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We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-
volumar imaging (MEVI) significantly increases sensitivity for mapping task-related acti-
vation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al.,
2012). In the present study we characterize the sensitivity of MEVI for mapping RSN
connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-
based connectivity analysis (SBCA) that combines sliding-window correlation analysis with
meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such
as movement, and CSF and white matter signal changes, and enables real-time monitor-
ing of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive
mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malforma-
tions, and detection of abnormal resting-state connectivity in epilepsy. In patients with
motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex
compared with more diffuse activation in task-based fMRI. The fast acquisition speed of
MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed
distinct regional differences in pulsation amplitude and waveform, elevated signal pulsa-
tion in patients with arterio-venous malformations and a trend toward reduced pulsatility
in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in
cortical gray matter may carry important functional information that distinguishes healthy
from diseased tissue vasculature.This novel fMRI methodology is particularly promising for
mapping eloquent cortex in patients with neurological disease, having variable degree of
cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances
the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular
pulsatility for clinical and neuroscience research applications.
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INTRODUCTION
Mapping of intrinsic signal variation mostly in the low-frequency
band <0.1 Hz has emerged as a powerful tool and adjunct to task-
related fMRI and fiber tracking based in diffusion tensor imaging
(DTI) for mapping functional connectivity within and between
resting-state networks (RSNs) (Fox et al., 2005; De Luca et al., 2006;
Raichle and Snyder, 2007; Schopf et al., 2010; Li et al., 2011). Recent
studies have shown that dozens of different RSNs can be mea-
sured across groups of subjects (Abou-Elseoud et al., 2010; Allen
et al., 2011). Anti-correlations between the default mode network
(DMN) and task-positive networks provide insights into compet-
itive mechanisms that control resting-state fluctuations (Fox et al.,
2005; Uddin et al., 2009). There is increasing evidence that RSNs
are not stationary (Hou et al., 2006; Kang et al., 2011) and that

correlations with fluctuations in other measurements, such as α-
power in EEG (Wu et al., 2010) and transient (∼100 ms) topogra-
phies of EEG current source densities (microstates) (Britz et al.,
2010; Laufs, 2010; Lehmann, 2010; Musso et al., 2010; Van de Ville
et al., 2010) exist. Variations in ongoing activity have been shown
to predict changes in task performance and alertness, highlighting
their importance for understanding the connection between brain
activity and behavior (Eichele et al., 2008; Sadaghiani et al., 2010).
Resting-state correlation mapping has been shown to be a promis-
ing tool for reliable functional localization of eloquent cortex in
healthy controls, and patients with brain tumors and epilepsy (Liu
et al., 2009; Zhang et al., 2009; Mannfolk et al., 2011; Stufflebeam
et al., 2011). It has been suggested that this task-free paradigm
may provide a powerful approach to map functional anatomy in
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patients without task compliance, which allows multiple brain sys-
tems to be determined in a single scanning session (Liu et al.,
2009). Recent studies have investigated non-stationarity, which is
prominent in the resting state, and demonstrated dynamic changes
in network connectivity (Chang and Glover, 2010; Sakoglu et al.,
2010; Kiviniemi et al., 2011). There is now emerging evidence
that these fluctuations differ in clinical populations compared
to healthy controls. However, the mechanisms that govern the
dynamics of resting-state connectivity at different time scales are
still poorly understood. Monitoring these dynamics in real-time
enables assessment of data quality and sensitivity as intra-scan
non-stationarity of connectivity can compromise the detection of
RSNs in single subjects. Real-time monitoring of these dynamics is
not only expected to improve consistency of data quality in clinical
research studies, but will also contribute to our understanding of
the neurophysiological mechanisms underlying the resting-state
dynamics.

