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Abstract
External-beam radiotherapy treatments are delivered by a linear accelerator (linac) in a series of high-energy radiation
sessions over multiple days. With the increase in the incidence of cancer and the use of radiotherapy (RT), the problem of
automatically scheduling RT sessions while satisfying patient preferences regarding the time of their appointments becomes
increasingly relevant. While most literature focuses on timeliness of treatments, several Dutch RT centers have expressed
their need to include patient preferences when scheduling appointments for irradiation sessions. In this study, we propose
a mixed-integer linear programming (MILP) model that solves the problem of scheduling and sequencing RT sessions
considering time window preferences given by patients. The MILP model alone is able to solve the problem to optimality,
scheduling all sessions within the desired window, in reasonable time for small size instances up to 66 patients and 2 linacs
per week. For larger centers, we propose a heuristic method that pre-assigns patients to linacs to decompose the problem in
subproblems (clusters of linacs) before using the MILP model to solve the subproblems to optimality in a sequential manner.
We test our methodology using real-world data from a large Dutch RT center (8 linacs). Results show that, combining the
heuristic with the MILP model, the problem can be solved in reasonable computation time with as few as 2.8% of the
sessions being scheduled outside the desired time window.

Keywords Mathematical programming · Radiotherapy scheduling · Patient preferences · Time windows · Operations
research · Operations management

Highlights

• This is the first study proposing a mathematical model
for radiotherapy treatment scheduling considering pa-
tients’ preferences regarding their (daily) treatment times

• Our model optimally schedules all radiotherapy treat-
ment sessions in less than 10 min for centers with up to
2 linacs and a one-week planning horizon

• For larger centers (3 or more linacs), we combine the
model with a heuristic procedure that pre-assigns
patients to linacs while maintaining a balanced work-
load between linacs

• The combined approach solves the problem for a large
radiotherapy center with 8 linacs in less than 3.5 h
of computation time with as few as 2.8% of the
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sessions being scheduled outside the desired 90-min
time window

• The mathematical model maximizes the fulfillment of
patient preferences while ensuring that all timeliness,
medical and technical constraints are satisfied

1 Introduction

With the increasing demand for radiotherapy (RT) services
[1], which is expected to grow by an average of 16% until
2025 [2], the complexity related to the administration of
existing RT resources (machines and staff) has become in-
creasingly relevant [3, 4]. Radiotherapy treatments, usually
given in a set of (daily) irradiation sessions, are administered
by a machine called linear accelerator (linac), which is able
to kill cancer cells by delivering high-energy radiation direc-
ted to the tumor. The growing number of treatment ses-
sions to be booked amongst the available machines makes
the scheduling process especially complex for RT centers
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aiming at delivering timely and patient-friendly treatments.
Not only has it been shown that delays in the start of treat-
ment may induce greater psychological distress in patients
subject to longer waiting times [5], but also that 80% of the
patients prefer a short interval (2 weeks or less) between
referral and first oncology consultation [6]. The problem
of scheduling RT treatment sessions for large varieties
of treatment care pathways and technical constraints has
been tackled by several studies in the current literature [7].
Models exist for assigning patients’ irradiation sessions to
linacs and days [8, 9], with some studies addressing not
only the scheduling component but also the sequencing of
patients throughout the day [10]. While an overview on
RT capacity in European countries [11] has shown that RT
centers in most Western European countries are provided
with enough capacity to treat all patients in due time, a
survey amongst 6 Dutch RT centers within this project
has shown the need to include patient preferences in the
scheduling process. For these centers, asking patient pref-
erences and integrating them into the schedule production
process was common practice as they wanted to provide a
better treatment experience to patients who want to maintain
their routines and daily schedules during treatment. They
showed that the quality of care, from a patients’ perspective,
increased when patients feel involved into the scheduling
process and experience the provider trying to satisfy their
personal preferences for the (several) number of visits they
must pay to the hospital. Moreover, literature shows that
patients have different preferences regarding the time of
their appointments, emphasizing the importance of fulfill-
ing those for increased patient-centeredness [6]. The goal
of these RT centers is to schedule irradiation sessions such
that all patients start treatment in due time, medical and
technological constraints are satisfied, and the fulfilment of
patient preferences regarding the starting time of their ses-
sions is maximized. According to these RT centers, patients
have shown the desire for specific appointment times for
a variety of reasons, such as avoiding traffic peak times,
managing to keep their normal work schedule, or coordinat-
ing the RT treatment with their daily routines and hobbies.
However, manual endeavours to produce such a schedule by
(several) staff members are usually time consuming, prone
to errors, and likely to find sub-optimal solutions regarding
the fulfillment of patient preference requests.

Previous studies have approached different variants of the
RT treatment scheduling problem and several methods have
been proposed to solve it [7]. Sauré et al. [8] formulated the
problem as a discounted infinite-horizon Markov decision
process, showing that the percentage of treatments initiating
treatment within 10 days can potentially increase from 73%
to 96%. Legrain et al. [16] proposed a two-step stochastic
algorithm for online scheduling of RT sessions, with results
showing an average decrease in the number of patients brea-

