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Abstract

Objective

The present study aims to explore the role of smoking factors in the risk of lung cancer and

screen the feature risk pathways of smoking-induced lung cancer.

Methods

The expression profiles of the patient data from GEO database were standardized, and dif-

ferentially expressed genes (DEGs) were analyzed by limma algorithm. Samples and genes

were analyzed by Unsupervised hierarchical clustering method, while GO and KEGG

enrichment analyses were performed on DEGs. The data of the protein-protein interaction

(PPI) network were downloaded from the BioGrid and HPRD databases, and the DEGs

were mapped into the PPI network to identify the interaction relationship. The enriched sig-

nificant pathways were used to calculate the anomaly score and RFE method was used to

optimize the feature sets. The model was trained using the support vector machine (SVM)

and the predicted results were plotted into ROC curves. The AUC value was calculated to

evaluate the predictive performance of the SVM model.

Results

A total of 1923 DEGs were obtained, of which 826 were down-regulated and 1097 were up-

regulated. Unsupervised hierarchical clustering analysis showed that the diagnosis accu-

racy of lung cancer smokers was 74%, and that of non-lung cancer smokers was 75%. Five

optimal feature pathway sets were obtained by screening, the clinical diagnostic ability of

which was detected by SVM model with the accuracy improved to 84%. The diagnostic

accuracy was 90% after combining clinical information.

Conclusion

We verified that five signaling pathways combined with clinical information could be used as

a feature risk pathway for identifying lung cancer smokers and non-lung cancer smokers

and increased the diagnostic accuracy.
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Introduction

Lung cancer is the most common cancer in the respiratory system with high malignancy and

extremely fast progression. According to 2018 Global cancer statistics (CA), lung cancer

accounts for 11.6% of all types of cancers worldwide, and is also the leading cause of cancer

deaths (accounting for 18.4% of total cancer deaths) [1]. Numerous studies have shown that

lung cancer has a higher incidence in male and is significantly associated with long-term

smoking [2, 3]. Lung cancer often begins in the periphery of lung tissue without significant

clinical features in early stage. In the advanced stage, it is accompanied by chronic cough,

blood stasis, chest tightness and other symptoms. In this case, some early symptoms such as

fatigue, shortness of breath, upper back and chest pain are likely to be ignored, resulting in

poor therapeutic effect.

Smoking is the leading cause of lung cancer and a global factor in many other cancer

deaths. In developing countries, the proportion of smokers has gradually increased. While in

developed countries, there are relatively few smokers. In the United States, patients with a his-

tory of smoking amounting for 10–15% of the total lung cancer patients [4]. Although most

lung cancer patients have a long history of smoking, the mechanism of lung cancer in non-

smokers remains unclear. At the same time, people who smoke for a long time but do not have

lung cancer also account for a considerable proportion [5]. Therefore, the specific biological

mechanism of smoking as an inducing factor leading to lung cancer needs to be verified,

which would be of great significance to clinically diagnose the risk of lung cancer. Studies have

shown that the mutation in related genes is one cause for smoking-induced lung cancer. Chap-

man AM et. al have found high frequency mutations of EGFR, EML4, ALK and KRAS in the

lung cancer patients with a smoking history [4]. The widely studied tumor suppressor gene

p53 is also discovered to be an important role in the process of smoking-induced lung cancer.

Gibbons DL et. al have reported that tobacco-induced p53 mutation may be the main pathway

of the smoking-induced lung cancer development by in vivo and in vitro experiments [6]. Lee

PN et. al have discovered a strong correlation between smoking and carcinogenesis of lung

cancer through analysis of 287 studies. The dose of smoking is significantly related to risks of

all types of lung cancer [7].

Highlights

1. 1923 differentially expressed genes between lung cancer smokers and non-lung

cancer smokers were excavated and used for functional enrichment analysis.

2. Unsupervised hierarchical clustering method was used for cluster analysis of sam-

ples. The diagnosis accuracy of lung cancer was 74% and that of non-lung cancer

was 75%.