Seed-based correlation analysis (Van Dijk et al., 2010) and spa-
tial independent component analysis (ICA) (Calhoun et al., 2001)
are the principal tools to map functional connectivity, which have
been shown to provide similar results (Van Dijk et al.,2010; Erhardt
et al., 2011). Seed-based connectivity measures have been shown to
be the sum of ICA-derived within- and between-network connec-
tivities (Joel et al., 2011). ICA also performs spatial filtering, which
enables segregation of spatially overlapping components. Seed-
based techniques are sensitive to the choice of the seed regions
(Cole et al., 2010a). On the other hand, source separation with ICA
is sensitive to the selection of the model order, which is a priori
unknown and necessitates dimensionality estimation approaches,
such as the minimum description length (MDL), Bayesian infor-
mation criterion (BIC), and Akaike’s information criterion (AIC)
(Calhoun et al., 2001; Li et al., 2007). Furthermore, automated
ordering of ICA components to enable consistent identification of
RSNs is not yet feasible and source separation with ICA in indi-
vidual subject data is limited by the contrast-to-noise ratio of the
signal fluctuations and aliasing of cardiac- and respiration-related
signal fluctuations. Seed-based correlation analysis surpasses ICA
in detecting resting-state connectivity, but it requires regression
of confounding signals, which typically include the six parameters
of motion correction and their derivatives, and the average signal
from up to three brain regions (whole brain over a fixed region in
atlas space, ventricles, and white matter in the centrum semiovale).
Regression of these signals is computationally intensive and may
remove RSN signal changes that are temporally correlated with
confounding signals.

The measurement of functional connectivity in the resting
state has been limited, in part, by sensitivity and specificity con-
straints of current fMRI data acquisition methods. Echo-planar
imaging (EPI) methods necessitate long scan times and detec-
tion of resting-state signal fluctuation suffers from temporally
aliased physiological signal fluctuation, despite ongoing efforts to
develop post-acquisition correction methods (Glover et al., 2000;
Deckers et al., 2006; Beall and Lowe, 2007; Behzadi et al., 2007).
Movement during the fMRI acquisition is a major confound for
resting-state connectivity studies obscuring networks as well as
creating false-positive connections (Satterthwaite et al., 2012; Van
Dijk et al., 2012) despite state-of-the-art motion “correction” in

post-processing. Distinction of BOLD contrast-based resting-state
activity and of confounding physiological signal fluctuations has
been shown to benefit from multi-echo acquisition. This approach
not only increases BOLD sensitivity (Posse et al., 1999), but
was also found to enable differentiation of BOLD contrast-based
resting-state activity and of confounding physiological signal fluc-
tuations (Kundu et al., 2012; Wu et al., 2012). However, multi-
ple echo acquisition reduces temporal resolution and/or volume
coverage, which have limited practical applications (Posse, 2012).

Recent advances in high-speed fMRI method development that
enable un-aliased sampling of physiological signal fluctuation have
considerably increased sensitivity for mapping task-based activa-
tion and functional connectivity, as well as for detecting dynamic
changes in connectivity over time (Feinberg et al., 2010; Posse et al.,
2012; Smith et al., 2012). High temporal resolution fMRI improves
separation of RSNs using data driven analysis approaches (Smith
et al., 2012) and may facilitate detecting the temporal dynamics of
RSNs at much higher frequencies (up to 5 Hz) than detectable with
traditional resting-state fMRI (Boubela et al., 2013; Boyacioglu
et al., 2013; Chu et al., 2013; Lee et al., 2013). The development
of ultra-high-speed fMRI methods with temporal resolution on
the order of 100 ms or less has focused on echo-volumar imaging
(EVI) (Rabrait et al., 2008; Witzel et al., 2008; van der Zwaag et al.,
2009), inverse imaging (InI) (Lin et al., 2006, 2008, 2010), and MR
encephalography (MREG) using highly undersampled projection
imaging (Grotz et al., 2009), and fast volumetric imaging based on
single-shot 3D rosette trajectories (Zahneisen et al., 2011). How-
ever, these single-shot methods are associated with degradation of
spatial resolution and image uniformity. The recent development
of simultaneous multi-slice (SMS) EPI using parallel imaging with
blipped CAIPI acquisition increases temporal resolution without
the
√

