.452 (0.020) 0.077 (0.003) 0.858 (0.004) 0.523 (0.019) 0.058 (0.001) 0.927 (0.001) 0.476 (0.015)

REBACCA 0.093 (0.002) 0.854 (0.004) 0.520 (0.027) 0.080 (0.002) 0.865 (0.005) 0.576 (0.024) 0.044 (0.001) 0.930 (0.002) 0.537 (0.016)

SPIEC (mb) - 0.851 (0.004) 0.597 (0.039) - 0.858 (0.007) 0.619 (0.025) - 0.929 (0.002) 0.571 (0.020)

SPIEC (gl) 0.096 (0.000) 0.850 (0.004) 0.617 (0.027) 0.096 (0.000) 0.856 (0.007) 0.629 (0.016) 0.050 (0.000) 0.928 (0.002) 0.588 (0.013)

CCREPE 0.167 (0.004) 0.848 (0.000) 0.427 (0.017) 0.170 (0.003) 0.851 (0.004) 0.504 (0.019) 0.089 (0.001) 0.922 (0.000) 0.391 (0.012)

Scale-free Graph

MPLasso 0.066 (0.008) 0.970 (0.003) 0.750 (0.027) 0.065 (0.008) 0.976 (0.004) 0.817 (0.039) 0.033 (0.004) 0.985 (0.001) 0.758 (0.024)

CCLasso 0.077 (0.008) 0.964 (0.002) 0.620 (0.046) 0.071 (0.010) 0.969 (0.004) 0.740 (0.063) 0.046 (0.005) 0.983 (0.001) 0.641 (0.041)

SparCC 0.078 (0.006) 0.963 (0.001) 0.594 (0.038) 0.067 (0.006) 0.967 (0.003) 0.697 (0.046) 0.050 (0.002) 0.982 (0.001) 0.610 (0.040)

REBACCA 0.069 (0.008) 0.966 (0.003) 0.668 (0.046) 0.064 (0.010) 0.973 (0.004) 0.758 (0.046) 0.034 (0.004) 0.984 (0.001) 0.673 (0.030)

SPIEC (mb) - 0.962 (0.003) 0.646 (0.049) - 0.969 (0.005) 0.710 (0.055) - 0.982 (0.002) 0.630 (0.063)

SPIEC (gl) 0.068 (0.007) 0.963 (0.003) 0.695 (0.024) 0.069 (0.008) 0.969 (0.004) 0.747 (0.034) 0.033 (0.004) 0.983 (0.001) 0.712 (0.026)

CCREPE 0.072 (0.004) 0.961 (0.000) 0.549 (0.030) 0.070 (0.004) 0.962 (0.001) 0.660 (0.040) 0.035 (0.002) 0.980 (0.000) 0.515 (0.028)

We consider three different graph structures and three sets of parameters, namely, (p = 50, n = 50), (p = 50, n = 100), and (p = 100, n = 100). For each experiment, we

average over 100 simulation runs with standard deviations in round brackets. We use three metrics (L1, ACC, AUPR) to quantify the performance as defined in

Performance metrics. Bold numbers show best results.

https://doi.org/10.1371/journal.pcbi.1005915.t001
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MPLasso can achieve outstanding performance in terms of both average ACC and AUPR (0.93

and 0.75, respectively). Also, when sample size equals 200 and 400 (see S3 Table), MPLasso

can near-perfectly recover the network (i.e., AUPR� 1).

As shown in Fig 3, we can see that most of the algorithms can achieve high precisions under

low recalls, which means that they can accurately estimate the true edges. However, as the

number of recalls increases, only MPLasso can still achieve high precision when comparing

with other methods; this shows that MPLasso can recover edges with very low errors. Addi-

tionally, all methods show dependence on different graph structures; this is due to different

sparsity of a particular type of graph encodes. Since scale-free graph is less sparse than band(4)

and cluster graph, all methods achieve better performance in inferring edges. Additionally,

Fig 3. AUPR curves of different methods for additive log normal model. Each set of experiment are averaged over 100 simulations. We compare three different sets

of sample size (n) and OTU numbers (p) for three different graph structures. For (p = 50, n = 50), (a) cluster, (b) band(4), and (c) scale-free. For (p = 50, n = 100), (d)

cluster, (e) band(4), and (f) scale-free. For (p = 100, n = 100), (g) cluster, (h) band(4), and (i) scale-free. As can be seen, the MPLasso (red curve) performs better than

all other methods.

https://doi.org/10.1371/journal.pcbi.1005915.g003
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even when precision level is as low as 0.1 (i.e., only 10% of the edges in prior information are

true edges, whereas the other 90% are spurious ones), MPLasso can still achieve up to an aver-
age 0.65 in AUPR for the case where (p = 50, n = 50) (see S2 Fig).

