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Lung cancer has been the leading cause of cancer-related mortality in China

in recent decades. Positron emission tomography-computer tomography

(PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is

the most widely used PET tracer in foci diagnosis, tumor staging, treatment

planning, and prognosis assessment by monitoring abnormally exuberant

glucose metabolism in tumors. However, with the increasing knowledge on

tumor heterogeneity and biological characteristics in lung cancer, a variety of

novel radiotracers beyond 18F-FDG for PET imaging have been developed. For

example, PET tracers that target cellular proliferation, amino acid metabolism

and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other

targets, such as tyrosine kinases and cancer-associated fibroblasts, have been

reported, evaluated in animal models or under clinical investigations in recent

years and play increasing roles in lung cancer diagnosis. Thus, we perform

a comprehensive literature review of the radiopharmaceuticals and recent

progress in PET tracers for the study of lung cancer biological characteristics

beyond glucose metabolism.
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Introduction

Lung cancer (LC) is a major threat to public health,
accounting for the highest cancer-related mortality among
all types of cancers worldwide (1, 2). Based on histological
differences, LC can mainly be classified into small-cell lung
carcinoma (SCLC), non-small-cell lung cancer (NSCLC) and
pulmonary neuroendocrine tumors (NETs) (3, 4). NSCLC
accounts for approximately 85–90% of all LC incidences and
includes squamous-cell carcinoma (SCC), adenocarcinoma, and
large-cell carcinoma (5). In the last century, the overall 5-
year survival rates for LC patients remain relatively low, since
LC is often advanced to the late stage when diagnosed and
the treatments are limited under those circumstances (2, 6).
Fortunately, inspiring improvements in survival rates of LC
have been achieved in recent decades, which benefited from
the development of molecular imaging technologies, including
positron emission tomography (PET) (7, 8).

Compared with conventional X-ray and CT, PET has
the advantages of tumor targeting and effective quantitative
capabilities and thus is more powerful in detecting functional
abnormalities in lung cancer diagnosis (9–11).

As an analog of glucose, 18F-fluorodeoxyglucose (18F-FDG)
is the most commonly used PET tracer for the detection of solid
tumors. 18F-FDG accumulates in tumor cells via membrane
glucose transporters (GLUT-1 and GLUT-3) due to abnormally
increased glucose metabolism (18F-FDG can be phosphorylated
by hexokinase and the product is more polar that can be trapped
in the tumor cell, and the cellular concentration of 18F-FDG
can be visualized by PET and represent the level of glucose
metabolism) (12). Therefore, 18F-FDG PET is widely used in the
clinic as a revolutionary imaging technique for tumor diagnosis,
staging, treatment planning and prognosis assessment. The
diagnostic and prognostic value of 18F-FDG PET in LC patients
has been extensively investigated, and studies have also shown
the effectiveness of 18F-FDG for NSCLC staging (13–15).

However, since tissue glucose metabolism is not malignancy
specific, other conditions, such as inflammatory/infective
processes, will also cause increased 18F-FDG uptake and false-
positive results (16, 17). Furthermore, a great amount of tumor
heterogeneity can be found in all histologic subtypes of LC, and
18F-FDG uptake is variable in different subtypes: SCC displays
higher FDG-avid than adenocarcinomas, while pulmonary
NETs, lepidic predominant adenocarcinomas and mucinous
neoplasms usually show relatively low 18F-FDG uptake (18,
19). Heterogeneity may present in different lesions within
the same patient. In addition, multiple microenvironmental
factors in different stages of LC, such as hypoxia and tumor
angiogenesis, may also affect tumor progression as well as
treatment response. Therefore, 18F-FDG PET is not able to
provide full information about growth and metabolism of
tumors, such as cell proliferation rate, expression of certain
receptors, protein synthesis and amino acid metabolism,

angiogenesis, etc., and this information are also important for
diagnosis and treatment of tumors. To fully investigate tumor
features for precise individual treatment, more specific PET
radiotracers are required for characterizing tumor pathology
and monitoring/predicting the therapeutic response (20).

In past decades, great efforts have been made to develop
novel PET tracers to improve the specificity and sensitivity of
PET imaging of LC. Although most of these newly reported
PET tracers are in the early research stages, several tracers
have entered clinical investigations, which hold the unlimited
potential of clinical value for diagnostic PET imaging. This
paper reviews the recent progress in PET tracers used in LC
other than FDG, with their development history, preclinical and
clinical results, and potential for future applications.

Imaging of cellular proliferation

Uncontrolled cell proliferation can be found in all subtypes
of lung cancer and is regarded as the key prognostic predictor of
malignancy. As a ribosomal RNA transcription-related nuclear
protein, Ki-67 is highly expressed during the dividing phases of
the cell cycle (S, G1, G2, and M), plays a crucial role in cancer
metastasis and can be used as a biomarker for the detection
of various tumors. Patients with LC who possess high levels
of Ki-67 expression are mostly related to poor differentiation,
decreased progression-free survival (PFS), and decreased overall
survival (OS) (21–23). Studies have shown that 18F-FDG uptake
correlates strongly with Ki-67 expression (percentage of positive
cells); however, 18F-FDG does not directly target the process of
cell proliferation (23–27).

In recent decades, a series of 18F-labeled thymidine analogs,
such as 18F-FLT, have been further incorporated into DNA via
DNA synthesis procedures (18F-FAU, 11C-DST, etc.) (Figure 1),
were successfully developed as cellular proliferation PET
imaging probes. These analogs follow the same salvage pathway
as thymidine, in which they were phosphorylated to thymidine
monophosphates by upregulated thymidine kinase 1 and hence
trapped in cells during S-phase. With these specially designed
PET tracers, the cellular proliferating capability of LCs can be
directly visualized.

Among these thymidine analogs, 18F-FLT is the most widely
used tracer in the clinic. 18F-FLT accumulation in tumor cells
correlates with histopathological Ki-67 expression and tumor
angiogenesis (28, 29). A study carried out by Buck et al. indicated
that 18F-FLT uptake and distribution were related exclusively to
malignancies; however, 4 out of 8 benign lesions showed positive
18F-FDG uptake (30). Similar studies were carried out using
both 18F-FDG and 18F-FLT thereafter, and the results indicated
that 18F-FLT is more specific and more accurate (at least equally)
in the detection of primary LC (31, 32). Compared with 18F-
FDG, 18F-FLT is more specific and sensitive in the detection
of primary tumors but shows less accuracy for N staging in
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FIGURE 1

Structures of representative PET tracers for cellular proliferation, amino acid metabolism and related representative PET images in LC patient.
(I) Typical PET and CT images of a 60-year-old patient (female) with adenocarcinoma with 18F-FLT (upper) and 18F-FDG (lower); (II) 18F-FDG (A)
and 18F-FMT (B) images in 74-year-old patient (male) with lung adenocarcinoma.