R penalty incurred when using conventional parallel imaging
methods, while maintaining acceptable image quality (Setsompop
et al., 2012). Typical acceleration factors of eightfold are achievable
using a 32 channel coil and faster acceleration has been shown in
combination with in-plane parallel imaging (Moeller et al., 2010)
and simultaneous echo refocusing (Feinberg et al., 2010; Chen
et al., 2012). Recent advances in SMS-EPI enable up to 16-fold
acceleration. Although acceleration is limited by RF power deposi-
tion (SAR), necessitating small flip angles, and image degradation
at high acceleration factors due to increasing slice cross-talk and
worsening g-factor (Moeller et al., 2010, 2012), SMS-EPI currently
enables much higher spatial resolution compared to EVI. Further-
more, recent advances in RF pulse design, such as spatially periodic
pulses, mitigate the RF power requirement for SMS EPI (Norris
et al., 2011; Koopmans et al., 2013). We have recently introduced
parallel imaging accelerated sequential multi-slab echo-volumar
imaging (MEVI), which shortens the long EVI readout to achieve
an image quality approaching that of EPI, and have demonstrated
significant increases in BOLD sensitivity compared to EPI (Posse
et al., 2012). This methodology enables ultra-high-speed real-time
fMRI on conventional clinical 3 T scanners with 276 ms tempo-
ral resolution for whole brain acquisition and 136 ms temporal
resolution for partial brain acquisition.

In the present study the primary goals were to characterize
the sensitivity of MEVI for mapping major RSNs, comparing
ICA and a novel real-time seed-based connectivity method that
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combines sliding-window correlation analysis with meta-statistics,
and to map dynamic changes in resting-state connectivity at short
time scales. The hypotheses for this novel seed-based connectivity
approach are that: (a) resting-state connectivity can be measured
at short time scales (seconds) and (b) averaging across short-term
connectivity maps avoids the conventional artifact prone corre-
lation across the entire scan. The secondary goals were to: (a)
compare resting state and task-based fMRI in patients with neu-
rological disorders for localizing sensorimotor and visual cortex
in the vicinity of brain tumors and arterio-venous malformations,
and to (b) to assess the feasibility of monitoring disease-related
changes in functional connectivity in epilepsy. Localization of elo-
quent cortex adjacent to brain lesions is of critical value in presur-
gical planning and decision-making. Mapping of RSNs using fMRI
has been suggested as an alternative to task-based fMRI, however,
the utility for presurgical planning is still under investigation (Liu
et al., 2009; Zhang et al., 2009; Mannfolk et al., 2011; Stufflebeam
et al., 2011). The tertiary goal was to characterize regional dif-
ferences in the cardiac-related cerebro-vascular pulsation in the
healthy controls and in the patients with brain tumors, arterio-
venous malformations, and epilepsy. Virtually all fMRI studies
so far have sought to remove physiological signal fluctuations
due to cardiac and respiration using model-based retrospective
deconvolution methods (Glover et al., 2000). Ultra-high-speed
fMRI enables direct observation of cardiac pulsation and its har-
monics, which may carry important functional information that
distinguishes healthy from diseased tissue vasculature.

MATERIALS AND METHODS
EQUIPMENT
Data were collected on a clinical 3 T scanner, MAGNETOM Trio,
A Tim System (Siemens Healthcare, Erlangen, Germany) equipped
with MAGNETOM Avanto gradient system and 12-channel array
receive-only head coil. A 32 channel coil became available during
the last months of the study. Pulse and respiration waveforms were
recorded with 1 kHz sampling rate using an MP150 data acqui-
sition system and Acknowledge software 4.3 (Biopac Inc., Goleta,
CA, USA). Reconstructed 2D images were exported from the scan-
ner reconstruction computer via the scanner host computer to an
external Intel Xeon E5530, six core, 2.4 GHz workstation for recon-
struction of the third spatial dimension and real-time fMRI analy-
sis, which were integrated into our custom TurboFIRE real-time
fMRI software version V5.12.3.11.4.2 (Posse et al., 2001, 2012).

SUBJECTS
Nine healthy male and female subjects aged 21–50 years and
eight patients with neurological disorders participated after giving
institutionally reviewed informed consent.