Since MPLasso is able to infer the sign of the edge, we also report the performance of differ-

ent algorithms on accuracy of edge sign recovery, which is defined as the number of correctly

inferred edge signs over the total number of inferred edges. As shown in S13 Table, all existing

algorithms (including MPLasso) can successfully achieve a sign recovery accuracy above 0.9,

on average. However, although algorithms have similar performance on edge sign recovery

accuracy, MPLasso shows better performance in edge recovery accuracy (i.e., AUPR and

ACC).

In addition to examining the impact of different precision levels, we also quantify the effect

of different amount of prior information being used in the synthetic experiments for three

graph structures (cluster, band(4), and scale-free graphs). As shown in Fig 4, if the amount of

prior information increases, then the performance in terms of AUPR increases too, as

expected. For L1, which is evaluated based on correlations, different amounts of prior informa-

tion have little effect due to the fact that MPLasso directly estimates the precision matrix. For

ACC, since MPLasso has already achieved high performance, increasing the amount of prior

information only brings a small increment of improvement in performance. When prior per-

centage = 100%, AUPR achieves around 20% improvements over the case without using any

prior information. For cases without using any prior information, MPLasso can still achieve

comparable results with other existing methods presented in Fig 3 and Table 1.

For the zero-inflated distribution (discussed in S1 File section 4 and S5 Fig), as it can be

seen in S6 and S7 Figs, S4 and S5 Tables, the performance of our proposed method outper-

forms all the other methods except a few cases involving hub graphs; this is similar to the

results for the additive log normal model. In summary, our results show that MPLasso works

well with many different distributions and graph structures even in the cases with low preci-

sion levels and less prior information.

HMP dataset

Emboldened by the success of our proposed algorithm on synthetic data, we have applied

MPLasso to infer the associations among microbes for HMP data. Acquisitions and prepro-

cessing for both 16S rRNA and shotgun sequencing data are described in Material and meth-

ods section. We report the same three body sites (i.e., buccal mucosa, supragingival plague,

and tongue dorsum) of each pipeline and filter out OTUs that appear in less than 10% of total

Fig 4. The performance of different amount of prior information on three different graph structures. (a) L1 distance (b) ACC (c) AUPR.

https://doi.org/10.1371/journal.pcbi.1005915.g004
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samples—two more body sites (i.e., stool and anterior names) are reported in S1 File section 5

and S8 Fig. The total number of samples and OTUs are summarized in Table 2 and S8 Table.

We use the clr transformation in (1) and add pseudo count 0.1 to all the samples, then nor-

malize the counts to get compositional data. However, there is no true correlation network of

taxon-taxon associations in real data as opposed to synthetic data. To assess and compare the

performance among different methods in real data experiments, we measure the reproducibil-

ity of the resulting networks. More specifically, we define the “gold standard” network as the

one that uses the full dataset. The reproducibility is defined as the number of edges that had

been correctly estimated when using only half of the samples in the full dataset compared to

the “gold standard” network. We randomly select half of the samples in the full dataset of each

body site and then average over 20 independent simulations. We compare the reproducibility

of the MPLasso against SPIEC (gl) which has a better performance than other existing algo-

rithms on synthetic datasets as well as CCLasso which has a better performance than other cor-

relation based methods in [11].

The reproducibility results are summarized in Table 2. MPLasso has a better reproducibility

over SPIEC (gl) and CCLasso; this implies that MPLasso is not only more robust, but also

more accurate at inferring edges. We also consider reproducibility on different percentages of

highly connected nodes in S9 Table. Only when we consider as little as only 25% of high degree

nodes, CCLasso has a better performance (but even so for 2% only, on average).