LC patients (28, 33, 34). Typical PET images of 18F-FLT in LC
patient were presented in Figure 1 (34).

Trigonis found that a significant decrease in FLT uptake
was observed in NSCLC patients (stages I to III) after
radiation therapy or radical chemoradiation therapy, which
is more sensitive than 18F-FDG (35, 36). Therefore, 18F-FLT
shows promising properties in evaluating treatment responses.
Furthermore, Kobe et al. found that lower residual 18F-FLT
and 18F-FDG uptake were associated with improved PFS in
NSCLC patients who had received erlotinib therapy, indicating
that 18F-FLT had prognostic value in LC patients (37, 38).

Based on the observations of 4′-methyl-[14C]-
thiothymidine with its fast accumulation in rapidly proliferating
tissues, 11C-labeled 4′-methyl-thiothymidine (11C-4DST,
Figure 1) was synthesized and evaluated in vitro (39). In
a rodent model, 11C-4DST showed high tumor uptake
(sensitivity) and selectivity, with a tumor SUVmax of 4.93.
The tumor-to-muscle ratio is 12.7, which is similar to that
of 18F-FDG (13.2) (40). A recent study indicated that 11C-
4DST displayed a higher correlation with proliferation of
lung cancer, and the correlation coefficient between SUVmax

and Ki-67 expression was significantly higher with 11C-4DST
(0.82) than with 18F-FDG (0.71) in 18 NSCNC patients
(41). As an unnatural analog of thymidine, FMAU was first
evaluated under clinical investigations for the treatment
against hepatitis B virus (HBV) (42). Then, L-FMAU was also
radiolabeled with 18F and indicated high tumor uptake in
H441 animal models; however, high physiological uptake in
the liver and kidneys was investigated in human studies (42,
43).

Although many other radiolabeled thymidine analogs
targeting cellular proliferation and DNA synthesis have been
reported in recent years, few tracers have entered clinical
evaluations. For example, 11C-thymidine (Figure 1) showed

rapid metabolism and non-specific binding in the bone marrow
and liver, indicating that this tracer is not suitable for further
clinical use (44). The high concentrations of 18F-FAU in the
circulating system and the high activity accumulation in skeletal
muscle also limit its application as PET probes (45).

As a quaternary ammonium base, choline is a precursor
for the synthesis of cell membrane phospholipids.
After phosphorylation, choline is incorporated into
phosphatidylcholine and undergoes its metabolic pathway (46).
Increased choline metabolism can be observed in oncogenesis
and tumor growth processes, as well as tumor proliferation (47).
Radiolabeled with 11C or 18F choline analogs have been widely
used in PET imaging for the detection of neoplastic tissues (48).
11C/18F-choline (Figure 1) showed good performance in many
malignant tumors, including LC (48). Although choline analogs
usually showed false negatives with low degree of malignancy
and highly differentiated neoplasms (49, 50), in solitary lung
nodules it was demonstrated that some benign conditions like
granulomatous inflammation choline is negative and 18F-FDG
is falsely positive. In addition, choline-based PET may be
superior to 18F-FDG PET for the diagnosis of granulomatous
lymph nodes and lymph node metastasis (49, 51).

Although no relevant guideline has recommended PET
imaging of proliferation for diagnosis of tumors, 18F-FLT
was the most widely used tracer in clinical investigations
and applications.

Imaging of amino acid metabolism
and transportation

Beyond glucose, an abundant supply of amino acids is
important for cancer cells to sustain their proliferation activities.
Amino acids not only play crucial roles in nucleosides and
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protein synthesis for the maintenance of cellular homoeostasis
but also serve as important suppliers for energy metabolism
(52). In most LC malignancies, upregulated amino acid
transportation and metabolism can be observed. Therefore,
PET imaging of amino acid transport and metabolism showed
effectiveness in diagnosing tumors.

As an important intermediate in phospholipidic
biosynthesis in lung cancer cells, methionine (MET) can
directly reflect amino acid transportation; therefore, 11C-
MET (Figure 1) can be used as an effective PET tracer for
detecting tumors. According to a variety of past studies,
11C-MET PET/CT is more specific and sensitive than 18F-
FDG in differentiating benign lesions and lung cancer in
pneumoconiosis (53–57). In addition, with the advantage of low
physiological uptake in the brain, 11C-MET PET/CT showed
better efficacy in detecting LC with brain metastasis (58, 59).

Other radiolabeled amino acids, such as L-[3-18F]-alpha-
methyltyrosine (18F-FMT, Figure 1) and 2-amino[11C]methyl-
isobutyric acid (11C-MeAIB, Figure 1), were also developed
for the detection of LC in the last decade (60). Mori et al.
found that 18F-FMT uptake is related to proliferative activity
and tumor angiogenesis in NSCLC and could serve as an
independent prognostic factor for patients carrying pulmonary
adenocarcinoma (60, 61). 18F-FMT uptake is strongly correlated
with amino acid transporter (LAT1) and holds higher specificity
in tumors than in peripheral organs, which makes 18F-FMT a
promising PET tracer for detecting amino acid transportation in
LC (62). In addition, 18F-FMT also showed prognostic value for
OS in NSCLC patients according to past research (Figure 1II)
(63, 64). Nishii et al. found that 11C-MeAIB PET achieved better
capability than 18F-FDG in differentiating benign and malignant
pulmonary and mediastinal mass lesions and better accuracy
than 11C-MET in diagnosing brain tumors (65). As a glutamic
acid derivative, 18F-labeled (S)-4-(3- -fluoropropyl)-l-glutamic
acid (18F-FSPG, BAY 94-9392, Figure 1) also showed promising
results in the detection of malignant diseases, including NSCLC
(66).

Beyond those tracers, there have been many reports about
radiolabeled amino acids targeting protein synthesis and amino
transportation pathways, along with their applications in
detecting tumors in recent decades, such as 18F-FET, 18F-
FACBC, 11C-ACBC, 11C-ACPC 11C-AMT, etc. Those tracers
have also been investigated in LC patients in clinic, but the
details are not discussed because of the scope of this paper
(67–70).