Brain tumor
Patient 1 was a 30-year old male with a low-grade right frontal
lobe lesion associated with epilepsy and motor impairment, which
was radiologically diagnosed as a low-grade glioma. The rou-
tine EEG demonstrated C4 (right central) epileptiform spikes.
His seizures consist of an initial numbness and tingling sensa-
tion in the left arm and leg, followed by stiffening and jerking
movements of the left side of the body. He failed treatment with

oxcarbazepine, phenytoin, topiramate, and lorazepam. There was
no obvious involvement of the primary motor cortex, based on
the MEG motor and somatosensory responses, and the structural
MRI. High-speed 3D short TE MR spectroscopic imaging (MRSI)
using proton-echo-planar-spectroscopic-imaging (PEPSI) (Posse
et al., 2007) showed increased Choline, reduced N -acetyl-aspartate
(NAA), and strong lipid resonances, suggesting an oligoden-
droglioma (Posse et al., 2013). Intraoperative assessment con-
firmed a high lipid content. Postsurgical histology classified the
tumor as an oligodendroglioma.

Patient 2 was a 38-year old female with a 1.5-year history of
headaches. The clinical MRI showed loss of gray-white matter
differentiation with multiple areas of gyral expansion in the left
superior frontal gyrus and in the left parietal lobe, which were
suspected to be a primary glial tumor, such as multiple oligoden-
droglioma or multiple astrocytic tumors. High-speed 3D short TE
MRSI using PEPSI (Posse et al., 2007) showed only a slight increase
in Choline and slight reduction of N -acetyl-aspartate (NAA). The
patient remained under observation. A biopsy performed a year
later in the T2 hyperintense left parietal lesion revealed disease
progression. The histological interpretation was infiltrating grade
2 astrocytoma.

Arterio-venous malformation
Patient 3 was a 44-year old male with a two and a half year
history of complex partial seizures and progressive right lower
extremity weakness, who on imaging studies was found to have a
Spetzler–Martin grade III arterio-venous malformation in the left
fronto-parietal area. Cerebral angiography demonstrated a dense
nidus with feeders from anterior, middle, and posterior cerebral
arteries with early drainage into the superior sagittal sinus without
significant deep drainage. Because of its location in the eloquent
cortex, definitive treatment, either by surgery or endovascular
means was not recommended. His seizures followed a Jacksonian-
March pattern: starting from his right foot and marching up. The
frequency of seizures at the time of testing was variable, ranging
from daily to weekly, despite treatment with multiple anti-epileptic
medications. The patient’s interictal EEG did not contain epilepti-
form abnormalities. He is on multiple anti-epileptic medications
and his seizure control remains a challenge.

Patient 4 was a 24-year old male with new onset of seizures with
vivid visual aura who on workup was found to have a vascular
lesion in the right occipital region. He described his aura as colors
of rainbow that started in the center of the visual field and quickly
shifted to the left hemifield followed by a generalized tonic-clonic
seizure. Cerebral angiography demonstrated a clear hypervascular
nidus without early venous drainage to qualify for an AVM. He
underwent a surgical resection, which showed an arterial venous
malformation with multiple thrombosed cortical veins. He is cur-
rently been weaned off his anti-epileptic medications and remains
seizure free.

Temporal lobe epilepsy
Patient 5 was a 53-year old male who had temporal lobe
epilepsy with right mesial temporal lobe sclerosis and complex
partial seizures preceded by deja vu, sometimes progressing to
a secondarily generalized seizure. Epilepsy monitoring during
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withdrawal of anti-epileptic medication demonstrated seizures
electrographically localized to the right anterior temporal area,
and all interictal epileptiform activity similarly arising from the
right anterior temporal area (F8 maximal). FDG-PET scanning
demonstrated right mesial temporal hypometabolism and MEG
interictal epileptiform activity localized to the left anterior tempo-
ral lobe in a distribution typical for mesial temporal epilepsy. He
underwent temporal lobe resection and remains seizure free.

Patient 6 was a 12-year old female who had had complex par-
tial seizures with left temporal FDG-PET hypometabolism and
seizures lateralized to the left hemisphere on non-invasive epilepsy
monitoring. Invasive monitoring demonstrated seizure onset in
the left temporal mesial area.

Cortical epilepsy
Patient 7 was a 27-year old female with right posterior temporal
lobe epilepsy. She suffered simple and complex partial seizures.
FDG-PET demonstrated right posterior temporal hypometabo-
lism and EEG and MEG localized interictal epileptiform spikes to
the right occipital area. MRI demonstrated a right occipital area of
cortical dysplasia, consistent with the patient’s left homonymous
hemianopia.