ching the standards of 50% for acute patients and 81% for
subacute patients. Conforti et al. [9] developed an integer
linear optimization program modeled in a non-block sche-
duling strategy, ensuring a linacs’ utilization rate of 95%
while minimizing the mean waiting times. Petrovic et al.
[17] propose three genetic algorithms (GAs) for minimizing
waiting time target breaches when scheduling emergency,
palliative and radical patients. Results showed a potential
reduction of average waiting times for radical (35 to 21.48
days) and palliative (15 to 13.10 days) patients. Although
efficient methods for scheduling RT sessions have been pro-
posed, the literature in relation to optimizing the sequencing
of patients throughout the day is rather scarce [7]. How-
ever, as discussed above, besides complying with timeliness
requirements and technical constraints, RT centers are often
faced with the problem of finding a schedule that maximizes
patient preferences regarding the starting time of irradiation
sessions. In more recent years, two models have been pro-
posed [12, 15] to optimize intra-day linac schedules in a way
that starting time of irradiation sessions do not deviate from
a pre-defined target time by more than a certain threshold
(30 min in both [12] and [15]). Vogl et al. [15] modeled the
problem for an ion beam facility (in which a single particle
beam serves multiple treatment rooms). They included time
window constraints whose violations are penalized in the
objective function, which minimizes the idle time of the par-
ticle beam unit. Using real-world inspired data, they found
that a combination of two stand-alone metaheuristic appro-
aches leads to the best results when compared to a genetic
algorithm and iterated local search. Maschler and Raidl [12],
on the other hand, proposed an enhanced iterated greedy
(EIG) metaheuristic to solve the patient scheduling prob-
lem with limited starting time variation between sessions in
particle therapy. Computational experiments using fictitious
data showed that the EIG method outperforms two other
metaheuristics in 26 out of 30 instances. However, these
two studies focus on particle therapy (PT), and thus can-
not be applied directly to conventional external-beam RT
since the technical and medical constraints vary consider-
ably. For instance, in particle therapy a single beam source
is used by multiple treatment rooms, but only one room
can use the beam source at a time. Moreover, in both stud-
ies, patient preferences are not taken into account, and only
approximation methods are able to solve the problem in
acceptable time due to the complexity of the mathematical
formulations and high number of constraints involved. On a
hospital-wide setting, Gartner et al. [13] present exact and
heuristic methods for the scheduling and routing of physical
therapists where scheduled treatment sessions are bounded
to pre-defined time windows. However, they optimize their
models for the minimization of waiting times only and do
not allow for sessions to be scheduled outside the required
time window.
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Overall, most models presented in the current literature
focus on deciding on the specific day and linac of each
irradiation session, with the sequencing of patients in each
linac and each day being either neglected or determined in
a secondary stage. Studies addressing the sequencing prob-
lem considering time windows are developed in the context
of PT, thus they are not directly applicable to conventional
RT. No studies have been found where optimization models
integrate patient preference structures when deciding on the
appointment times of irradiation sessions in conventional
external-beam RT. In this paper, we propose a mixed-integer
linear programming (MILP)-based approach for scheduling
and sequencing RT treatment sessions. Our model takes all
the medical and technical constraints into account, and max-
imizes the satisfaction of time window preferences given
by patients for the starting time of their appointments. To
solve the problem more efficiently for larger instances, we
propose a heuristic procedure that pre-assigns patients to
linacs before using the MILP model to solve each of the
subproblems (subset of patients and linacs) independently.
We compare the performance of the MILP model alone
and the combined approach regarding solution quality and
CPU time for different instance sizes. The feasibility of our
algorithm is tested using real-world data from the Nether-
lands Cancer Institute (NKI), a large RT center located in
Amsterdam, the Netherlands, with approximately 5000 new
treatments per year and 8 linacs operating on a daily basis.
Although patient preferences are currently not recorded by
the NKI and thus data regarding patient preferences is not
available, we have performed a sensitivity analysis on both
the preference structure breakdown and the size of the possi-
ble time windows being made available for patients to chose
from.

This paper is organized as follows: Section 2 contains
the formal problem description. The methodology including
our MILP model and the algorithm to pre-assign patients
to linacs are presented in Section 3. Section 4 presents the
computational experiments performed using real-world data
from a large RT department. The analysis and discussion of
the results are described in Section 5, and Section 6 outlines
the major conclusions of this study.

2 Problem description

In the RT scheduling problem, the aim is to schedule a set of
treatment sessions for a set of cancer patients P over a given
planning horizon T , discretized in time periods t =
1, ..., |T |. Each patient has a certain due date di , which
defines the maximum date a patient should start treatment
before the maximum waiting time target is achieved. Treat-
ment sessions are delivered by a set of linear accelerators
K. The capacity of each linac is given by the number of

available time slots |S| of duration l. Each session of each
patient i ∈ P has an estimated processing duration quanti-
fied as a pre-defined number of time slots pi . Most ses-
sions are delivered on a daily basis, however some patients
(e.g. hypofractionation schemes) may require (at least) one
day off between two consecutive treatment sessions. Typ-
ically, every linac is capable of treating patients from all
tumor types. However, some RT centers such that of the NKI
may have a master schedule (pre-allocation) indicating that
some patient groups must be assigned to a restricted set of
linacs. For instance, brain patients may only be allowed to
be scheduled on the technologically most advanced linacs
as patients with this tumor site benefit the most from higher
precision levels of the linac’s delivery. Factors such as the
accuracy level and other technologies (such as cone-beam
CT) of the linacs, departments may want pre-allocate cer-
tain patient groups to certain linacs. In case a pre-allocation
exists, each patient must receive treatment in one of the set
of linacs pre-allocated to his/her patient group (Ki). The
duration of treatment sessions typically vary per patient
group, but sessions of each individual patient usually have
the same duration throughout the whole treatment. Besides,
we assume that RT centers aim at delivering all RT sessions
on the same linac for each given patient. Although there are
no technical or medical constraints that enforce this as a
necessary condition, from a patient perspective it is highly
desirable that patients receive their daily sessions on the
same linac such that they always see the same facilities and
personnel throughout most of the treatment. In addition, due
to the combination of RT with other treatment modalities,
such as chemotherapy, some patients may need to start treat-
ment on a Monday to guarantee a proper coordination bet-
ween the different treatment modalities. Moreover, because
the first irradiation fraction of each patient may take longer
than expected due to the need of explaining the whole pro-
cess to the patient, RT centers commonly set a threshold T

limiting the number of new patients who are scheduled to
start treatment on the same linac and the same day in order
to avoid congestion. Besides, for some patients there may
be the need of guaranteeing that specialized staff (e.g. doc-
tors) are in the department during the delivery of irradiation
sessions to certain patients (Pf ) in case unexpected compli-
cations occur. In these cases, a time frame [f t , f

t
] must be

set to bound the starting time of all irradiation sessions of
those patients.

Apart from the fulfillment of all the medical and techno-
logical constraints, in this problem we consider that RT cen-
ters are interested in finding a (weekly) schedule that mini-
mizes the number of appointments scheduled outside the
preferential time window requested by patients. This means
that RT centers can run the model during the last work-
day of the previous week (i.e. Friday). Thus, data regarding
(regular) patients to be scheduled is known by the beginning
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of the planning horizon, allowing to build a determinis-
tic model to be used at an offline operational level (for
a definition of the different hierarchical planning levels,
see Hulshof et al. [14]). Although other sources of uncer-
tainty (session duration, no-shows, sessions’ cancellations,
linac breakdowns) exist, we verified that the percentage
of occurrences of deviations between the planned and the
realized values was lower than 1% for each single case.
Thus, we assumed these input parameters as determinis-
tic, focusing on the performance of the “planned” solu-
tion regardless of the modifications that may be required
at an online operational level. In our model, the goal is
that the starting time of the scheduled sessions fall within
the patients’ desired time window [tmin

i , tmax
i ] consistently.