According to the joint European Association of Nuclear
Medicine (EANM)/European Association of Neuro-oncology
(EANO)/Working group of Response Assessment in
Neuro-Oncology (RANO) practice guidelines and Society
of Nuclear Medicine and Molecular Imaging (SNMMI)
standard procedures, 11C-MET, 18F-FET yielded high-quality
imaging standard by PET with patients with glioma as well as
18F-FDG (71).

Imaging of tumor hypoxia

Oxygen is crucial for cellular energy metabolism. However,
hypoxia was observed in a variety of solid tumors and was
regarded as an important biological feature (72). Hypoxia is
also considered to be associated with chemotherapy resistance
and radiotherapy resistance. Several studies have shown that
imaging assessments of hypoxia may hold great value to select
patients who would benefit from individualized targeted therapy
utilizing the presence of hypoxia (72). With the help of specially
designed radio-labeled tracers, PET imaging of tumor hypoxia
may provide non-invasive, repeatable images with high spatial
resolution and high sensitivity against hypoxic regions in LC.
PET hypoxia tracers can be classified into two groups according
to their structures: (1) Radiolabeled nitroimidazole analogs;
(2) metal chelates.

Nitroimidazole analogs

Nitroimidazoles can be reduced into reactive intermediary
metabolites in the presence of intracellular reductases, and
this process is directly regulated by the level of hypoxia.
Subsequently, nitroimidazole undergoes a futile reduction cycle
and returns to the original structure with sufficient competitive
electron acceptors. Otherwise, nitroimidazole compounds will
be trapped in the hypoxic cells through the formation of
hydroxylamine alkylating agents after a reduction reaction
(73). Therefore, this process can be visualized by radiolabeled
nitroimidazole compounds via PET imaging.

According to clinical research, tumor hypoxia is highly
variable and widely prevalent. 18F-FMISO (Figure 2) was first
synthesized in 1986 and is now the most widely used derivative
of nitroimidazole (74). Kubota et al. discovered increased 18F-
FMISO uptake in hypoxic and radioresistant tumors in rat
models (75). Then, 18F-FMISO accumulation was found to
be well associated with the pO2 measurements in head and
neck cancer and renal cell carcinoma (76–79). In preclinical
studies, 18F-FMISO PET imaging demonstrated better utility
and feasibility to identify tumor hypoxic areas compared with
18F-FDG PET (80–82). A variety of human tumors were
evaluated by 18F-FMISO, and the results indicated that hypoxic
regions could be effectively visualized within different tumors or
different regions in the same tumor. Based on a study carried out
with 8 patients bearing advanced NSCLC, 18F-FMISO PET can
be used to define the hypoxic subareas that may correspond to
the region of local recurrences. Additionally, 18F-FMISO uptake
could be estimated as a prognostic factor and was associated
with the risk of locoregional failure when used in combination
with a hypoxia sensitizer (83–85). These results suggest that
18F-FMISO uptake may be used to predict the response to
treatment and OS (86). However, with a partition coefficient
(octanol/water) value of 0.44, slow whole-bode clearance and

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.945602
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-945602 October 1, 2022 Time: 14:0 # 5

Zhu et al. 10.3389/fmed.2022.945602

FIGURE 2

Structures of representative PET tracers for tumor hypoxia (I) and typical PET and CT images of 62Cu-ATSM in patient with lung
adenocarcinoma (II). (IIA,B) CT images indicated the mediastinal lymphadenopathy and lung tumor located in right upper lobe; (IIC,D)
62Cu-ATSM PET and PET/CT images shows high radioactivity accumulation in the enlarged lymph node and lung tumor.

low contrast of 18F-FMISO PET images were observed, making
18F-FMISO criticized and not favorable for clinical use (72, 87).

Bearing the same scaffold of nitroimidazole, 18F-FETNIM
(Figure 2) can specifically accumulate in hypoxic cells via
the same mechanism as 18F-FMISO. However, 18F-FETNIM is
more hydrophilic than 18F-FMISO with two hydroxyl groups
and is expected to have faster clearance from well-oxygenated
tissues, leading to a higher tumor-to-background (T/B) ratio
than 18F-MISO in rodent models (88). In a preclinical study,
18F-FETNIM showed a hypoxia detection capability similar to
that of 18F-FMISO in mice bearing C3H mammary carcinoma.
Jinming et al. carried out a head-to-head diagnostic evaluation
of 18F-FETNIM and 18F-FDG PET imaging in 26 patients with
NSCLC. Both 18F-FDG and 18F-FETNIM are beneficial in the
clinical evaluation of solid tumors, and 18F-FETNIM provides
valuable tumor hypoxia and can be used to predict OS (89). In a
study containing 32 patients bearing NSCLC, the radiotherapy
response was assessed by 18F-FETNIM PET. They found that
high uptake of 18F-FETNIM before radiation therapy correlates
with a trend toward poor OS (90). Another study carried out
by Lehtiö et al. on 18F-FETNIM PET in head and neck cancer
demonstrated similar results (91).

Another nitroimidazole analog bearing a triazole side chain,
18F-HX4 (Figure 2), showed high accumulation in tumors
and potential in the evaluation of tumor hypoxia. 18F-HX4
demonstrated faster clearance by the kidney and gallbladder and
thus allowed a shorter waiting time after the injection of this
tracer, making it more convenient for clinical use. The tumor-to-
muscle (T/M) ratio of 18F-HX4 is similar to that of 18F-FMISO
in lung cancer patients. A slight increase in the T/M ratio could
be observed as the imaging time was extended. 18F-HX4 showed

higher sensitivity and specificity to hypoxia than 18F-MISO and
displayed higher signal-to-background contrast, which makes it
more suitable for clinical use (92, 93).

To optimize the suboptimal signal-to-background
ratio, more hypoxic tracers were thus developed. With the
introduction of the sugar moiety, 18F-FAZA (Figure 2) has
better hydrophilicity than 18F-FMISO and displayed higher
tumor-to-muscle ratios (94). In preclinical and clinical studies,
18F-FAZA showed promising accumulation in hypoxic regions
and indicated efficient prognostic value (95, 96). Fourteen
patients with unresectable lung cancer underwent 18F-FDG
and 18F-FAZA PET/CT on consecutive days, 18F-FAZA showed
similar tracer uptake with 18F-FDG, and 18F-FAZA uptake in
lymph nodes could be used to predict the therapy response in
advanced NSCLC patients (97, 98).