Patient 8 was a 50-year old male who had a left hemispheric
localized cortical dysplasia associated with epilepsy and a prior
history of stroke and transient ischemic attack. The MRI showed
gyral expansion in the left frontal lobe with abnormal T2 signal
extension through the cortical mantle to the ventricular margin.
The morphology suggests focal transmantle cortical dysplasia with
balloon cells. Single voxel MR spectroscopy and MRSI demon-
strated elevated choline, consistent with focal cortical dysplasia. At
the time of testing he had failed to gain complete seizure control
despite trying multiple anti-epileptic medications.

DATA ACQUISITION
Resting-state fMRI data were acquired using a MEVI pulse
sequence with flyback along the kz-direction, which was described
in Posse et al. (2012). Briefly, multiple adjacent slabs were excited
sequentially in a single TR and encoded using repeated EPI mod-
ules with interleaved phase encoding gradients, fourfold accelera-
tion using partial parallel imaging (GRAPPA), 6/8 partial Fourier
encoding, and oversampling along the slab-direction. The recon-
struction pipeline used distributed computing across the scanner
using the ICE environment for in-plane (kx, ky) reconstruction and
the external workstation using TurboFIRE (Posse et al., 2001) for
reconstruction of the third dimension (kz) as described in Posse
et al. (2012). The time delay from acquisition to display of recon-
structed images was less than a TR. MEVI data were acquired using
the following parameters:

• Four-slab EVI/MEVI4: TR: 276 ms,TEeff : 28 ms,α: 10°, four slabs
in AC/PC orientation, interleaved acquisition order, slab thick-
ness: 24 mm, inter-slab gap: 10%, matrix per slab: 64× 64× 8,
Field of View (FOV) per slab: 256× 256× 32 mm3, recon-
structed isotropic voxel dimensions: 4 mm, 27 slices, scan time:
5 min and 15 s using 1100 scan repetitions.

• Two-slab EVI/MEVI2: TR: 136 ms, TEeff : 28 ms, α: 10°, two slabs
in AC/PC orientation, slab thickness: 42 mm, inter-slab gap:

10%, matrix per slab: 64× 64× 8, FOV per slab: 256× 256×
48 mm3, reconstructed voxel dimensions: 4× 4× 6 mm3, 13
slices, scan time: 5 min and 16 s using 2200 scan repetitions.

The 32 channel coil was used in one healthy control studied with
MEVI2, in two of the five patients studied with MEVI2, and in two
of the three patients studied with MEVI4, where one patient was
scanned using both methods. Patient 7 was studied using MEVI2
with the 12-channel coil and eight repetitions of 2.5 min scan time.

For comparison, resting-state scans in one healthy control was
performed with multi-echo EPI using six TEs ranging from 5.8
to 49 ms, TR: 2 s, FOV 256 mm, spatial matrix, threefold GRAPPA
acceleration, 6/8 partial Fourier encoding, 3.6 mm slice thickness,
10% slice gap,168 scan repetitions,and 5 min 55 s scan time. Multi-
echo data were combined using weighted echo averaging (Posse
et al., 1999).

Task-based fMRI in patients was performed with multi-echo
EPI using 10 TEs ranging from 5.8 to 82 ms, TR: 3 s, FOV 256 mm,
spatial matrix, threefold GRAPPA acceleration, 6/8 partial Fourier
encoding, 3.6 mm slice thickness, 10% slice gap, 56 scan repeti-
tions, scan time: 3 min 12 s. Multi-echo data were combined using
weighted echo averaging (Posse et al., 1999).

Structural imaging was performed using high-resolution
Turbo-Spin-Echo and multi-echo MP-RAGE scans. Diffusion ten-
sor MRI was performed using TR/TE: 9 s/84 ms, 35 gradient direc-
tions, b-values: 0 and 800 s/mm2, voxel size: 2× 2×2 mm3, and
scan time: 5 min 42 s.

RESTING STATE AND ACTIVATION TASKS
Resting-state scans were performed during eyes open condition.
Subjects were instructed to relax, clear their minds, and fixate on
a crosshair presented on a computer screen.