3. A total of five dominant pathways were obtained by feature pathway screening.

The diagnostic value of these feature pathways was identified based on SVM, and

the diagnostic accuracy was improved to 84% which reached 90% after combining

clinical information.
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With the continuous development of gene sequencing technology, molecular level studies

are important for explaining the pathogenesis of cancer, identifying potential targets for new

drugs, and screening clinical biomarkers. The second-generation sequencing technology, gene

chip and other technical means can be applied to clinical cancer research. There are many stud-

ies explaining the possible pathogenesis of lung cancer and identifying lung cancer-related

genes through gene expression profiles. Wei D et. al have analyzed gene expression profiles and

identified a variety of lung cancer-related genes associated with lymph node metastasis, tumor

TNM staging, patient survival and so an [8]. In addition, molecular-level features could help us

assess patient sensitivity to treatment. For example, Hamilton G et. al have found that the

expression of chitinase-3-like 1/YKL-40 is significantly associated with drug resistance in

patients. Additionally, by early detection of molecular level expression, the risk of chemotherapy

failure for patients can be assessed in advance, avoiding side effects and treatment delay [9].

Most studies focus on smoking as a major inducer of lung cancer and are devoted to identi-

fying lung cancer-related genes and explaining its biological mechanisms. However, few stud-

ies have focused on non-lung cancer in long-term smokers. It is concluded that smoking is not

the only cause of lung cancer. There are more complex high-dimensional interactions in the

development of lung cancer. Some feedback and antagonism of human activation under

tobacco stimulation may be the reason why these smokers are free from lung cancer.

Support vector machine (SVM) learning is a powerful classification tool, which has been

used in cancer genome classification or subtyping. Nowadays, with the progress of high-

throughput technology, a large number of genomic and epigenomic data have been generated.

The classification characteristics of SVM are expanding its application in cancer genomics to

find new biomarkers, new drug targets, and a better understanding of cancer driver genes

[10]. Therefore, we used bioinformatics methods to compare two smoker groups with or with-

out lung cancer to identify differences in molecular levels, and to establish a diagnostic model

based on SVM.

Materials and methods

Data collection and preprocessing

GSE4115 dataset was downloaded from Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) which contained 192 samples, including 97 samples from lung

cancer smokers, 90 samples from non-lung cancer smokers and 5 samples from suspicious

lung cancer smokers. In addition, clinical information including age, gender, duration of

smoking, smoking index, tumor size and with or without lymphadenopathy were collected for

further analysis. 163 samples with completely clinical characteristics were screened out, includ-

ing 85 samples of non-lung cancer smokers and 78 samples of lung cancer smokers. The

expression profiles were tested through Affymetrix Human Genome U133A Array platform.

All probe IDs were transferred to gene symbols according to platform data (GPL96-15653.txt).

Since multiple probes might correspond to the same gene symbol, the results of the same gene

symbol were averaged and merged. In order to eliminate the effect of differences in intrinsic

expression level between genes, the expression value of all genes was normalized according to

Z-score [11], which is to calculate the mean and standard deviation of expression in all samples

for each gene symbol, and finally correct the expression value X for each sample. X’ = (X-

mean)/SD (X’ is the corrected expression value).

Extraction of Differentially Expressed Genes (DEGs)

Differential analysis was performed using “limma” [12] R package. The smoking patients with

lung cancer (lung cancer smokers) were in case group, while smoking patients without lung
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cancer (non-lung cancer smokers) were in control group. Since the logFC of most genes con-

centrated between -1 and 1, a gene with p value less than 0.01 after FDR correction was

regarded as a significantly DEG to ensure statistical efficiency.

Hierarchical cluster analysis

Unsupervised clustering analysis, namely hierarchical cluster analysis, was performed and

visualized by heat map. The clustering process was implemented by orange software and visu-

alized by distance map. Pearson correlation coefficient [13], average linkage [14] and hierar-

chical clustering method [15] were adopted for cluster analysis.

Functional enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) [16] was used

to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analyses for up-regulated and down-regulated DEGs, respec-

tively. Terms with significant P<0.05 after hypergeometric test were selected as significantly

related terms with GO and KEGG.

Protein-Protein Interaction (PPI) network construction

The DEGs were mapped to the human PPI network to identify the intrinsic association or the

importance of disease-related genes in the system network. The data of the PPI were down-

loaded from the BioGrid [17] (https://thebiogrid.org) and HPRD [18] (http://www.hprd.org/)

databases. The two sets of data were combined into a union, including 14,553 proteins and

662,360 interactions. Next, DEGs were mapped into a human PPI to identify interactions.

Cytoscape was used to build network and conduct visualize analysis. Meanwhile, the network

analysis plug-in was used to analyze the network topological features in order to identify the

hub nodes with high node degree in network.