We also summarize the statistics of the non-associated pairs found by the Fisher’s exact test,

potential associated pairs, associated pairs found by MPLasso, and recovered associated pairs

in S10 Table (see also S10 Fig and S1 File section 9). As shown, the known associations

obtained from Fisher’s exact test is around 50% over all possible pairs of associations (i.e.,

around 50% prior information). The recovery rate of associated pairs of MPLasso is around

80%. For comparison, we also include the recovery rate of associated pairs for CCLasso and

SPIEC (gl) algorithms in S11 Table. As we can see by comparing the S10 and S11 Tables,

CCLasso tends to discover more edges than MPLasso and SPIEC (gl). Although CCLasso can

obtain similar results on the recovery rate of associated pairs, it does not perform as well as

MPLasso when considering the recovery rate (i.e., reproducibility) of both associated and non-

associated pairs (see Table 2). In other words, CCLasso finds a greater amount of false positive

Table 2. Reproducibility for MPLasso, SPIEC (gl), and CCLasso at different body sites of different types of HMP datasets.

Body Site (n, p) MPLasso SPIEC (gl) CCLasso

HMASM

BucMuc (113, 73) 0.963 (0.003) 0.904 (0.013) 0.915 (0.005)

SupPla (124, 129) 0.942 (0.005) 0.877 (0.009) 0.919 (0.005)

TonDor (130, 103) 0.948 (0.004) 0.754 (0.030) 0.913 (0.015)

HMMCP

BucMuc (406, 74) 0.923 (0.005) 0.756 (0.033) 0.820 (0.014)

SupPla (423, 84) 0.923 (0.004) 0.862 (0.007) 0.837 (0.012)

TonDor (410, 77) 0.934 (0.003) 0.820 (0.014) 0.850 (0.012)

HMQCP

BucMuc (312, 75) 0.876 (0.006) 0.777 (0.023) 0.818 (0.011)

SupPla (313, 51) 0.883 (0.010) 0.796 (0.015) 0.896 (0.007)

TonDor (316, 45) 0.860 (0.009) 0.735 (0.020) 0.841 (0.024)

For each experiment, we average over 20 simulation runs with standard deviations in round brackets. Bold number shows best result. n and p represent sample size and

taxa number, respectively.

https://doi.org/10.1371/journal.pcbi.1005915.t002
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taxa pairs when compared to MPLasso; this is evaluated through AUPR in synthetic experi-

ments shown in Fig 3.

To compare the estimated association networks at each body site for different pipelines (i.e,

HMASM, HMMCP and HMQCP), we select the “top players” (i.e., high degree nodes) and

arrange them using a counterclockwise layout as shown in Fig 5. For the genus level data, since

we only utilize the Fisher’s exact test (that only requires the information of the number of

abstracts), we can use contents of published scientific literature to validate the inferred

Fig 5. Association network visualization of top degree nodes at different human body sites for different data types. The same node colors represent the

communities nodes belong to. For BucMuc: (a) HMASM, (b) HMMCP, and (c) HMQCP. For SupPla: (d) HMASM, (e) HMMCP, and (f) HMQCP. For TonDor: (g)

HMASM, (h) HMMCP, and (i) HMQCP. As can be seen from species level data (HMASM), phylogenetically related OTUs fall in the same community. Node size

represents the relative node degree within the association network with counterclockwise layout. The color of the edges is the same as the node color and does not have

any special meaning. Abbreviations: BucMuc: Buccal mucosa, SupPla: Supragingival plague, TonDor: Tongue dorsum.

https://doi.org/10.1371/journal.pcbi.1005915.g005
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associations. In contrast, for the species level data, the machine learning-based approach has

already used the contents of abstract to obtain the prior information; therefore, it is inappro-

priate to use any papers that appear in the PubMed search results to validate the inferred asso-

ciations. To circumvent the potential circular validation, we only use the scientific literature

that has not yet been used to create the prior information.

For the buccal mucosa (BucMuc), the association pair hStreptococcus mitis, Actinomyces
naeslundiii, which was found in HMASM (Fig 5(a)), has been shown to have associations [26].

Additionally, the associations are also detected at genus level data as shown in Fig 5(b). Note

that the top degree nodes in HMMCP and HMQCP has 70% in common (i.e., belongs to same

genus) which implies that the microbial composition of BucMuc is relatively robust.