The block-design auditory-gated visual-motor activation task
consisted of eyes open in the lit scanner environment versus eyes
closed, and simultaneous 2 Hz right hand index finger tapping ver-
sus rest. Subjects were asked to tap with maximum extension of the
index finger. Covert word generation was performed in response
to presentation of single letters. The task duration was 12 s and the
interstimulus interval was 18 s. Five blocks of task activation were
performed. Subjects were instructed to attend to each task with
a constant effort across scans. Paradigm presentation was pro-
gramed using ePrime software (Psychology Software Tools, Inc.,
Pittsburgh, PA, USA). Visual stimulation was provided using an
in-house built MR compatible projection system. Auditory stim-
ulation was delivered using an MR compatible headset (Avotek
Inc., Stuart, FL, USA). An in-house developed button-response
device (MIND Research Network, Albuquerque, NM, USA) was
employed to monitor motor task execution.

DATA ANALYSIS
Retrospective ICA analysis
Spatial ICA was performed using the GIFT software package
v1.3i1. Preprocessing using SPM82 consisted of motion cor-
rection, coregistration with the EPI.mni template and spatial

1http://mialab.mrn.org/software/gift/
2http://www.fil.ion.ucl.ac.uk/spm/

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 479 | 4

http://mialab.mrn.org/software/gift/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Posse et al. High-speed resting-state fMRI

normalization to ensure consistent multi-session and/or multi-
subject analysis. Spatial interpolation and Gaussian smoothing
(6× 6× 6 mm3) was applied. The ICA algorithm used through-
out was FastICA introduced by Hyvarinen and Oja (1997), since it
had previously been shown to be more robust and computation-
ally efficient compared with the competing alternative approaches
for fMRI data analysis (Mutihac and Van Hulle, 2004). The settings
used for all data sets were the following: epsilon: 10−6, maximum
number of iterations: 1024, maximum number of fine-tuning ses-
sions: 64, using tanh as the non-linear transfer function, sample
size: 1, deflation mode, stabilization: on, and pow3 as “g” function.
In order to estimate the data subspace (model selection), MDL was
applied to the raw data. Alternatively, heuristically settings of 64
and 128 estimated number of independent latent sources, respec-
tively, were investigated in view of detecting as many as possible
default networks irrespective of any data model selection criteria.
The validation of ICA decomposition was carried out by running
ICASSO3 for each subject, so that the most stable directions were
selected after statistical resampling (bootstrap) of the raw data.
Principal component analysis (PCA) was used for prewhitening
based on singular value decomposition. A Z -threshold of 1.2 was
used to map independent components (ICs). The maximum Z -
scores in each component was measured. ICs representing RSNs
were identified by visual inspection in reference to the MNI brain
atlas using spatial selection criteria described for 7 RSN categories
and 28 components identified as RSNs in Allen et al. (2011). RSNs
were further identified by slowly modulated signal time courses
that were well above noise level. The power spectral density (PSD)
estimate was computed by means of Welch’s overlapped segment
averaging estimator implemented in MATLAB.

A time-frequency analysis of the time courses of RSN identi-
fied in two-slab EVI data was performed using thespectrogram
function in MATLAB with a 28.6-s window for the FFT and 24.3 s
overlap. The high-frequency limit of the RSN spectrum was mea-
sured using an amplitude threshold that was set at the level of the
peaks of the high-frequency noise level outside of the cardiac and
the respiratory bands.

Online seed-based sliding-window correlation analysis with
meta-statistics
Real-time fMRI analysis was performed using TurboFIRE (Posse
et al., 2001). Data preprocessing included motion correction, spa-
tial normalization into MNI space using the SPM99 EPI template
(Gao and Posse, 2003), segmentation of the MNI atlas space into
144 brain regions in reference to the Talairach Daemon Database
that segregated left and right hemispheric regions (Zheng et al.,
2013), and spatial smoothing using an 8× 8× 8 mm3 Gaussian
filter. Signal fluctuation due to cardiac pulsation and respiration
was suppressed using a 4-s time domain moving average filter
(Lin et al., 2011). Detrending of confounding signal changes using
weighted subtraction of multiple ROI time courses from white
matter, CSF, and the entire brain was implemented as an option.
Six single voxel seed locations were selected in reference to the MNI
coordinates of the peak activations in six of the seven principal
RSN categories reported in Allen et al. (2011):

3http://www.cis.hut.fi/projects/ica/icasso/

• Auditory RSN (IC17): left superior temporal gyrus (BA22),
coordinate:−51,−18, 7