Multiple nitroimidazole-based PET tracers have been
developed in recent years, such as 18F-FPIMO, 18FPN, 18FON,
4-Br18FPN, 18F-labeled Etanidazole analogs (18F-EF1, 18F-
FETA, etc.), 18F-labeled Doranidazole analogs (18F-FRP-170)
and nitroimidazole hybrid compounds (18F-FDG-2-Nim, 18F-
FNT, and 18F-GAZ) (see Figure 2). However, most of them did
not show potential superiority to 18F-MISO to be developed as
hypoxia PET tracers and need further investigation (99–104).

Metal chelates

The typical metal chelate used in hypoxia PET
imaging is radio-copper-labeled diacetyl-bis(N4-
methylthiosemicarbazone) (62/64Cu-ATSM) (Figure 2)
(72, 105). The accumulation of Cu-ATSM is observed in a
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redox environment with hypoxia, and several studies suggest
that the accumulation is a result of Cu(II) to Cu(I) reduction
by NADH/NADPH-based mitochondrial reduction (105).
However, the precise mechanism of this tracer for the location
trapping in normoxic and hypoxic regions/tissues remains
uncertain. 64Cu-ATSM was first found to have significant
hypoxia selectivity in EMT6 cells, and the selectivity was further
confirmed in animal models such as 9L gliosarcoma, R3327-AT
and FaDu human squamous cell rat models (106–109).

Tanaka et al. performed extensive investigations and found
that 64Cu-ATSM uptake regions consisted of tumor cells that
stayed in the cell cycle and that these cells were quiescent but
clonogenic, and the regions were also hypervascular; however,
18F-FDG uptake regions consisted of tumor proliferative tumor
cells and were hypervascular (110, 111).

Based on numerous clinical studies, 64Cu-ATSM PET is
feasible for the detection of tumor hypoxia, including LC, and
may possess prognostic value in anticancer treatments (112–
115). Compared with other tumor hypoxia PET tracers, 64Cu-
ATSM displayed a higher tumor-to-background ratio and thus
provided clearer delineation of tumor regions (116). According
to the 64Cu-ATSM PET imaging in patients with locally
advanced NSCLC, quantitative and optimal semiquantitative
results indicated that hypoxic burden (volume of hypoxic tumor
volume ∗ SUVmean) and hypoxic tumor volume had a significant
correlation with PFS (progression of free survival) (117).

Although tumor hypoxia was proved to be crucial
with tumor therapies, relevant PET tracers have not been
implemented in international guidelines and radiolabeled
ATSM was the preferred PET tracer in detection of tumor
hypoxia in clinical studies and applications.

Imaging of angiogenesis

Angiogenesis is associated with the formation of new
blood vessels and other important physiological/pathological
processes, including wound repair, physical development,
reproduction, response to ischemia, solid tumor growth, and
metastatic tumor spread (118). Therefore, angiogenesis has
gained attention as a critical imaging target in recent years for
the detection of malignant tumors, including LC (119, 120).
Multiple factors have been found to be related to the complex
and multistep process of angiogenesis, including vascular
endothelial growth factor (VEGF), hypoxia-inducible Factor 1
(HIF-1), platelet-derived growth factor (PDGF), transforming
growth factor beta (TGF-β), fibroblast growth factor-2 (FGF-
2), and angiopoietins (121). Although a variety of factors exist,
VEGF is considered the most important and potent factor (122,
123). In addition to those angiogenic factors, integrins have
also been involved in a number of physiological/pathological
processes associated with angiogenesis, including cell adhesion,
differentiation, proliferation, migration, and survival (124).

Specifically, as a heterodimeric cell surface receptor, αvβ3

integrin plays a crucial role in angiogenesis by allowing the
interaction between the cells and extracellular matrix and
promoting the migration of endothelial cells. Therefore, VEGF
and αvβ3 integrin are regarded as the most important targets
in multiple molecular imaging studies, including PET (125–
127). Hence, currently focused PET tracers for in vivo imaging
of angiogenesis can be subclassified into the following groups:
(1) radiolabeled VEGF pathway inhibitors; (2) radiolabeled
integrin antagonists.

Based on the reversible and irreversible binding domains to
VEGF tyrosine kinase receptors, monoclonal antibodies (mAbs)
displayed improvements in NSCLC patients with treatment
response, PFS, and OS. Radiolabeled monoclonal antibodies
are effective for the non-invasive imaging of VEGF abundant
tumors and prognostic evaluation of VEGF targeted treatment
(128). Luo et al. recently reported that PET imaging with 64Cu-
NOTA-RamAb provided initial evidence for overexpression
of VEGFR-2 in xenografted lung tumors, suggesting potential
applications in VEGFR-2-positive lung cancers (129). The
VEGF ligand family has several subtypes: VEFG-A, VEFG-B,
VEFG-C, VEFG-D, VEGF-E, VEGF-F, and placental growth
factor (PIGF). In addition to radiolabeled RamAb, several mAbs
that target tumor-associated VEGF ligands were developed as
PET tracers and evaluated in preclinical studies and clinical
trials. Among those mAbs, 86Y-CHX-A′′-DTPA-bevacizumab
indicated the highest uptake in VEGF-positive tumors in
MSTO-211H, SKOV-3 and LS-174T xenografted mouse models
(130). In a recently performed immuno-PET trial containing 7
NSCLC patients, 89Zr-bevacizumab successfully visualized the
tumors, and the tumor uptake indicated a positive relationship
with PFS and OS (131).