For the supragingival plague (SupPla), the “top players” in species level data (Fig 5(d))

mainly come from two genera: Actinomyces and Prevotella which can be widely found in Sup-

Pla and also correspond well with the HMMCP dataset (Fig 5(e)). Similarly, the species level

associations in tongue dorsum (TonDor) is dominated by Actinomyces as shown in Fig 5(g);

this is because Actinomyces possess 10 different strains out of the total 103 taxa, yet this does

not imply that all members of a particular genus group should be associated. Although not

seen in Fig 5(h) and 5(i), genus Actinomyces is also a high degree node in the association net-

work of the genus data.

One noticeable observation in the species level dataset (HMASM) is that the same genus

belongs to the same community which means that edges are mostly found within OTUs of the

same taxonomic group. This phenomenon is called assortativity and it has been widely

observed in other microbial network studies [17]. However, this does not imply that all mem-

bers of the same taxon should be ecologically associated. To quantify the similarity of high

degree nodes that are found both in HMMCP and HMQCP datasets, we compute the correla-

tion between node degrees at different body sites by utilizing the Spearman correlation method

(see S1 File section 6). We found that TonDor has lower correlations (*0.5) than other body

sites (*0.7); this can be directly observed from Fig 5(h) and 5(i) that have a few high degree

genera in common.

Discussion

Inferring associations (putative interactions) among microbes and understanding their influ-

ence on the human body is an important step towards precision medicine. Advancements of

high-throughput sequencing techniques enable us to gather metagenomic sequence data from

different environment and human niches. The available high-throughput experimental data,

however, are compositional and high-dimensional in nature.

Existing microbial network inferring methods focus on inferring the compositional data

and use the graph sparsity assumption to overcome problems caused by high-dimensional

data. However, all of these approaches do not consider the information that can be obtained

from the scientific literature to directly describe the associations among microbes or their co-

occurrence. By integrating multiple levels of biological information into the statistical models,

we have shown that one can dramatically increase the model accuracy and edges recovery rate.

To the best of knowledge, this is the first work to propose this automated pipeline to infer the

associations on microbial data, show its feasibility, and measure performance metrics on both

synthetic and real datasets.

We have also shown that our proposed algorithm Microbial Prior Lasso (MPLasso) outper-

forms all other existing methods when using synthetic data with different graph structures

which simulate different levels of sparsity. We have evaluated several combinations of sample

sizes and number of taxa to demonstrate the applicability of our approach under different
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conditions and suggest rough guidelines for requisite sample size for the real data for the given

assumption of the underlying graph structures.

Additionally, the use of prior information does not dominate the inferred results. Indeed,

as summarized in S10 Table, the prior information obtained by the microbial co-occurrence in

literature is only used to restrict the search space in order to infer associations that are more

plausible (i.e., more likely to be associated) than other candidate pairs of associations. More

specifically, we first calculate the probability of association among taxa. Next, if two taxa are

not associated, we penalize the associations among these two taxa when solving MPLasso.

Consequently, MPLasso can effectively select taxa that are highly associated with high statisti-

cal confidence. In this respect, prior information will not dominate the results, but rather

improve the algorithm’s accuracy and robustness.

Our analyses on different levels of real HMP data show that MPLasso achieves better repro-

ducibility than SPIEC (gl) and CCLasso; we have also found the assortativity at the species

level data (HMASM) at different body sites. In other words, OTUs are more likely to interact

with other phylogenetically related OTUs. Additionally, the detected genera at genus level

(HMMCP and HMQCP) datasets show high correlations based on their node degrees (i.e.,

number of edges a node has to other nodes). Those high degree nodes (i.e., “top players”) have

been found experimentally as being ubiquitous at each body site; this confirms that MPLasso

can accurately detect the “top players” and even correctly infer the associations among them.

The resulting microbial association network can suggest credible directions for experimental-

ists to validate the results without exhausting search for all possible associations.

Recent studies report that people affected by microbiome related diseases show different

microbiome profiles when compared to healthy individuals. For example, results show that

individuals affected by the inflammatory bowel disease (IBD) have (30-50)% percent less bio-

diversity of commensal bacteria (e.g., Firmicutes and Bacteroidetes) when compared to healthy

individuals. Another example shows that individuals with Type 2 diabetes (T2D) exhibit sig-

nificant changes in 190 microbial OTUs, with particularly high abundance of Enterobacteria-
ceae compared to healthy individuals [27]. Therefore, by creating a more accurate microbial

association network, scientists working in this field will be able to accurately identify the rela-

tionship between microbiome related diseases (such as T2D) and groups of taxa based on the

inferred network. This way, scientists can develop new drugs or use probiotics to directly tar-

get identified groups of taxa.