Calculation of functional deviation score matrix

The abnormal score was calculated using the enriched significant pathway. Changes of each

pathway under each sample were obtained by calculating the expression values of the DEGs in

the significant pathway. The formula is as follows:

pathscore ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i oiðdi �
�diÞ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j ojðdj �

�djÞ
2

q

Assuming that there were m up-regulated genes and n down-regulated genes enriched in

pathway P, and �d was the mean of up-regulated genes i or down-regulated genes j in a non-

lung cancer smoker. Euclidean distance was used to calculate the deviation of pathway P

under the influence of up-regulated genes and down-regulated genes, respectively (ω is the

node degree of genes in the PPI as a weight to evaluate contribution rate). The logarithm trans-

formation value of log was taken. The pathway function was significantly up-regulated in lung

cancer smokers compared to non-lung cancer smokers when the score of P pathway was

greater than 0. When the score was less than 0, opposite results were observed.
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Recursive Feature Elimination (RFE) feature extraction

We integrated all pathway feature sets and clinical characteristics data, including age, gender,

smoking age, smoking index, tumor size, presence or absence of lymph node lesions, etc., and

obtained a set of features consisting of clinical diagnostic indicators and abnormal pathways.

RFE [19] was used to perform feature set optimization screening. All features were constituted

into multiple small feature sets and combined cross-validation to iteratively test the training

set. At least k significant features were removed each time until the best prediction accuracy

was obtained.

SVM classifier construction based on optimized features

The feature set was optimized and screened by the RFE method. In order to effectively predict

the risk of smoking-induced lung cancer through these features, the SVM method [20] was

used to train the model. The linear fitting method was adopted. Five-fold cross-validation

method was used [21] by which samples were divided into five parts after random sorting.

Four of them were used as training sets to construct the SVM model, and the remaining one

was predicted to calculate accuracy. Above process was repeated 5 times until each one was

predicted as a prediction set for once only. Results of the 5 predictions were plotted as ROC

curves, and the AUC values were calculated to evaluate the predicted performance of the SVM

model.

Results

DEGs extraction

85 non-lung cancer smokers were served as control group and 78 lung cancer smokers were

served as case group to identify DEGs. Genes with adjusted P<0.01 and |logFC|>0.6 were

selected as the DEGs. Ultimately, 1923 DEGs were obtained, of which 826 were down-regu-

lated and 1098 were up-regulated (Fig 1) (For detailed data, see supplementary material DEG.

txt).

Unsupervised hierarchical clustering analysis

In order to validate the efficacy of DEGs in distinguishing the two kinds of smokers and iden-

tify the similarity of the two smoker populations, unsupervised hierarchical clustering method

was used to analyze the 163 samples. The result was shown in Fig 2A. The two categories of

clustering results were marked as red and blue, respectively. The non-lung cancer smokers

accounted for 75% of the total blue clusters and lung cancer smokers accounted for 74% of the

total red cluster samples. We used the confusion matrix to statistically predict the accuracy of

each component in hierarchical clustering (as listed in Table 1). The rows in table represented

observation value, and columns represented cluster prediction value. There were 78 lung can-

cer samples and 85 non-lung cancer samples in observation samples. While in the cluster sam-

ples, 76 samples were classified into the cancer group, of which 56 were correctly classified

with an accuracy of 74%. In addition, 87 samples were classified as non-cancer group, of

which 65 were correctly classified with an accuracy of 75%.

To further evaluate the correlation and distance between the two sets of samples, we visual-

ized the distance between two random samples in Fig 2B. It could be seen that the distance

within the group were closer together while the distance between the groups was far. There-

fore, there is a genetic difference between lung cancer smokers and non-lung cancer smokers,

which means that these genes have different functions.
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Functional enrichment analysis

In order to further analyze the biological functions regulated by DEGs between lung cancer

smokers and non-lung cancer smokers at functional level, GO and KEGG enrichment analyses

were performed on DEGs. In order to analyze the directionality of abnormal changes in func-

tional levels, we enriched the up-regulated DEGs and down-regulated DEGs, respectively, with

the significance P value as 0.05. The enrichment results were shown in Tables 2–5. Up-regu-

lated DEGs were mainly involved in the regulation of protein, mRNA anabolism and energy

metabolism-related functions. Down-regulated DEGs were mainly involved in the regulation

of cell signaling processes, including membrane potential regulation, second messenger, intra-

cellular signaling, apoptosis, immunity and other related functions. Smoking induces the dis-

order of protein, mRNA anabolism and energy metabolism in human body, resulting in the