Integrins are cell adhesion molecules in activated tumor
endothelial cells and are considered to be involved in the
differentiation, growth, migration, and neovascularization of
cancer cells. With the core structure of the arginine-glycine-
aspartic acid (RGD) sequence, integrin αvβ3 binds to various
extracellular matrix molecules with high specificity and affinity
and plays a crucial role in the regulation of tumor growth,
invasiveness and distant metastasis. Therefore, numerous
integrin αvβ3 agonists and antagonists have been developed as
novel PET tracers for imaging angiogenesis (132, 133). In a
clinical study with 18F-galacto-RGD (Figure 3) and 18F-FDG
PET imaging of 18 patients (including 10 NSCLC patients) with
primary or metastatic cancer, no significant correlation between
SUVs for 18F-galacto-RGD and 18F-FDG for primary/metastatic
lesions separately was observed, suggesting the complementary
role of RGD-targeted PET beyond 18F-FDG PET (134). Zheng
et al. investigated 68Ga-labeled RGD PET tracer in LC patients
and found that 68Ga-NOTA-PRGD2 (Figure 3) possess higher
specificity in the detection of lymph node metastasis in lung
malignancies (135, 136). The recent progress of radiochemistry
with 18F-fluoride–aluminum complexes led to the development
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of 18F-AlF-NOTA-PRGD2(18F-alfatide) (Figure 3) with more
convenient production than 68Ga-labeled RGD peptides (137).
In LC patients, 18F-alfatide PET allows specific imaging of αvβ3

expression status with good tumor-to-background contrast and
shows other promising imaging properties (137, 138). Luan et al.
evaluated 18F-alfatide in advanced NSCLC patients before and
after concurrent chemoradiotherapy (CCRT) and found that
in non-responders, the SUVmax and T/NT were higher than
those in responders, while the uptake ratios of tumor to normal
lung could be regarded as an independent predictive factor of
short-term results for CCRT in advanced NSCLC patients (139).

Although there have been plenty of PET tracers for the
imaging of tumor angiogenesis reported and wildly used in
clinical in recent years, none of which have been implemented
in international guidelines, in spite of these tracers possess great
potential in detecting EGFR status in vivo and personalizing
therapies for NSCLC patients.

Imaging of pulmonary
neuroendocrine tumors

Pulmonary NETs are a heterogeneous subgroup of
malignancies that develop from a type of enterochromaffin
cell named Kulchitsky cells, including low grade (typical
carcinoid tumor), intermediate grade (atypical carcinoid
tumor), and high-grade malignant tumors (including small
cell lung cancer and large cell neuroendocrine carcinoma)
(140, 141). Although high-grade pulmonary NETs tend
to have FDG activity, the value of 18F-FDG PET for the
assessment of NETs is limited (142, 143). The development
of somatostatin receptor (SSTR)-based PET tracers has
significantly improved the diagnosis of NETs, including LC.
For example, 68Ga-DOTA-TATE, 68Ga-DOTA-TOC, and
68Ga-DOTA-NOC (Figure 4) showed specific binding to
subtype 2 of SSTR (144). DOTA-NOC also displayed good
affinities for subtypes 3 and 5 of SSTR. PET imaging with
68Ga–DOTA peptides offers multiple advantages compared
with 111In–pentetreotide-based scintigraphy or SPECT,
such as higher affinity to SSTRs and superior contrast and
resolution, making 68Ga–DOTA peptides superior and
convenient in the diagnosis of gastroenteropancreatic and
pulmonary neuroendocrine tumors (144, 145). According to
Venkitaraman et al., the specificity, sensitivity, and accuracy
of 68Ga-DOTA-TOC PET/CT are higher than those of 18F-
FDG PET/CT based on a prospective study with 32 patients
(bronchopulmonary carcinoid suspected) (146). In a study
for the detection of indeterminate pulmonary nodules,
68Ga-DOTATATE showed more specificity than 18F-FDG
(147). In addition, incorporating 68Ga–DOTA-peptide PET
imaging into 18F-FDG PET could enhance the specificity and
sensitivity for the diagnosis of pulmonary tumors (148–150).
Furthermore, indolent tumors showed low FDG uptake but high

68Ga-DOTA-TATE accumulation, indicating the diagnostic
value of 68Ga–DOTA-peptides in the evaluation of pulmonary
NETs (148).

Moreover, Zhu et al. evaluated the somatostatin receptor
(SSTR) and integrin αvβ3 dual-target PET tracer (NOTA-3P-
TATE-RGD, Figure 4) in 32 patients (18 with NSCLC and 14
with SCLC). 68Ga-NOTA-3P-TATE-RGD showed higher uptake
than 68Ga-NOTA-TATE in NSCLC patients, with strongly
positive αvβ3 and moderately positive SSTR2A expression
detected by immunohistochemical staining. Furthermore, 68Ga-
NOTA-3P-TATE-RGD uptake is also significantly higher than
68Ga-NOTA-RGD uptake in SCLC patients, with strongly
positive SSTR2A and negative to mildly αvβ3 expression (151,
152).

In addition to somatostatin analogs, radio-labeled SSTR
antagonists also showed selective affinity in preclinical and
clinical studies (lower affinity than that of DOTA-TATE).
Compared with 64Cu-DOTA-TATE, 64Cu-NODAGA-JR11
showed much less internalization but highly strong receptor-
mediated accumulation at the cell membrane (153). Specific
tumor uptake of 64Cu-NODAGA-JR11 was also confirmed by
the co-injection of unlabeled peptide (153). As indicated by a
comparison study, Al18F-NOTA-JR11 showed superior imaging
quality than 68Ga-DOTA-TATE in HEK293-SSTR2 tumor-
bearing mice (154). Huo et al. also compared 68Ga-DOTA-JR11
with 68Ga-DOTA-TATE in patients with neuroendocrine
tumors. The results indicate that although 68Ga-DOTA-TATE
is better in the diagnosis of bone metastases, 68Ga-DOTA-JR11
(Figure 4) showed superior properties in the detection of liver
metastases (155).

As an endogenous neurotransmitter, dihydroxy
phenylalanine (DOPA) was labeled with 18F and used in
the evaluation of the dopaminergic nervous system, as well as
the detection of malignancies, including neural crest-derived
(neuroendocrine) neoplasms, brain tumors and carcinoid
tumors (156–159). DOPA may also accumulate in NETs because
it is the substrate of dihydroxyphenol-alanine decarboxylase,
which is overexpressed in NETs (160). Therefore, 18F-DOPA
(Figure 4) PET was also used in the characterization of
pulmonary nodules with neuroendocrine activities (161).
However, 18F-DOPA showed inferior properties in detecting
and staging NETs than 68Ga-DOTA-TATE in a comparative
study performed in 25 patients (6 LC patients included)
(162). This may explain why few articles could be found with
18F-DOPA PET used in pulmonary NETs.

Among all NET PET tracers, DOTA-TOC/NOC/TATE are
the preferred PET Tracer in NET imaging as suggested by
European Society for Medical Oncology (ESMO) guideline and
have been widely used in clinical for the diagnosis of NETs.
18F-DOPA was wildly used in the diagnosis of Parkinson’s
disease, and was also recommend for the imaging of glioma as
a radiolabeled amino acid by EANM/EANO/RANO guidelines
and SNMMI standard procedures (71).
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FIGURE 3

Structures of representative angiogenesis PET tracers (I) and PET images of 68Ga-Alfatide (II) (68Ga-NOTA-PRGD2) and 18F-FDG in patient with
representative squamous carcinoma (II).