Figure 1 depicts a possible weekly schedule of a linear
accelerator in external-beam RT with time window prefer-
ences. Note that appointments times are, for most patients,
consistent throughout the week. Let us assume that, in
this schedule, Patient 1 had requested their sessions to be
booked between slots 1–3 inclusive. Then, two (Tuesday
and Thursday) out of five sessions would fall outside the
desired window. Considering all appointments of all other
patients in Fig. 1 are set within the requested time win-
dow, then the performance value of the solution for this
linac would be equal to 23/25, i.e. 92% of the appoint-
ments are booked within the requested time window. In
this paper, we propose a method that aims at maximiz-
ing the percentage of sessions falling within the requested
time window for patients and linacs of real-world RT
centers.

3Methodology

In this section we present the methodology developed to sol-
ve the RT scheduling problem with time window prefer-
ences given by patients for the starting time of their sessions.

Fig. 1 Example of a weekly schedule of a linear accelerator in RT

We use the notation presented in Table 1 to formulate
the MILP model and the heuristic procedure designed to
pre-allocate patients to linacs presented in Algorithm 1.

3.1 Mathematical programmingmodel

The problem is formulated such that the capacity of each
linac is divided in time slots s = 1, ..., |S| of duration l.
When scheduled, patients’ sessions are assigned a certain
starting time slot on a certain linac and day. To this end,
we introduce binary variables xt

iks , which take the value 1
if patient i is scheduled for a session starting on time slot
s of linac k in day t , and 0 otherwise. If a certain starting
slot is assigned to a patient, we prevent the following
slots needed to achieve the corresponding patient’s session
duration on that same linac and day from being assigned
to other patients. The objective (1) is to minimize the
overall deviation between the bounds of the preferred time
window [tmin

i , tmax
i ] given by patients and the starting time

of their appointments. Real variables�−
it and�+

it are used to
represent this deviation for each patient in each day. Binary
variables yt

ik are auxiliary variables, which will be equal to 1
if a new patient starts his/her treatment in period t and linac
k, and 0 otherwise.

3.1.1 Objective function

The objective (1) is to minimize the overall devia-
tion between the bounds of the preferred time window
[tmin

i , tmax
i ] given by patients and the starting time of their

appointments. Real variables �−
it and �+

it are used to rep-
resent this deviation for each patient in each day. Binary
variables yt

ik are auxiliary variables, which will be equal to 1
if a new patient starts his/her treatment in period t and linac
k, and 0 otherwise.

min
∑

i∈P\{1}

∑

t∈T
(�−

it + �+
it ) (1)

The technical and medical constraints described in
Section 2 are modeled as follows:

3.1.2 Sessions’ assignment constraints

Inequalities (2)–(4) ensure that patients receive their sess-
ions on the same linac and with the required frequency bi

until the number of sessions or the end of planning horizon
is reached. Constraints (2) and (3) force the necessary
sessions to be booked, at least every bi days, as soon as a
first session is scheduled. Constraints (4) avoid unnecessary
sessions from being scheduled in days occurring between
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Table 1 Notation of the MILP model and heuristic procedure

Parameter Description

P Set of patients to be scheduled (i, j ∈ P)
K Set of linear accelerators (k ∈ K)
S Set of time slots per linac (s ∈ S)
T Set of time periods (days) in the planning horizon (t ∈ T )
Pn Set of patients who have not started treatment (Pn ⊆ P)
Pm Set of patients who must start treatment on monday (Pm ⊆ P)
Pf Set of patients with restricted time frame for treatment sessions (Pf ⊆ P)
Ki Set of feasible linacs for treating patient i (Ki ⊆ K)
T Maximum number of patients starting treatment on the same linac and same day
l Time slot duration, in minutes, in each linac, each day
akst 1 if slot s of linac k is available on time period t , 0 otherwise
f t , f

t
Lower and upper bound of the restricted time frame set for time period t

Ii Number of total remaining sessions to be delivered to patient i
di Due date: time period by which patient i must start treatment
pi Duration, in number of time slots, of each session of patient i
bi Number of time periods needed between sessions of patient i (1 for consecutive daily sessions)

tmin
i , tmax

i Lower and upper bound of the time window preference for patient i
ci Linac in which patient i /∈ Pn is currently undergoing treatment
Ck Weekly capacity, in minutes, of linac k

vol(i) Expected weekly session time, in minutes, for patient i
WL(k) Workload, in minutes of session time, assigned to linac k

Variable Description
xt
iks 1 if patient i is scheduled a session starting on time slot s of linac k in day t , 0 otherwise

yt
ik 1 if new patient i starts treatment in period t and linac k, 0 otherwise

�−
it , �

+
it Lower and upper deviation, in minutes, from preference time window of patient i in time period t

the days of the sessions booked by constraints (2)–(3) when
bi > 1.

∑

s∈S
xt
iks −

∑

s∈S

t−1∑

t ′=1

xt ′
iks ≤

∑

s∈S
xn
iks,

∀i ∈ P, ∀k ∈ K, ∀t = 2, ..., T ,

∀n = t + bi, t + 2bi, ...,min{|T |, t + bi(Ii − 1)} (2)∑

s∈S
x1
iks ≤

∑

s∈S
xn
iks, ∀i ∈ P, ∀k ∈ K,

∀n = bi + 1, 2bi + 1, ...,min{|T |, bi(Ii − 1) + 1} (3)

1 −
∑

s∈S
xt
iks ≥

∑

s∈S
xn
iks, ∀i ∈ P, ∀k ∈ K,

∀t = 1, ..., |T | − bi, ∀n = t + 1, ..., t + bi − 1, bi ≥ 2

(4)

3.1.3 Limitations on the number of sessions

Inequalities (5) limit the number of sessions that each
patient can receive to a maximum of one per day.
Constraints (6) restrict the number of sessions delivered

during the planning horizon to the number of remaining
sessions for that patient.
∑

k∈K

∑

s∈S
xt
iks ≤ 1, ∀i ∈ P, ∀t ∈ T (5)

∑

k∈K

∑

s∈S

∑

t∈T
xt
iks ≤ Ii, ∀i ∈ P (6)

3.1.4 Timeliness constraints

Constraints (7) impose that every patient starts treatment
before their due date di . Note that for patients who need to
start treatment on a Monday one can set di = 1.