Finally, the estimated microbial association networks of the real datasets can be used to

understand why and how various eco-systems evolve over time. Recent studies use association

networks to fit dynamic models, e.g., differential equation-based model of gut microbiome

evolution of mice [28]. These microbe associations represent the putative microbial interac-

tions that provide partial information about the true interaction network. Therefore, by incor-

porating the association network as additional information, we may be able to infer the

microbial interaction networks more accurately [29]. Overall, MPLasso shows promising

results and outperforms state-of-the-art methods. In the present framework, our proposed

MPLasso creates the inferred association network to provide additional partial information;

this can be useful to reveal the underlying dynamics (i.e., interactions) of microbial communi-

ties. However, MPLasso was not tested on a dynamic model of microbial communities. Infer-

ring the dynamics or interactions among microbial communities would require a new

algorithm which is left as future work.
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Software availability

The MPLasso R package can be downloaded from here https://github.com/ChiehLo/

MPLasso_RPackage

Supporting information

S1 Fig. Different types of graph we considered to generate synthetic data. (a) random (b)

hub (c) cluster (d) band(4) and (e) scale-free graphs.

(PDF)

S2 Fig. Performance of AUPR of different precision levels. Each point is averaged over 100

simulations. We compare 6 different sets of sample size and OTU numbers ((p = 50, n = (50,

100, 200)) and (p = 100, n = (100, 200, 400)).

(PDF)

S3 Fig. AUPR curves of different methods. We compare three different sets of sample

size and OTU numbers ((p = 50, n = 50), (p = 50, n = 100), and (p = 100, n = 100)). As can be

seen the red curve (MPLasso) performs better than all other methods in random and hub

graphs.

(PDF)

S4 Fig. AUPR curves of different methods. Each set of experiment are averaged over 100 sim-

ulations. We compare three different sets of sample size and OTU numbers (i.e., (p = 50,

n = 200), (p = 100, n = 200), and (p = 100, n = 400)). As can be seen, the MPLasso (red curve)

performs better than all other methods except the band(4) graph when (p = 100, n = 400).

(PDF)

S5 Fig. The probability density distribution. (a) real data (HMMCP, stool samples), (b) addi-

tive log-normal distribution, (c) negative binomial distribution.

(PDF)

S6 Fig. AUPR curves of different methods on negative binomial model. Each set of experi-

ment are averaged over 100 simulations. We compare three different sets of sample size and

OTU numbers (i.e., (p = 50, n = 50), (p = 50, n = 100), and (p = 50, n = 200)). As can be seen,

the MPLasso (red curve) performs better than all other methods.

(PDF)

S7 Fig. AUPR curves of different methods on negative binomial model. Each set of experi-

ment are averaged over 100 simulations. We compare three different sets of sample size and

OTU numbers (i.e., (p = 100, n = 100), (p = 100, n = 200), and (p = 100, n = 400)). As can be

seen, the MPLasso (red curve) performs better than all other methods.

(PDF)

S8 Fig. Association network visualization of top degree nodes at different human body

sites for different data types. The same node colors represent the communities nodes belong

to. As can be seen from species level data (HMASM), phylogenetically related OTUs fall in the

same community. Node size represents the relative node degree within the association network

with counterclockwise layout. Abbreviations: AntNar: Anterior nares.

(PDF)

S9 Fig. Association network visualization for Global patterns dataset [30] for top 12 high

degree taxa. The Global Patterns dataset contains 26 environmental samples and 19216

OTUs. We first use the preprocessing criteria (i.e., OTU variance greater than 10−5) to filter
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out 32 species. Next, we obtain the prior information which contains 54 interacting taxa pairs

from PubMed database. MPLasso finds 155 associated taxa pairs in total.

(PDF)

S10 Fig. An illustration of (a) recovery rate of associated pairs and (b) text-mined pairs.

(PDF)

S1 Table. A comparison of correlation based methods adopted from [31].
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S2 Table. Performance comparison of different methods for additive log normal model.