Imaging of tyrosine kinases in lung
cancer patients

Receptor tyrosine kinases (RTKs) are transmembrane
receptors in signaling pathways and play crucial roles in the
tumorigenesis and pathogenesis of malignant lung cancer. RTKs
are key regulators of cancer cell proliferation, differentiation,
invasion, metastasis, and angiogenesis. Therefore, RTKs are
also regarded as one of the most important targets for tumor
treatment (163, 164). With developments in the molecular
genotyping of LC (especially NSCLC), more than 50 tumor-
associated RTKs have been identified, such as EGFR, c-MET,
ROS1, RET, and ALK. A variety of RTK-targeting mAbs and
small molecules of tyrosine kinase inhibitors (TKIs) have been
developed and demonstrated inspiring clinical outcomes in
patients with mutated RTKs. However, an effective patient
screening and therapy prediction method is strongly required
for individually targeted therapy. With radiolabeled TKIs
and mAbs, visualization and quantification of tumor-specific
targets become possible with PET imaging. At present, typical
radiotracers that target RTKs used in LC can be subclassified
into the following categories: (1) EGFR-targeted mAbs and
inhibitors; (2) C-MET-targeted inhibitors; (3) VEGF-targeted
mAbs and inhibitors. As VEGF is mostly associated with
angiogenesis, VEGF-targeted PET tracers are discussed above.

Based on epidemiological findings, NSCLC comprises
approximately 80% of all LCs and approximately 60% of NSCLC
patients carrying activated EGFR (1, 3, 165). Therefore, EGFR
was supposed to be one of the most important targets for in vivo
imaging of LC. As IgG1 antibodies directed against EGFR,

panitumumab and cetuximab were labeled with 64Cu, 86Y,
and 89Zr to evaluate the imaging capability in rodent models.
According to these preclinical studies, radiolabeled mAbs were
found to significantly accumulate in EGFR-expressing tumors
with a positive correlation with EGFR levels (166–169). 89Zr-
cetuximab was first evaluated in 9 patients (3 head and neck
cancer patients and 6 NSCLC patients), and heterogeneous
uptake was observed in tumors; therefore, the predictive value of
this tracer was not discussed (170). Another study containing 10
colorectal cancer patients was carried out soon. Those patients
received co-injection of cold cetuximab and 89Zr-cetuximab
and were investigated with 6 serial PET scans; 6 patients
displayed increased 89Zr-cetuximab uptake, and 4 of these
patients experienced better outcomes after cetuximab treatment.
These results indicate that 89Zr-cetuximab PET may not only be
used in the detection of EGFR in vivo but also be used to predict
the response to cetuximab therapy (171).

During the last decade, radiolabeled small molecule EGFR-
TKI probes have been extensively investigated in preclinical
and clinical studies. As a reversible EGFR TKI, PD153035
and its analogs were labeled with 11C and 18F and evaluated
in vitro and in vivo. 11C- PD153035 (Figure 5) showed increased
uptake in EGFR-sensitive tumors in rodent models (172, 173).
In a subsequent clinical study with 21 patients with advanced
chemotherapy-refractory NSCLC, Meng et al. evaluated the
potential of 11C-PD153035 for selecting patients who were
likely to respond to erlotinib treatment (174). Enhanced 11C-
PD153035 uptake in tumors prior to erlotinib treatment
correlated positively with longer PFS and better OS. However,
the less well-correlated survival indicated that it was not an
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FIGURE 4

Structures of representative PET tracers for pulmonary NETs (I) and PET images of 68Ga-DOTATATE (A–D) and 18F-FDG (E–H) in patient with
squamous cell carcinoma (II). Concordant radioactivity accumulation can be observed in mediastinal adenopathy, right hilum and right upper
lobe tumor.

ideal prognostic method for EGFR-TKI targeting treatment. As
a successful first-generation EGFR-TKI, erlotinib was labeled
with 11C (Figure 5) and evaluated in a variety of preclinical
studies (175). All preclinical studies displayed noticeable uptake
in EGFR-sensitive tumors in mice with NSCLC xenograft
models, and this uptake can be effectively blocked by the cold
erlotinib, suggesting the specifically saturable binding of this
tracer. Memon et al. performed the first clinical study using 11C-
erlotinib in 13 NSCLC patients, and compared with 18F-FDG,
increased uptake of 11C-erlotinib can be observed in malignant
lymph nodes and tumors (176).

They also found that 11C-erlotinib showed good blood–
brain-barrier penetrability and hence is beneficial for NSCLC
patients with brain metastases (177). According to a tracer
pharmacokinetic analysis using the distribution volume (VT)
as an uptake parameter, a 2-tissue reversible compartment
model best fit 11C-erlotinib (178). Compared with wild-type

tumors, the VT of 11C-erlotinib is higher in patients with
EGFR exon 19 deletion, indicating that it is sensitive to
EGFR mutation (179). Afatinib, a second-generation TKI that
irreversibly binds to EGFR, was also labeled with 18F and
investigated. Slobbe et al. found that 18F-afatinib (Figure 5)
was sensitive to tumors with activated EGFR mutations in
xenografted mouse models (180). 18F-afatinib showed higher
tumor-to-background ratios in EGFR19del and EGFRWT tumors,
as well as higher stability in plasma, making this tracer more
promising in clinical applications (181). As many radiolabeled
EGFR TKIs with a 4-anilinoquinazoline scaffold displayed
potent in vitro activities but showed inferior imaging properties,
such as high non-specific binding, low in vivo stability and
rapid dissociation rates, structural modifications to this scaffold
were thus performed to overcome these issues, and several
PET tracers were developed, such as 18F-PEG6-IPQA, 124I-
morpholino-IPQA and 18F-MPG (Figure 5) (182–184). These
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FIGURE 5

Structures of representative radiolabeled TKIs used in lung cancer imaging (I) and PET images of 18F-afatinib in a NSCLC patient with EGFR19_del

(II). Tumor with EGFR19_del can be clearly visualized by 18F_afatinib (T: tumor; H: heart; L: liver; U: urinary bladder).

tracers also displayed better uptake in tumors with EGFR
mutation and lower background noise in both preclinical and
clinical investigations.