∑

k∈K

∑

s∈S

di∑

t=1

xt
iks ≥ 1, ∀i ∈ P (7)

3.1.5 Linacs’ capacity constraints

Constraints (8) ensure that each (available) slot of each linac
is scheduled at most one session per day, and Restrictions
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(9) ensure that each patient is assigned to a feasible linac by
preventing sessions of being assigned to slots of linacs that
do not belong to Ki .

∑

i∈P
xt
iks ≤ akst , ∀k ∈ K, ∀s ∈ S, ∀t ∈ T (8)

∑

s∈S

∑

t∈T
xt
iks ≤ 0, ∀i ∈ P, ∀k ∈ K \ {Ki} (9)

3.1.6 Maximum number of patients starting treatment per
linac per day

Constraints (10)–(11) force variables yt
ik to take the value 1

if a new patient i starts treatment on linac k and day t , while
Eq. 12 use these auxiliary variables to limit the number of
patients starting treatment on the same linac and same day
to the pre-defined threshold C.

yt
ik ≥

∑

s∈S
xt
iks −

∑

s∈S
xt ′
iks , ∀i ∈ Pn, ∀k ∈ K, ∀t = 2, ..., T ,

t ′ = max{1, t − bi} (10)

y1
ik ≥

∑

s∈S
x1
iks, ∀i ∈ Pn, ∀k ∈ K (11)

∑

i∈Pn

yt
ik ≤ C,∀k ∈ K, ∀t ∈ T (12)

3.1.7 Session duration constraints

Restrictions (13) prevent the remainder of the time slots
needed to achieve the session duration pi after the chosen
starting slot (xt

iks) from being assigned to other patients on
the same linac and day. Inequalities (14) ensure that the
starting slot of sessions with a duration of two or more slots
are not assign to the last slot(s) of the day.

xt
iks ≤ 1 −

∑

i′∈P
xt
i′,k,s′, ∀i ∈ P, ∀k ∈ K,

∀s = 1, ..., |S| − pi + 1, ∀t ∈ T ,

∀s′ = s + 1, ..., s + pi − 1, pi ≥ 2 (13)

xt
iks = 0, ∀i ∈ P, ∀k ∈ K, ∀s = |S| − pi + 2, ..., S,

∀t ∈ T , pi ≥ 2 (14)

3.1.8 Time window constraints

Constraints (15) force treatment sessions of each patient to
fall within the restricted time frame set by the department
due to the need of ensuring that specialized staff are
present during the sessions of the applicable patients (Pf ).
Equation 16 set variables �−

it and �+
it to take a non-zero

value if a session’s starting time deviates from the desired

lower and upper bounds, respectively, and constraints (17)
are the non-negativity constraints associated with the real
variables.

xt
iks ≤ 0, ∀i ∈ Pf , ∀k ∈ K, ∀s ∈ S, ∀t ∈ T ,

s < f t , s > f
t

(15)

tmin
i xt

iks − �−
it ≤ l(s − 1)xt

iks ≤ tmax
i xt

iks + �+
it ,

∀i ∈ P, ∀k ∈ K, ∀s ∈ S, ∀t ∈ T (16)

3.1.9 Non-negativity and integrality constraints

�−
it ≥ 0, �+

it ≥ 0, ∀i ∈ P, ∀t ∈ T (17)

xt
iks, y

t
ik ∈ B, ∀i ∈ P, ∀k ∈ K, ∀s ∈ S, ∀t ∈ T (18)

3.2 Patient-to-linac assignment

As we demonstrate in Section 4, the proposed MILP model
alone is not capable of solving the problem for larger RT
centers (5 linacs or more) in acceptable computation time.
In these cases, we apply a heuristic procedure (Algorithm
1) to pre-assign patients to linacs, and use the MILP
model to solve the sequencing problem for each subset of
linacs, hereby referred to as “clusters”. In Algorithm 1, Ck

represents the weekly capacity of the linacs, in minutes,
vol(i) represents the total session time expected during the
whole planning horizon for patient i, while WL(k) contains
the workload, measured in total minutes of session time, in
each linac k.
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The algorithm initiates by computing the initial values
of each parameter. Note that patients undergoing treatment
(i ∈ P \ {Pn}) are already assigned to a linac, and thus
the initial values WL(k) will be given by the total patient
volume undergoing treatment on linac k by the beginning
of the planning horizon. The variable WL(k) associated
with linac k keeps track of the total volume (number of
sessions times the duration) assigned to that linac. Next, and
for each new patient i ∈ Pn, the algorithm sorts the set
feasible linacs Ki in increasing order of WL(k). This way,
the algorithm first searches the less busy linacs to foster
a balanced workload. Starting from the top of the list of
feasible linacs for patient i, the algorithm checks whether
the current patient’s volume vol(i) fits the current available
capacity Ck and, if so, assigns the patient to that linac,
updating the value of WL(k) by the total volume vol(i) of
the patient being assigned. If the patient has been assigned
to k, patient i is removed from the list and the algorithm
proceeds to the next patient. If not, the procedure continues
to search for the next linac on the list until a feasible
linac is chosen. Algorithm 1 therefore assumes that there is
enough linac capacity to treat the whole patient population
P being scheduled in order to find a feasible pre-assignment
solution.

4 Computational experiments

This section presents the results of the computational
experiments we have performed with our model. Section 4.1
describes the instance generator using historical patient data
from the RT department of the NKI. Section 4.2 shows the
results for several instance sizes using the NKI historical
records to generate patient data for a reduced number of
linacs. In Section 4.3 we solve the problem for the NKI size
(8 linacs) using a method that combines our MILP model
and the Algorithm 1, and Section 4.4 describes a sensitivity
analysis performed to analyze the impact of the variation
of patient requests and the competition for the same time
window.

The MILP model and Algorithm 1 were coded in C++
using Visual Studio 2017 and the Concert Technology
of CPLEX v12.8.0, which was used as a solver. All
experiments were conducted on a desktop computer with a
processor Intel i7 3.6 GHz and 16 GB of RAM using up to 8
threads, running on a 64-bit version of Windows 10. In our
case study, the goal is to find a weekly schedule (Monday
to Friday), which means that RT centers can run the model
during the last workday of the previous week (i.e. Friday)
so that the maximum amount of patient data is known. The
maximum allowed CPU time was set to 28800 s (8 h) per
run.