Fig 1. Distribution of DEGs expression in lung cancer smokers and non-lung cancer smokers. A: Heat map of DEGs; B:

Volcano plot of DEGs. Red represents up-regulated genes, green represent down-regulated genes in these two maps.

https://doi.org/10.1371/journal.pone.0233445.g001

Fig 2. Clustering results of 163 smokers. (A) Unsupervised hierarchical clustering results, blue represents predomination of non-lung cancer, red represents

domination of lung cancer; (B) Distance map of lung cancer samples and non-lung cancer samples. The closer the distance, the closer the color is to blue; the further the

distance, the closer the color is to yellow.

https://doi.org/10.1371/journal.pone.0233445.g002
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abnormal function of normal cells. At the same time, abnormal function of apoptotic process

and abnormal immune system mediated by immune cells such as T cells and NK cells, are also

important causes of carcinogenesis.

PPI network construction

Disease-related genes are not relatively independent, since they often participate in the regula-

tion of important biological processes by interacting with each other. Meanwhile, if a gene has

more adjacent gene nodes in the process of system regulation and interaction, it tends to be

more important. Therefore, we mapped the DEGs to the human PPI, constructed the network

through cytoscape software and performed topological analysis on the network to find impor-

tant genes with high node degree. The degree distribution of nodes in the network was used as

a weight to evaluate their contribution rate and effect, and systematically analyze the role of

DEGs of lung cancer smokers and non-lung cancer smokers in biological networks. Results

were shown in Fig 3, the network contained a total of 774 nodes, of which 496 genes were up-

regulated (indicated by dark black nodes) and 278 genes were down-regulated (indicated by

light-colored nodes). Next, we used the network analysis plug-in to analyze the topological

properties of the network. The node size is used to represent the size of the node degree distri-

bution. The larger the node is, the greater the node degree directly interacted with the node is

Table 1. Confusion matrix.

clustered sample

group Cancer no cancer

observed sample cancer 56 22

no cancer 20 65

https://doi.org/10.1371/journal.pone.0233445.t001

Table 2. GO enrichment using up-regulated genes.

Term Count P Value
GO:0044267~cellular protein metabolic process 250 9.04E-16

GO:0015031~protein transport 100 5.37E-11

GO:0006886~intracellular protein transport 60 4.02E-10

GO:0016070~RNA metabolic process 104 2.08E-07

GO:0043632~modification-dependent macromolecule catabolic process 70 1.09E-06

GO:0030163~protein catabolic process 73 2.57E-06

GO:0051246~regulation of protein metabolic process 66 3.14E-06

GO:0006396~RNA processing 66 3.47E-06

GO:0044257~cellular protein catabolic process 70 6.25E-06

GO:0016071~mRNA metabolic process 48 1.43E-05

GO:0006397~mRNA processing 41 9.44E-05

GO:0006412~translation 41 1.83E-04

GO:0006464~protein modification process 131 2.20E-04

GO:0006259~DNA metabolic process 54 6.85E-04

GO:0032268~regulation of cellular protein metabolic process 50 0.001416

GO:0042981~regulation of apoptosis 75 0.002679

GO:0043067~regulation of programmed cell death 75 0.003472

GO:0010605~negative regulation of macromolecule metabolic process 68 0.005107

GO:0031325~positive regulation of cellular metabolic process 79 0.00553

https://doi.org/10.1371/journal.pone.0233445.t002
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in the network, and the more adjacent genes are affected by it. Detailed node degree distribu-

tion data can be found in the supplementary material Degree.txt.

Functional deviation score matrix

The biological functions of significant functional terms (including GO term and KEGG path-

way) obtained by enrichment analysis were regulated by multiple DEGs. Abnormally

expressed DEGs involved in the regulation of these functions would be accompanied with

abnormal functional levels of these functional terms. According to the calculation formula of

functional deviation score, we used the enriched DEGs expression value in 47 functions (GO

or KEGG term) and the deviation from the expression mean of the control group to calculate

the Euclidean distance, thus obtaining the functional score corresponding to each sample and

finally constructing a matrix (The specific scoring was shown in Fig 4 and the supplementary

material path score.txt).

Recursive features elimination feature selection

RFE method was used to optimize and screen functional features from functions with various

changes that could be diagnosed and predicted effectively in advance before the occurrence of

lung cancer. The results were shown in Fig 5, the accuracy represented by blue lines changed

as the number of feature sets changed. It could be observed that when the number of feature

sets was 5 (corresponding to the red line in the figure), the RFE prediction accuracy was the

highest. That was to say, the top 5 most significant function features could make the classifier

Table 3. KEGG enrichment using up-regulated genes.