In addition to the TKI PET tracers described above,
several novel TKIs were radiolabeled and evaluated. However,
most of them displayed inferior imaging qualities and/or were
not capable of distinguishing TKI-sensitive and TKI-resistant
tumors, such as 18F-gefitinib, which may be due to their high
lipophilicity and limited tumor uptake resulting from other
mechanisms (185). Overall, TKI-based PET is an important
diagnostic tool for EGFR-positive lung tumors and effective
clinical assessment to select those patients who would benefit
more from EGFR-TKI-targeted treatment.

The ALK and HGF/c-MET pathways play significant roles
in the occurrence and progression of NSCLC, indicating
that these targets can be used for diagnosis and therapeutic
purposes (186, 187). Accounting for approximately 5–22%

of LC, c-MET-positive NSCLC patients are an important
subgroup that is resistant to first- or second-generation EGFR
TKIs (188). In addition, ALK-rearranged NSCLC patients
comprise nearly 5–6% of all NSCLC cases (189). Studies
revealed that the survival time of patients with activated
c-MET mutation is shorter, suggesting that c-MET positive
mutation is an adverse prognostic factor (190). Thus, c-MET-
TKI/ALK-based PET imaging assessment has rapidly developed
in recent years. As a potent and promising c-MET/ALK dual
inhibitor, crizotinib and its analog were labeled with 18F for
in vivo imaging of c-MET/ALK status (191, 192). According to
Manning et al., 18F-fluoroacetyl crizotinib (Figure 5) showed
selective binding to ALK kinase (H3122 lung cancer cells)
in vitro (191). A polyethylene glycol (PEG)–modified crizotinib
derivative (18F-FPC, Figure 5) was synthesized by Cheng et al.
and evaluated in c-MET-positive (H1399 cell) and negative
(A549 cell) NSCLC rodent models (192). Significant 18F-FPC
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FIGURE 6

Structures of typical radiolabeled FAP inhibitors (I) and PET/CT images of 68Ga-FAPI-04 (a–d) in a lung cancer patient with brain metastasis (II).

accumulation in H1399 tumors was observed, indicating its
potential to distinguish c-MET-positive tumors in NSCLC
patients. Perera et al. synthesized 18F-fluoroethyl-ceritinib
(Figure 5) for the evaluation of ALK expression in solid
malignancies, but no in vitro or in vivo results were reported
(193).

Great attention has been paid to RTK-based PET tracers as
the development of RTK therapies in the last decades and over
20 PET tracers were reported and evaluated in NSCLC patients,
but even the most promising tracers were still under clinical
investigations and none of them have been widely accepted in
clinical practices.

Imaging of cancer-associated
fibroblasts

Cancer-associated fibroblasts (CAFs) have been proved to
play important roles in several different properties of cancerous
tumors, such as metastasis, migration, immunosuppression, and
resistance to chemotherapy (194). Therefore, targeting CAFs
may be a useful method for both diagnosis and treatment
purposes. As a type II transmembrane protein expressed in
activated fibroblasts, fibroblast activation protein (FAP) is highly
overexpressed in a variety of malignant tumors and is related
to poor prognosis, indicating that FAP is a potential target
for PET imaging (195, 196). FAP imaging has been carried
out with antibodies and small molecular inhibitors during the
last decade (194). Several initial FAP-targeted tracers were not
focused on tumor imaging; for example, radioiodine-labeled
MIP-1232 was used in the detection of atherosclerotic plaques,
and 111 In-, 89 Zr-, or 99mTc-labeled antibody 28H1 was used
for the imaging of rheumatoid arthritis. However, based on
the structural modification of a quinoline-based FAP inhibitor

and DOTA as chelator, a series of small molecule FAP PET
tracers (68Ga-FAPIs, Figure 6) were developed and evaluated
in recent years. With relatively lower lipophilicity, 68Ga-FAPIs
showed fast body clearance and high uptake in malignant tissues
according to biodistribution studies, resulting in promising high
tumor-to-background images. Based on a PET imaging study in
NSCLC patients, accumulated radio-labeled FAPI signals were
observed not only in tumor lesions but also in active tissue
remodeling sites, such as arthritis, chronic inflammation and
physiological uptake in the uterus (194, 197). 68Ga-FAPI-04
and 68Ga-FAPI-46 showed the best activity against FAP and
superior pharmacokinetic profiles among all reported tracers
(198). According to Giesel et al., extremely high 68Ga-FAPI-04
uptake was found in 28 kinds of tumors, including NSCLC. FAPI
was also radiolabeled with 18F via NOTA as a chelator to prepare
18F-FAPI-74. It also showed ideal imaging quality and even a
lower radiation burden than 68Ga-FAPI-74, making FAPI-74
more flexible for clinical applications in LC (199, 200). Overall,
coupling highly selective FAPIs to DOTA or other chelators,
such as NOTA, FAP-targeted imaging with 68Ga or treatment
with other therapeutic isotopes can be achieved (201).

Imaging of other targets

In addition to the changes in the tumor microenvironment
and special physiological/pathological processes described
above, several other activated systems, signaling pathways and
key proteins that led to the development of LC were also
regarded as important targets for the discovery of novel PET
tracers. These tracers have been reported for the imaging of
LC and provide valuable information on target abundance
and hence can be used in the determination of personalized
treatment plans, as well as the prediction of therapeutic
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FIGURE 7

Structure of 64Cu/68Ga-WL12 (I) and representative PET images of 68Ga-WL12 in patients with NSCLC (II). (IIA) An 80-year-old patient (female)
with advanced NSCLC and a PD-L1 TPS value of 80%; (IIB) a 68-year-old patient (male) with a PD-L1 TPS value of 8%.

response. Several successfully developed PET tracers based on
these targets used in LC patients have been reported in recent
years and are briefly described in this section.