4.1 Historical patient data used for generating test
instances

Patient characteristics are generated according to empirical
distributions generated using historical data collected
throughout 2017 (number of new treatment courses =
4720). In our instance generator, we start by randomly
attributing a care plan (i.e. care trajectory) to each patient.
There are 56 care plans in total, with the largest being “Bone
metastasis” (23.3%) and “Breast” (16.5%). Thereafter, we
generate the number of sessions Ii of each patient, which
can vary between 1 and 35 sessions depending, to a large
extent, on the care plan. For instance, nearly half of all
prostate patients will undergo 35 sessions, while 65% of all
bone metastasis patients are prescribed 3 sessions or less.
Similarly, the urgency level of each patient, which can be
either urgent (34%) or regular (66%), is randomly assigned
according to historical data associated with his/her care
plan. The due date (di = 1, ..., 5) of new patients (35% of
the patient population) is generated as follows: we calculate,
for each patient, the difference between the maximum
waiting time according to the standards defined by the
Dutch Society for Radiation Oncology (NVRO) [18] (21
days for urgent patients, and 28 days for regular patients)
and the number of days elapsed from referral to treatment
planning. For instance, if for a regular patient i, who
needs to start treatment within 28 days of referral, the pre-
treatment phase (referral to treatment planning) took 25
days to complete, this value would be equal to 3. We use the
values verified in practice and corresponding proportions
in the whole 2017, per care plan, to build empirical
distributions from which due dates di are randomly
generated. The due date will be equal to 1 in case a patient
is already undergoing treatment, and in case of new patients
who need to start their treatment on a Monday (Pm). The
target due date already takes into account eventual delays
that may be required due to medical or personal reasons,
which are usually known by the beginning of the pre-
treatment phase (consultation) and will be reflected in the
waiting time target date set by the department. Furthermore,
the duration of each session pi is also assigned empirically
on a care plan basis, ranging from 10 to 30 min, in multiples
of 5 min. Data shows that the majority of patients will be
scheduled 15-min sessions (60.5%), with 19.9% patients
having sessions of 20 min or longer.

The daily available time for delivering irradiation
sessions in the clinic ranges from 07h30 to 17h30, thus
|S| = 120 by considering l = 5 min. We solve the problem
for a planning horizon of one labour week, discretized in
time periods of one day (|T | = 5). The restricted time
frame (wt, wt ) due to the need of guaranteeing that doctors
are always present when irradiating ranges from 08h30 to
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17h00, which means that wt = 60, wt = 570, ∀t ∈ T .
A total of 12 care plans (21% of the patient population)
will require patients to be scheduled between 08h30 and
17h00. In the NKI, patients belonging to a total of 4 care
plans (namely stereotactic and hypofractionation schemes)
need at least 2 days (48h) break between two sessions,
corresponding to a total of 6% of the patient population.
Moreover, in the NKI a maximum of six new patients are
allowed to start treatment on the same linac and same day,
thus C = 6.

In the NKI, patient preferences, i.e. the preferences given
by patients for the desired starting time of their irradia-
tion sessions, are taken into consideration when scheduling
irradiation sessions. However, data regarding patient prefer-
ences are not currently recorded in the clinic, and thus real
data for patient preferences cannot be used. Interviews with
the appointment planners showed, according to their empir-
ical knowledge, that around 1 in 4 patients will have a pref-
erence for the early morning (<09h00), and 1 in 4 patients
will want to receive their sessions in the end of the day
(>16h00). From there, we assumed that all other patients,
including those who do not have a preference, will be
included in the group of the remaining 50% (09h00–16h00).
Therefore, we randomly generated time window preferences
[tmin

i , tmax
i ] for both urgent and regular patients as follows:

25% of patients have a preference for the morning win-
dow (w1 = [0, 90]), 25% have a preference for receiving
their RT sessions later in the day (w3 = [510, 600]), while
the remainder 50% of patients have a preference set for the
time in between (w2 = [90, 510]). A sensitivity analysis on
the possible variations on these proportions is presented in
Section 4.4.

4.2 Results for several instance sizes

To test our model, we generated a set of test instances
with various sizes regarding the number of patients (|P|)
and available linacs (|K|) for a planning horizon of one

labour week (|T | = 5). We generated patient data by using
historical data from the RT department of the NKI, a large
cancer center operating in the Netherlands provided with 8
full-time working linacs and scheduling an average of 260
patients per week.

We started by running experiments using the MILP
model alone. In each test instance, the patient-to-linac ratio
of the NKI, i.e. 33 patients per linac per week, is maintained.
Given that we are scaling down the NKI problem for a
subset of the linacs, the pre-allocation of linacs to patient
groups in Appendix A cannot be applied. Thus, we consider
that all patients can be treated by all linacs (Ki = K, ∀i ∈
P) by relaxing constraints (9).

As we can observe in Table 2, the proposed MILP model
is able to find an optimal solution that schedules all sessions
within the desired time window for all instance sizes up
to 66 patients and 2 linacs within the CPU time limit. For
the instance with 2 linacs, the proposed formulation proved
effective in finding the optimal weekly schedule in less
than 10 min of CPU time. However, the CPU time limit of
8 h was achieved for instances with 99 patients and higher,
possibly due to complexity introduced by the exponentially
higher number of variables and constraints. Since the model
was able to solve the problem for one linac in just 100 s, we
used Algorithm 1 to pre-allocate patients to linacs as a pre-
processing step (considering that all linacs are empty, i.e.
WL(k) = 0, ∀k ∈ K). We then apply the MILP model to
solve the problem for each linac independently. We denote
this combined approach as “heur+milp” in Table 2. We
found that the combined approach is able to find a near-
optimal solution in a total CPU time of 55 min or less
for all instance sizes. For the NKI size (260 patients and
8 linacs), as few as 31 in 925 sessions were scheduled
outside the desired window in just 7 min of CPU time.
The solutions obtained by the combined approach schedule
at most 6.2% of the sessions outside the preferred time
window, with the percentage lowering down to 2% for the
instance where the optimal solution is known (2 linacs).

Table 2 Results of the MILP model for several instance sizes using NKI patient data

# patients # linacs # sessions scheduled # sessions outside window average deviation (min) CPU time (s)

milp heur+milp milp heur+milp milp heur+milp milp heur+milp

33 1 123 123 4 4 (3.25%) 5 5.0 99.9 99.9

66 2 254 247 1 5 (2.0%) 15 8.0 499.6 17.2

99 3 – 379 – 23 (6.1%) * 16.5 * 218.7

132 4 – 361 – 22 (5.2%) * 28.2 * 1780.5

165 5 – 580 – 33 (5.7%) * 24.8 * 1175.8

198 6 – 700 – 40 (5.7%) * 24.0 * 3318.3

231 7 – 810 – 50 (6.2%) * 25.3 * 2705.2

260 8 – 925 – 31 (3.4%) * 13.2 * 393.5
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This indicates that the solutions found by partitioning the
problem are probably even closer to optimality than the
obtained percentages. Moreover, sessions scheduled outside
the time window were, on average, under 30 min away
from the corresponding windows. This shows that, with
our approach, even sessions that are scheduled outside the
preferred time window are still close to the target window
bounds.