Term Count P Value
hsa00020: Citrate cycle (TCA cycle) 10 2.33E-04

hsa04120: Ubiquitin mediated proteolysis 23 2.74E-04

hsa04142: Lysosome 19 0.001623

hsa03040: Spliceosome 19 0.003749

hsa00510: N-Glycan biosynthesis 10 0.004849

hsa03018: RNA degradation 11 0.006855

hsa00190: Oxidative phosphorylation 18 0.011546

hsa05210: Colorectal cancer 13 0.016526

hsa05016: Huntington’s disease 22 0.018547

hsa05012: Parkinson’s disease 16 0.041203

hsa00230: Purine metabolism 18 0.048018

https://doi.org/10.1371/journal.pone.0233445.t003

Table 4. GO enrichment using down-regulated genes.

Term Count P Value
GO:0009887~organ morphogenesis 44 6.00E-04

GO:0019932~second-messenger-mediated signaling 23 0.001072

GO:0030808~regulation of nucleotide biosynthetic process 14 0.001434

GO:0007242~intracellular signaling cascade 80 0.001696

GO:0006140~regulation of nucleotide metabolic process 14 0.002324

GO:0045761~regulation of adenylate cyclase activity 12 0.004139

GO:0048705~skeletal system morphogenesis 13 0.00487

GO:0042391~regulation of membrane potential 14 0.007974

https://doi.org/10.1371/journal.pone.0233445.t004
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perform best. These five features were GO: 0007242~intracellular signaling cascade,

GO:0006140~regulation of nucleotide metabolic process, hsa04080: Neuroactive ligand-recep-

tor interaction, hsa04120: Ubiquitin mediated proteolysis, hsa04142: Lysosome.

SVM classifier construction

We used five functional features to randomly rearrange all lung cancer smokers and non-lung

cancer smokers. Five-fold cross-validation was conducted to plot ROC curves, and the classifi-

cation accuracy was evaluated through AUC value. The results were shown in Fig 6A, and the

average AUC value was 0.84.

Fig 3. PPI network.

https://doi.org/10.1371/journal.pone.0233445.g003

Table 5. KEGG enrichment using down-regulated genes.

Term Count P Value
hsa04080: Neuroactive ligand-receptor interaction 26 5.02E-04

hsa04650: Natural killer cell mediated cytotoxicity 16 0.001677

hsa04512: ECM-receptor interaction 11 0.006667

hsa04660: T cell receptor signaling pathway 12 0.014253

hsa04912: GnRH signaling pathway 11 0.018809

hsa04020: Calcium signaling pathway 16 0.021719

hsa05340: Primary immunodeficiency 6 0.024776

hsa04210: Apoptosis 9 0.047056

hsa04510: Focal adhesion 16 0.049391

https://doi.org/10.1371/journal.pone.0233445.t005
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In order to analyze the efficacy of clinical diagnostic indicators (age, gender, smoke age,

smoking index, lymphatic lesions, nodule size) for the diagnosis of smoking-induced lung can-

cer, these indicators were used as new features and combined with 5 functional features to per-

form classified prediction again. Afterwards, a total of 11 features were obtained, which were

used as classification criteria. The ROC results were shown in Fig 6B. After the combination of

Fig 4. Functional score heat map for each sample. (The closer to red, the higher the score; the closer to green, the lower the score.).

https://doi.org/10.1371/journal.pone.0233445.g004
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clinical features, the accuracy increased from 84% to 90%, indicating that clinical indicators

had a certain auxiliary effect on the risk of smoking-induced lung cancer. Smokers with longer

smoking history, larger nodules and lymphadenopathy are more likely to develop lung cancer

than other smokers.

Discussion

Smoking is a major risk factor for lung cancer [22]. Inhalation of second-hand smoke or envi-

ronmental tobacco smoke increases the risk of lung cancer even if people do not smoke [2].

However, not all smokers are diagnosed with lung cancer, so it is of great significance to find

the feature risk pathways of smoking carcinogenesis for the early diagnosis of lung cancer in

smokers and realize personalized treatment for smoking patients. He X et al. have performed

meta-analysis of mRNA in lung adenocarcinoma (LUAD) smokers and non-smokers and

have explored five genes related to LUAD [23]. But there are still few studies on DEGs in

smokers and non-smoking patients. In present study, we compared and screened DEGs of the

lung cancer smokers and the non-lung cancer smokers. These genes play an important role in

Fig 5. Feature recursive optimization. The horizontal axis is the number of feature selections, and the vertical axis is the prediction accuracy of cross-validation.

https://doi.org/10.1371/journal.pone.0233445.g005
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the development of lung cancer, and further exploration of the biological functions and their

changing directions regulated by these genes could help us to discover new diagnostic

markers.