We consider two additional graph structures (random and hub graph) and three sets of param-

eters, namely, (p = 50, n = 50), (p = 50, n = 100), and (p = 100, n = 100). For each experiment,

we average over 100 simulation runs with standard deviations in round brackets. We use three

metrics (L1, ACC, AUPR) to quantify the performance. Bold number shows best result.

(PDF)

S3 Table. Performance comparison of different methods for additive log normal model.

We consider five different graph structures and three sets of parameters, namely, (p = 50,

n = 200), (p = 100, n = 200), and (p = 100, n = 400). For each experiment, we average over 100

simulation runs with standard deviations in round brackets. Bold number shows best result.
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S4 Table. Performance comparison of different methods on negative binomial model. We

consider five different graph structures and three sets of parameters, namely, (p = 50, n = 50),

(p = 50, n = 100), and (p = 50, n = 200). For each experiment, we average over 100 simulation

runs with standard deviations in round brackets. Bold number shows best result.

(PDF)

S5 Table. Performance comparison of different methods on negative binomial model. We

consider five different graph structures and three sets of parameters, namely, (p = 100,

n = 100), (p = 100, n = 200), and (p = 100, n = 400). For each experiment, we average over 100

simulation runs with standard deviations in round brackets. Bold number shows best result.

(PDF)

S6 Table. Entry for the 2-by-2 contingency table with the number of abstracts containing

neither taxon A nor B in HMP datasets. Abbreviations: AntNar: Anterior nares, BucMuc:

Buccal mucosa, SupPla: Supragingival plague, TonDor: Tongue dorsum.

(PDF)

S7 Table. An illustration example of 2-by-2 contingency table that captures the informa-

tion about how often two taxa appear together and separately. This example uses the taxa

pair hi, ji = hEscherichia, Citrobacteri, where ni: the number of abstracts that contains only

taxon i, nj: the number of abstracts that contains only taxon j, ni,j: the number of abstracts that

contain both taxa i and j, and M: the number of abstracts that contain neither taxa i and j. For

this particular contingency table, Fisher’s exact test rejects the hypothesis that taxa i and j are

associated. Therefore, these two taxa are not associated with high statistical significance (i.e.,

the calculated p-value< 0.001) and a higher penalty is placed between taxa i and j in the prior

matrix.
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S8 Table. Reproducibility for MPLasso, SPIEC (gl), and CCLasso at different body sites of

different types of HMP datasets. For each experiment, we average over 20 simulation runs
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with standard deviations in round brackets. Bold number shows best result. n and p represent

sample size and taxa number, respectively. Abbreviations: AntNar: Anterior nares.

(PDF)

S9 Table. Different percentages of top degree nodes to calculate reproducibility for

MPLasso, SPIEC (gl) and CCLasso at different body sites of different types of HMP data-

sets. For each experiment, we average over 20 simulation runs with standard deviations in

round brackets. Bold number shows best result. Abbreviations: AntNar: Anterior nares, Buc-

Muc: Buccal mucosa, SupPla: Supragingival plague, TonDor: Tongue dorsum.

(PDF)

S10 Table. Prior information and the recovery rate of associated pairs found by MPLasso.

(PDF)

S11 Table. Recovery rate of associated pairs found by CCLasso and SPIEC (gl).

(PDF)

S12 Table. Interacting taxa pairs found by automated text-mining methods and associa-

tion pairs suggested by MPLasso.

(PDF)

S13 Table. Accuracy of edge sign recovery accuracy for different algorithms on different

synthetic graph structures.

(PDF)

S14 Table. Jaccard index of inferred edges among pairwise datasets.

(PDF)

S1 File. Supplementary text. Contents: 1. Algorithms summaries, simulation settings and run

time comparisons. 2. Graph generation process. 3. The impact of different precision levels on

prior matrix and synthetic experiments. 4. Experiments with synthetic data generated from

negative binomial distribution. 5. Experiments with HMP datasets with two more body sites.

6. Methods for calculating Spearman correlation of node degrees. 7. Prior knowledge intro-

duction in synthetic experiment. 8. Consistency analysis for graphical Lasso algorithm. 9. Defi-

nitions for recovery rate of associated pairs and text-mined pairs.

(PDF)
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