4.3 Results for the NKI size

In this section, we combine Algorithm 1 with the MILP
model to solve the problem for the NKI size but now
including the pre-allocation constraints (9). This means that
patients undergoing treatment are pre-assigned to the linac
they have been receiving their treatment, which is assigned
randomly based on historical data. Therefore, the initial
workload values WL(k) of each linac k are pre-processed
before running the cycle of Algorithm 1 to allocate new
patients to linacs. Table 3 shows the results obtained after
running Algorithm 1 for the 260 patients generated for
the NKI size instance. As we can see, the pre-assignment
solution provides a balanced workload amongst linacs,
with an average of 2051.3 min and a maximum workload
difference of 80 min between any pair of machines.
Moreover, the number of patients assigned to each linac is
considered stable, with a standard deviation of 3.3 patients
amongst the 8 linacs at an (expected) average of 33 patients
per linac. Utilization rates representing the percentage of
the daily capacity (3000 min) assigned to each linac show
that linacs have an utilization rate that ranges between
68.0% and 69.5%. This confirms the availability of slack
capacity to apply the proposed heuristic effectively. The
available capacity can be used to accommodate urgent
patients arriving and having to start treatment during the
planning horizon.

Table 3 Pre-assignment results after running Algorithm 1 for the NKI
test instance

Linac No. patients Workload (WL) Utilization

assigned rate (%)

L1 35 2055 68.5%

L2 27 2050 68.3%

L3 33 2055 68.5%

L4 39 2085 69.5%

L5 32 2040 68.0%

L6 32 2005 66.8%

L7 32 2080 69.3%

L8 30 2040 68.0%

avg 32.5 2051.3 68.4%

st. dev. 3.3 23.4 0.8%

Following the pre-assignment of patients to linacs, we
cluster the linacs (L1,...,L8) in different groups based on the
characteristics of the available machines at the NKI. Thus,
new patients can still be assigned any linac belonging to
the cluster his/her linac belongs to. For instance, if a cluster
contains L1 and L2, a new patient pre-assigned to L1 can
still be assigned to L2 by the MILP model (if that patient
type can be treated in L2). Moreover, from the 8 NKI linacs
running on a daily basis, two (L7 and L8) are located in
a satellite location. Decisions on whether patients will be
receiving treatment in the satellite or the main location are
made right after referral. In those cases, the pre-assignment
cannot be changed between the main and satellite locations
by the moment our model is intended to be used, which is
at the beginning of the planning horizon. This means that
patients pre-assigned to L7 can still be allocated to L8 and
vice-versa, however the linac assignment cannot be changed
by any of the remaining 6 linacs running on the main
location. Furthermore, we have clustered the linacs by level
of similarity in terms of the total patient volume that they
are able to treat in common according to Appendix A, while
ensuring that L7 and L8 are not clustered together with other
linacs. Each experiment runs the MILP model sequentially
for a certain number of times, which corresponds to the
number of clusters. Table 4 outlines the experimental setup
and its considered clusters, as well as the corresponding
results in terms of solution quality and computational (CPU)
time. In the first experiment, each linac is a cluster in and of
itself and therefore the MILP model is run 8 times in a row.
For this test instance, a cumulative deviation of 1085 min
over a total of 41 sessions scheduled outside the desired
window (out of 918) was achieved, in a combined CPU
time of around 5 h. This means that, in less than 5 min
of running time, our method was able to find a feasible
solution with only 4.5% of the sessions being scheduled
outside the preference time window. When 4 clusters are
used, results are improved further. The extra flexibility
provided by having 2 linacs per cluster decreased the overall
objective value to 545, with as few as 26 sessions out of 936
(2.8%) being scheduled outside the intended time window.
The combined CPU time was also reduced to around 3.5 h.
The CPU time limit of 8 h per run was achieved when
applying the same methodology for 2 clusters (main and
satellite locations). Nevertheless, the solver was able to
find a feasible solution, which did not improve the solution
found with 4 clusters. A higher number of sessions (60)
were found breaching the time window preference, in a total
of 928 sessions scheduled. Note that, with the introduction
of constraints (9), the MILP model was able to find a
feasible solution the problem for an instance size of 6
linacs (L1,...,L6 in the experiment with 2 clusters) during
the computation time, although the CPU time was achieved
in one of the runs. As with the experiments conducted in
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Table 4 Results for pre-assignment heuristic and MILP model for the NKI size

No. Linacs belonging to each cluster Cumulative # sessions # sessions Average Total

clusters deviation scheduled outside deviation CPU time

(obj. value) window (min) (s)

8 [L1] [L2] [L3] [L4] [L5] [L6] [L7] [L8] 1085 918 41 (4.5%) 26.5 18143

4 [L1,L3] [L2,L6] [L4,L5] [L7,L8] 545 936 26 (2.8%) 21.0 11763

2 [L1,L2,L3,L4,L5,L6] [L7,L8] 7695a 928a 60 (6.5%)a 128.3a 31181a

1 [L1,L2,L3,L4,L5,L6,L7,L8] – – – – –

aCPU time limit achieved in at least one cluster

Section 4.3, the 8 h of CPU time limit was achieved when
attempting to solve the problem for the 8 linacs combined
in a single cluster without any integer solution being found.
We also note that, overall, the performance of the combined
approach decreases in terms of CPU time (from 7 min to
5 h) after considering the pre-allocation constraints (9) as
part of the pre-assignment process. This shows that the
existence of such pre-allocation, such as the one in the NKI,
may decrease the performance of the proposed methodology
by providing less flexibility when pre-assigning patients to
linacs.