In order to analyze the directionality of functional changes, we took the up-regulated and

down-regulated genes for enrichment analysis. The results indicated that there was a signifi-

cant difference between the up-regulated biological functions and the down-regulated biologi-

cal functions. Up-regulated functions focused on regulating protein and mRNA anabolism, as

well as energy metabolism-related function. Down-regulated DEGs were mainly involved in

the regulation of cell signaling processes, including membrane potential regulation, second

messenger, intracellular signaling and apoptosis, immunity and other related functions.

We used DEGs to perform unsupervised hierarchical clustering analysis on the two groups

of samples, and obtained two main clustering results, which were predominated by lung can-

cer smokers and non-lung cancer smokers with accuracy of 74% and 75%, respectively. The

results suggested that at the molecular level, two groups with different risk of lung cancer

could be distinguished to a certain extent, but the accuracy did not meet the clinical diagnostic

requirements. This might due to the fact that the genes are more sensitive to environmental

stimulus, so we considered converting genes into functional analysis for more robust

prediction.

In recent years, more and more researches have been conducted to verify the accuracy of

tumor biomarker prediction based on SVM classifiers [12, 24, 25]. In this study, we identified

five important biological functions through RFE which included GO: 0007242~intracellular

signaling cascade, GO:0006140~regulation of nucleotide metabolic process, hsa04080: Neuro-

active ligand-receptor interaction, hsa04120: Ubiquitin mediated proteolysis, hsa04142: Lyso-

some. These signaling pathways are closely related to cell metabolism and signal transduction.

The accuracy of using these five functions for pre-SVM classifier prediction is up to 84%,

which is much higher than the previous result of unsupervised hierarchical clustering analysis.

It is proved that the analysis at functional level analysis is more stable than that at the genetic

level. These significantly altered biological functions identify different risk degrees associated

Fig 6. ROC curves for evaluating the performance of the SVM classifier. A: ROC curves without clinical features, 1–4 is training set and 5 is test set; B: ROC curves

with clinical features, 1–4 is training set and 5 is test set.

https://doi.org/10.1371/journal.pone.0233445.g006

PLOS ONE Feature risk pathways of smoking-induced lung cancer based on SVM

PLOS ONE | https://doi.org/10.1371/journal.pone.0233445 June 4, 2020 13 / 16

https://doi.org/10.1371/journal.pone.0233445.g006
https://doi.org/10.1371/journal.pone.0233445


with different types of smoking-induced lung cancers. The mechanisms that affect the cancer

risk are caused by these functional changes.

We further combined five significant functional features with clinical diagnostic indicators,

including age, gender, smoking index, smoking age, lymphatic lesions and tumor size, etc. The

accuracy of classification prediction was improved to 90% by encoding and merging the clini-

cal diagnostic indicators into a new feature set, indicating that the clinical diagnostic indicators

also had certain discriminative performance. Therefore, combining clinical indications and

changes in biological functions is of great significance for early diagnosis and prediction of

smoking-induced lung cancer risk. The human-behavior indicators are country specific and

SVM has an excellent power in predicting their lung cancer mortality (CM) with the average

accuracy in prediction of 96.08% for the 13 countries tested between 2014 and 2016 [26].

Therefore, SVM has a good application prospect to identify the characteristic risk pathways of

smoking induced lung cancer.

From this study, it can be concluded that smoking may be an important cause of lung can-

cer but not the only factor. There are still more complex stress and self-protection mechanisms

in living organisms. Under the stimulation of nicotine, the body initiates a series of biological

functions to counteract the cancerization process. This complex process is one of the reasons

why some smokers do not have cancer. However, when this stress response is absent or

decompensated, the cancerization predominates and smokers have a significantly increased

risk of developing lung cancer. Based on the expression of gene level, we have classified clini-

cally smoked with different cancer risk samples, and identified five feature risk pathways that

can be used to identify smoking-induced lung cancer. It provides basis for early diagnosis and

accurate treatment of lung cancer smoking patients. However, its specific biological mecha-

nism still needs further exploration.
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