Imaging of programmed cell death
pathways

As a revolutionary cancer therapy that produces durable
responses, immuno-oncology-based immune checkpoint
therapy benefits patients with a variety of malignant tumors,

including LC (202). Approximately 20% of NSCLC patients
have achieved tumor responses when treated with immune
checkpoint inhibitors. The expression of PD-1 in tumor-
infiltrating lymphocytes and PD-L1/CTLA4 in the tumor cell
membrane may be predictive for the response to immune
checkpoint therapies. Natarajan et al. synthesized 64Cu-DOTA-
(anti-mouse)-PD1 and evaluated it in mice xenografted with
melanoma tumor cells (203). High tracer uptake was observed
in tumors and lymphoid organs. The specific binding of the
tracer was confirmed by bioluminescence imaging and self-
blocking experiments. Ring et al. synthesized a radio-labeled
PD-1 antibody named 64Cu–DOTA–HAC and evaluated it in
mouse xenograft tumor models. 64Cu–DOTA–HAC showed
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FIGURE 8

Structures of representative PSMA-targeted PET tracers (I) and PET/CT (A) and unenhanced CT (B) images of 68Ga-PSMA-HBED-11 in patient
with with a recurrent prostate acinar adenocarcinoma and lung metastases (II).

higher tracer up in hPDL1-positive tumors compared with
hPDL1-negative tumors, providing an alternative method to
invasive histological and biopsy analysis to distinguish between
PD-L1–positive from PD-L1–negative tumors in vivo (204).
Yang et al. prepared 64Cu-NOTA-αCD276/Fab, and this probe
was used in the evaluation of a CD276-targeted photodynamic
therapy in NSCLC mouse models, as well as other imaging
modalities for the detection of its efficacy in enhancing anti-
PD-1/PD-L1 cancer therapies (205). Based on a single-domain
antibody, Lin et al. synthesized a 68Ga-labeled PET tracer
through a NOTA chelator named 68Ga-NOTA-Nb109 (206).
According to biodistribution, autoradiography, PET imaging
and immunohistochemical staining studies, 68Ga-NOTA-
Nb109 showed specific accumulation in A375-hPD-L1 tumors
with an uptake ratio of 5.0 5.0%± 0.35% at 1 h postinjection.

In addition, a series of peptide-based imaging agents, such
as 68Ga-WL12, 64Cu-WL12 (Figure 7) and 18F-FPy-WL12, with
high affinity (IC50 = 23 nM for WL12 and 26–32 nM for FPy-
WL12, respectively) were synthesized and evaluated in mice

bearing cancer xenografts. The results indicated that both 68Ga-
WL12 and 18F-FPy-WL12 showed high tumor uptake in PD-
L1-positive tumors (including NSCLC), and the uptake could be
blocked by the injection of cold reference standards (207–209).
Furthermore, 68Ga-NOTA-WL12 was recently evaluated in 9
NSCLC patients (210). After the baseline scan of 68Ga-NOTA-
WL12 and 18F-FDG dual PET imaging, patients also received a
combination of chemotherapy and pembrolizumab, and follow-
up dual PET imaging was also performed. High contrast tumor
images were obtained in 68Ga-NOTA-WL12 PET with tumor-
to-lung ratios of 4.45 ± 1.89 at 1 h, and a strong correlation
between PD-L1 expression and tracer uptake was observed,
indicating potential benefits of this tracer used in clinical PD-
L1 therapy (210). Although not all PD-1- and PD-L1-targeted
PET tracers have been evaluated in NSCLC tumor models or
patients, the significant progress in clinical outcomes achieved
by anti-PD-1/PD-L1 treatments in advanced NSCLC patients
will undoubtedly promote the applications of these tracers in
NSCLC patients.
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Imaging of prostate-specific
membrane antigen

As a type II transmembrane protein, prostate-
specific membrane antigen (PSMA) possesses glutamate
carboxypeptidase/folate hydrolase activity and is a promising
target for prostate cancer imaging (211, 212). A variety of
radiolabeled PSMA ligands, such as 68Ga-PSMA-11 (Figure 8),
were introduced for PET imaging, and β radionuclide 177Lu
conjugated drugs were developed for therapy thereafter (213,
214). PSMA-targeted PET imaging and radiopharmaceutical
therapy have enabled significant prostate-specific antigen
imaging and therapeutic responses (215). Notably, increased
68Ga-PSMA uptake was not only observed in prostate cancer
lesions but also found in several other benign and malignant
lesions (216). According to Schmidt et al., approximately 6%
of NSCLC cells express PSMA, which was mainly discovered
in squamous cell carcinoma (217). In addition, the one who
was diagnosed with confirmed prostate cancer had intense
uptake of 68Ga-PSMA in lung nodules (218). Although it is not
possible to easily distinguish prostate cancer lung metastases
from primary lung cancers, PSMA-based PET imaging still
supplies a method to seek primary tumors in the lung (217,
219, 220). By incorporating the Lys-urea-Glu motif, a variety of
radiolabeled PSMA ligands (Figure 8) have been discovered in
recent years, including 11C-MCG, 18F-DCFBC, 18F-DCFPyL,
and 18F-PSMA-1007 (214, 215). Several studies have suggested
that radiolabeled PSMA ligands can be used in the detection of
prostate cancer with lung metastases, but further investigations
are needed (219, 221). It is interesting that intense uptake of
68Ga-PSMA-11 in lung nodules was found in a male patient
(diagnosed with prostate cancer), but no significant uptake
of 18F-FDG was observed (218). Although it is not possible
to easily distinguish prostate cancer lung metastases from
inflammatory conditions and primary lung cancers, PSMA
overexpression in LC could expand the diagnostic applications
of PSMA-based PET in the clinic (217, 219, 220). In addition,
68Ga-PSMA-11 have been implemented in the NCCN (222).

Conclusion

As a unique imaging modality and clinical assessment,
PET/CT allows the in vivo detection and quantitative analysis
of the desired target, as well as physiological/pathological
processes at the molecular level. Although 18F-FDG showed
high sensitivity and has been widely used in the detection,
staging/restaging, treatment planning and prognosis evaluation
in LC patients, a variety of other types of PET tracers were
developed to investigate different aspects of the cancer
microenvironment and biology and to improve tumor
characterization, patient stratification, treatment response
assessment and therapeutic response monitoring. These new

tracers are used for the imaging of cellular proliferation, amino
acid metabolism and transportation, tumor hypoxia, pulmonary
NETs and special targets in LC. Although most tracers have
shown promising qualities in preclinical studies, their clinical
applications are limited. As the targets described above are not
lung cancer specific, these tracers are also not specific to lung
lesions, and not all tracers described above have been used for
the detection of lung lesions. As a large number of tracers and
related research articles have been reported in recent decades,
not all tracers and valuable articles were included due to the
scope of this paper.

With the development of targeted PET imaging and targeted
therapies, more PET tracers that target specific targets, signaling
pathways and tumor biology will definitely play increasingly
important roles in routine clinical practice.
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