4.4 Sensitivity analysis

In this part, we investigated the impact of varying two input
parameters: the probability breakdown for the possible time
windows being chosen by patients, and the size (minutes) of
the time windows being made available to patients. In our
sensitivity analysis, we vary the size of both time windows
w1 and w3 from 90 min to 120 and 150 min, and test
the probability breakdown [w1, w2, w3] at [50%,25%,25%]
and [12.5%,75%,12.5%] in addition to the original [25%,
50%, 25%]. All combinations between these scenarios are
tested using the instance with 4 clusters, since it has

Table 5 Total cumulative deviation, in minutes

Total deviation (Obj. value)

Probabilities (w1 / w2 / w3) Window size (min)

150 120 90

0.25 / 0.5 / 0.25 0 65 650

0.5 / 0.25 / 0.25 320 4659a 25614a

0.125 / 0.75 / 0.125 0 0 55

aCPU time limit achieved

shown to provide the best performance regarding both the
solution quality and overall CPU time needed (Table 4).
The maximum allowed CPU time in these experiments is
set to 7200 s (2 h) per run, for a combined CPU time limit
of 28800 s (8 h). Results (Tables 5, 6, 7 and 8) show that
the patient satisfaction levels may significantly increase by
enlarging the window size to 120 min, with the percentage
of sessions being scheduled outside the preferential window
decreasing to 0.5% (baseline). Besides, the total CPU time
needed to solve the 4 subproblems associated with the
original problem decreases from 3.5 h (11299 s) to only
108 min. On the other hand, extending the windows w1

and w3 to [0, 150] and [450, 600], respectively, allowed our
methodology to schedule all sessions within the desired time
window in just 43.3 s when the baseline probabilities are
maintained.

By changing the probability of patients choosing w1

from 25% to 50%, we observe that the complexity of the
problem increases substantially. In fact, with the increased
competition level for a window size of 90 min, the CPU
time limit of 7200 s was reached in all 4 clusters. For a
window size of 120, 2 out of the 4 runs achieved the time
limit before optimality could be proved. Still, a feasible
solution has been found in both cases, with only 10% of

Table 6 Percentage of sessions breaching the time window preference

% sessions outside window

Probabilities (w1 / w2 / w3) Window size (min)

150 120 90

0.25 / 0.50 / 0.25 0.0% 0.5% 3.4%

0.5 / 0.25 / 0.25 1.5% 10.1%a 28.8%a

0.125 / 0.75 / 0.125 0.0% 0.0% 0.5%

aCPU time limit achieved
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Table 7 Average deviation, in minutes, of the sessions outside window

Average deviation (min)

Probabilities (w1 / w2 / w3) Window size (min)

150 120 90

0.25 / 0.50 / 0.25 0.0 13.0 20.3

0.5 / 0.25 / 0.25 22.9 50.1a 97.4a

0.125 / 0.75 / 0.125 0.0 0.0 11.0

aCPU time limit achieved

the sessions being booked outside the desired window for
the 120-min case, and approximately 29% time preference
breaching rate when the window size is equal to 90 min.
An opposite phenomena is observed when the probabilities
are set to [12.5%, 75%, 12.5%], with an ideal solution (all
sessions within the desired time window) being found for
the 150 and 120-min time window sizes, and only 0.5%
of sessions being scheduled outside the time window for
the 90-min case. All the instances for this last probability
breakdown were solved in under a minute of total CPU time.

5 Discussion

The proposed MILP model has proven to be efficient in
achieving an optimal solution for small instances of up to
66 patients and 2 linacs. For larger cancer centers (3 linacs
or more), the combination of the pre-assignment heuristic
and the MILP model was able to provide near-optimal
solutions (maximum of 6.2% optimality gap) quickly (less
than 1 h), thus ensuring the scalability of our combined
approach. Given the elevated fulfillment rates provided
by these solutions, RT centers may opt for the combined
approach in order to ensure low computation times without
loosing significant levels of solution quality. By running
the combined approach for the NKI size considering pre-
allocation constraints and patients with ongoing treatments,
the combination between the MILP model and the heuristic

Table 8 CPU time, in seconds, of the 4 runs combined

Total CPU time (s)

Probabilities (w1 / w2 / w3) Window size (min)

150 120 90

0.25 / 0.50 / 0.25 43.3 108 11299

0.5 / 0.25 / 0.25 5341.5 18981a 28800a

0.125 / 0.75 / 0.125 60.8 42 39

aCPU time limit achieved

procedure allowed to find a solution in which as few as
2.8% of the sessions are scheduled outside the preference
time window in around 3.5 h of CPU time. The positive
performance of our methodology when partitioning the
problem suggests that large RT centers should divide the
main problem in subproblems (subsets of linacs) and use
the MILP model to solve each subproblem separately.
Centers may split the fleet of linacs based on their location,
technological specifications (e.g. cone-beam CT embedded
or not) or based on staff planning. Although the obtained
solution for the original problem may not be proven
optimal, we believe that our methodology can be effective
in generating a (near-)optimal schedule in due time for
most real-world RT centers. According to the International
Atomic Energy Agency (IAEA), the NKI ranks amongst
the largest RT centers in the Netherlands with a total of
10 radiation machines (orthovoltage machines included)
registered by 2017 [19], just below the Erasmus University
Medical Center (12) and the University Medical Centre
Utrecht (11) but above all the other 21 Dutch centers.
Comparing with the US, the NKI size matches those of
the largest cancer centers, paired with e.g. the Stanford
Hospital (11) and the New York Memorial Sloan-Kettering
Cancer (10).

A sensitivity analysis revealed that the larger the
preferential time window, the easier it is for our approach to
fit the irradiation sessions within the corresponding window
preferences. Although enlarging the window can be seen
as an advantage from a model viewpoint, we lack evidence
on whether the patient would still be satisfied with such
window size. Moreover, it has been verified that when the
competition for the same time window increases (from 25%
to 50% of the patients), the size of the time window to be
chosen must be enlarged (from 90 to 150 min) in order
to keep the computation times low. RT centers using the
proposed approach should then monitor the percentage of
patients asking for their sessions for the same period, and
re-dimension the time window put available accordingly.

While we believe our model captures the operational
constraints encountered in the vast majority of RT centers,
there may be need to consider additional features in the
model for a practical implementation. For instance, it is
known that most patients need to have a weekly consultation
with the radiation oncologist in charge of the follow-up
during the course of their treatment. A possible extension
of the model could be to include the availability of doctors’
agenda to ensure a proper coordination between the weekly
consultation and (one of the) treatment sessions. Moreover,
linacs need to undergo maintenance on a certain frequency
basis. Maintenance operations are usually undertaken
during office hours, with the linac under maintenance being
replaced by a “back-up” linac. In the NKI, this linac is not
able to treat certain care plans, since it does not have an
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embedded cone-beam CT scanner. Therefore, an operational
offline re-scheduling of patients with a proper allocation
to other machines may be needed when implementing the
solution output by our model.