• Sensorimotor RSN (IC7): left precentral gyrus (BA4), coordi-
nate:−52,−9, 31

• Visual RSN (IC64): bilateral lingual gyrus (BA17, 18), coordi-
nate: 1,−71, 13

• Default mode RSN (IC50): bilateral precuneus (BA7), coordi-
nate: 1,−64, 43

• Attention RSN (IC34): left inferior parietal lobule (BA40),
coordinate:−47,−57, 39

• Frontal RSN (IC42): right inferior frontal gyrus (BA45), coordi-
nate: 50, 23, 2

The signal time course within each seed region was used as
input to dynamic reference vector modeling (Gao and Posse,2004),
which was adapted to bypass convolution with the hemodynamic
response function. Seed-based sliding-window correlation analy-
sis was combined with a meta-statistics approach that employs
an efficient running variance algorithm (Welford, 1962) across
dynamically updated correlation maps to generate cumulative
meta-statistics maps of the mean and the standard deviation. The
sliding-window width (N w) was 4, 8, 28, 52, 105, 210, or 420 scans,
i.e., 1, 2, 4, 8, 15, 30, or 60 s, respectively. The initial 50 scans were
discarded (N d). Correlation values were threshold with correction
for degrees of freedom as described in eq. 13 in Bandettini et al.
(1993) using a cross-correlation threshold of 0.52. Meta-statistics
were computed at each TR starting at (N d+N w) and the final
meta-statistics maps were used for individual and group analy-
sis. The final meta-statistics maps were segmented into 144 brain
regions based on the modified Talairach Daemon database. Cross-
correlation coefficients between the six seed ROI time courses were
computed at each TR.

Offline processing of seed-based connectivity results
A metric of functional network connectivity (FNC) was created
by spatially averaging the meta-statistics maps within each brain
region. The group average across nine subjects of the intra-network
FNC within each of six major seeded RSNs was computed using
the following subset of brain regions (Allen et al., 2011):

• Auditory RSN: left and right BA22, BA24
• Sensorimotor RSN: left and right BA2, BA4, BA6
• Visual RSN: left and right BA17, BA18
• Default mode RSN: left and right BA7, BA10, BA23, BA31, BA32,

BA39
• Attention RSN: left and right BA8, BA40
• Frontal RSN: left and right BA22, BA44, BA45

Signal time courses from the six seed regions were extracted
at each TR to represent RSN time courses. A matrix of cross-
correlation coefficients between the different RSN time courses
was computed as a metric of inter-network FNC at 4 s intervals.
Time averaged matrices were computed across entire scans. The
rows of the inter-network FNC matrix were averaged to obtain
a metric of global FNC for each seed region. Group averages
of the inter-network and global FNC across nine subjects were
computed.
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Cardiac pulsatility
The time course of ICs with cardiac-related signal pulsation,
measured in nine healthy controls and in seven patients who
underwent resting-state fMRI using MEVI2, was analyzed in a
beat-by-beat manner using an automatic delineator method that
identifies fiducial points of the pulsation waveform (Li et al., 2010)
to enable coherent time averaging of the pulsation waveforms in
the presence of heart rate variability. The averaged waveforms were
replicated 128 times and Fourier transformed to create power spec-
tra of cardiac-related pulsation. The peak amplitudes at the cardiac
frequency, the first harmonic, and the second harmonic were mea-
sured. The ratio R of the amplitude of the peak at the cardiac
frequency with respect to the amplitude of the first harmonic was
computed.

Diffusion tensor imaging
DICOM images were converted to NIFTI format using the MAT-
LAB toolbox MRIconvert. Eddy current correction was performed
in FSL using the FDT Diffusion toolbox. Brain masking was
applied to exclude artifacts outside the brain. DTI analysis with
tractography was performed using MedINRIA software4. Manu-
ally defined seed ROIs in the motor pathways were used for fiber
tracking.

Statistical analysis
The TurboFIRE data output was post-processed using custom
PERL scripts and spreadsheets, and standard MATLAB toolboxes.
Statistical analysis was performed using a two-tailed heteroscedas-
tic Student’s t -test.