In case some restrictions (e.g. constraints (12) or (15)) are
not part of the planning process of the RT center interested
in using our methodology, the MILP model can be easily
manipulated to account for those differences by relaxing
(excluding) or adding constraints before solving the prob-
lem. Furthermore, the solution found by our model can be
merely used as a basis where adaptations that fit specific
needs of individual patients can be integrated to build a more
robust, personalized solution. On the other hand, collection
of real data and information regarding patient preferences
would further increase the robustness of our solutions.
Although planners and clinicians have provided insights
on the usual requests asked by patients based on their
experience, real data on patient perspectives regarding the
desired time window sizes and actual time preferences for
appointment times would allow for more concrete and real-
istic conclusions. For instance, some patients may be more
interested in consistency amongst the appointment times
of their treatment sessions rather than specific time prefer-
ences for their appointments. Other patients may not have
a preference at all, being more interested in starting treat-
ment as soon as possible. In these cases, one may use
the extra flexibility associated with those patients to fur-
ther improve the fulfilment of requests of patients who
actually have a preference. Moreover, in case some RT
centers do not consider patient preferences when schedul-
ing irradiation sessions, they may still use our approach
to ensure consistency between appointment times. For
instance, a “fictitious” time window of a pre-defined size
may be chosen for each patient before running the MILP
model, which then outputs a solution with the desired
degree of consistency amongst appointment times for each
patient.

A possible extension of our approach could be to apply
a formulation inspired in the Multi-Mode Resource Con-
strained Project Scheduling Problem (MMRCPSP) [20].
For example, the linacs could be modelled as a renewable
resource with a fixed capacity, and variables X decide upon
a “mode”, defined as the combinations of linacs and time
slots. Time window violations can be calculated using the
finish-start precedence relations between activities, com-
puted as time increments [20].

Efforts to assess the practical feasibility of the obtained
solutions need to be performed by RT managers and/or
planners before using the model in practice. This and other
implementation steps are currently being made together
with department managers and clinicians of the NKI
in order to perform an implementation of the proposed
methodology in the clinic.

6 Conclusions

Earlier research on the problem of scheduling RT sessions
considering time windows is scarce, with existing models
being developed in the context of particle therapy, which
makes them directly non-applicable to conventional RT.
In this study, we propose a MILP model that is able to
solve the RT scheduling problem to optimality in reasonable
computation time for RT centers with up to 2 linacs. For
RT centers with 3 linacs or more, we propose a heuristic
procedure that is capable of pre-assigning patients to linacs
while maintaining a balanced workload between linacs.
Combining the pre-assignment heuristic with the MILP
model allowed to solve the problem in less than 3.5 h of
CPU time with 97.2% of the sessions scheduled within the
desired time window for a large cancer center operating with
8 linacs.

Besides providing automated decision making for
scheduling RT treatments which allows managers and plan-
ners of RT centers to save time and effort during the
scheduling process, our algorithm is capable of incorporat-
ing patient preferences while ensuring that all timeliness,
medical and technical constraints are take into account.
Since the modeled problem and corresponding assumptions
are standard among RT centers and the patient mix at the
NKI is representative of the patient population found in RT
in general, our methodology can be generally applied to RT
centers.
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Appendix

Table 9 Pre-allocation of care plans to linacs in the RT department of the NKI (2017)

ID Careplan # patients L1 L2 L3 L4 L5 L6 L7 L8

1 Anus +/- inguinal lymph node 22 X X X X X X X X

2 Adrenal stereotaxic 4 X X X

3 Bladder 43 X X

4 Bladder (partial) 22 X X

5 Chest wall 45 X X X X X X X X

6 Chest wall+axilla 114 X X X X X X X X

7 Chest wall+axilla+parasternal 15 X

8 Chest wall+parasternal 3 X

9 Chest wall (bsu) 2 X

10 Bone metastasis 1099 X X X X X X

11 Bone metastasis stereotaxic 52 X X X X

12 Uterus 42 X X

13 Endometrium 16 X X X X

14 Neck (bsu) 9 X X X X X X X

15 Brain 1 fraction 107 X X X

16 Brain several fractions 86 X X X X

17 Brain (whole) 159 X X X X X X X X

18 Brain electrons 6 X

19 Lymph node stereotaxic 17 X X X X

20 Head-and-neck 230 X X X X X

21 Head-and-neck (palliative) 4 X X X X X

22 Larynx 2vs 2 X

23 Liver 6 X X X

24 Lung (palliative) 61 X X X X X X X X

25 Lung 273 X X X X X X X X

26 Lung (bsu) 47 X X X X X X X X

27 Lung stereotaxic 206 X X X X X X

28 Lymphoma 44 X X X X X X X X

29 Lymphoma (bsu) 19 X X X X X X X X

30 Stomach 14 X X X X X X X X

31 Breast 777 X X X X X X X X

32 Breast+axilla 179 X X X X X X X X

33 Breast+axilla+parasternal 20 X X X X X X X X

34 Breast+parasternal 1 X X X X X X X X

35 Esophagus 77 X X X X X X X X

36 Esophagus (palliative) 22 X X X X X X X X

37 Axilla (virtual) 5 X X X X X X X X

38 Orbit (eye socket) 1 X X

39 Ovaries 5 X X X X

40 Others 183 X X X X X X X X

41 Others (bsu) 60 X X X X X X X X

42 PAO (+/- iliac single-sided) 1 X X X X

532 Radiotherapy treatment scheduling considering time...



Table 9 (continued)

ID Careplan # patients L1 L2 L3 L4 L5 L6 L7 L8

43 Penis 11 X X X X

44 Prostate 243 X X X X X X X X

45 Prostate+pelvic lymph nodes 60 X X X X X X X X

46 Prostatic bed 36 X X X X X X X X

47 Prostatic bed+pelvic lymph nodes 25 X X X X X X X X

48 Rectum / sigmoid 87 X X X X X X X X

49 Rectum 13 x 3 Gy 5 X X X X X X X X

50 Rectum 5 x 5 Gy 56 X X X

51 Sarcoma abdominal/thoracic wall 13 X X X X X X X

52 Sarcoma extremity 28 X X X X X X

53 Sarcoma retroperitoneal 9 X X X X X X

54 Spinal cord 33 X

55 Vagina 5 X X X X

56 Vulva +/- inguinal lymph nodes 9 X X X X X X X X

Total 4720
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