RESULTS
RESTING-STATE fMRI IN HEALTHY CONTROLS USING ICA
Independent component analysis analysis of MEVI2 and MEVI4
data showed clear delineation of major RSNs (Figure 1A)
described in Allen et al. (2011), and separation of multiple ICs
showing cardiac- and respiration-related signal pulsation. ICs with
RSNs were characterized by slowly varying signal time courses with
high contrast-to-noise-ratio well above noise level (Figure 1B) and
small contamination from cardiac- and respiration-related sig-
nal pulsation (Figure 1C). Cardiac-related signal pulsation was
resolved on a beat-by-beat basis in synchrony with peripheral
pulse recording (Figure 1D). The corresponding ICs mapped
cardiac signal pulsation in insular cortex, cortical gray matter,
brain stem, sagittal sinus, and ventricles. Respiration-related sig-
nal changes were detected at the edges of the imaging slabs. Brief
head movements were clearly detected as separate ICs with spatial
components located in orbital frontal cortex and at the edges of
the brain.

Independent component analysis of 5 min 25 s scans collected
in eight subjects using MEVI2 and the 12-channel coil sepa-
rated on average 28.4± 7.2 ICs, which consisted on average of
11.5± 5.7 ICs corresponding to the major RSNs described in
Allen et al. (2011). In some subjects multiple RSNs belonging
to a particular category (e.g., some of the six sensorimotor RSNs

4http://www-sop.inria.fr/asclepios/software/MedINRIA/

described in Allen et al., 2011) were mapped into different ICs,
but co-localized with RSNs belonging to other categories (e.g.,
the auditory RSN) within single ICs. As a consequence, the sum
of RSN, cardiac, respiratory, and artifact ICs exceeded the num-
ber of total ICs. On average, 12.8± 4.9 RSNs were identified in
these ICs with some of the ICs containing up to three different
RSNs. In addition, 6.6± 3.3 ICs corresponded to cardiac pul-
sation, 4.6± 2.9 ICs corresponded to respiration-related signal
changes, and 7.8± 4.9 ICs corresponded to artifacts related to
head movement and to 1 Hz signal oscillations, predominantly at
the edges of the slabs (Table 1). Maximum Z -scores ranged from
5.2 to 20.2 for attentional RSNs with other RSNs having maxi-
mum Z -score within this range. The average Z -score across all
RSNs was 11.8± 0.7. ICA analysis of data collected in one sub-
ject using the 32 channel coil separated 42 ICs, of which 20 were
related to RSNs, 10 were related to cardiac pulsation, 5 were related
to respiration related signal changes, and 13 were related to head
movement and artifacts, including coherent constant amplitude
1 Hz signal oscillation at the edges of the brain and in parietal
cortex. Z -scores reached up to 32.2 for sensorimotor and atten-
tional RSNs, and the average Z -score across all RSNs was 18.4.
These results are consistent with the data collected in the patients
(see below). Table 1 shows the results averaged across all nine
subjects.

The time-frequency analysis of signal fluctuations in RSNs
measured with MEVI2 was performed in five subjects. The spec-
trograms (Figures 1C,D) displayed low-frequency components
that had maximum power around 0.1 Hz and extended on average
to a maximum frequency of 0.27 Hz (Table 2). Short-term fluctu-
ations of this frequency range at short times scales (i.e., individual
24.3 s segments) were up to±0.1 Hz. The range of measurable RSN
frequencies was also limited by residual signal fluctuation due to
respiration, which in some cases overlapped with RSN frequency
components.

SENSITIVITY COMPARISON MEVI2, MEVI4, AND MEPI
In one healthy subject a sensitivity comparison was performed
between MEVI2, MEVI4, and weighted averaged multi-echo
EPI using the 12-channel coil and identical isotropic resolution
(4× 4× 4 mm3). ICA analysis of the multi-echo EPI data sep-
arated 33 ICs, which were related to 16 RSNs (Table 1). RSNs
measured with multi-echo EPI were mixed with aliased cardiac-
and respiration-related signal pulsation and displayed spurious
connectivity in white matter. ICs with predominantly cardiac (2)
and respiratory (3) signal changes in these data were only iden-
tifiable based on their spatial localization in reference to the EVI
results. The MEVI4 data in this subject displayed improved sep-
aration of cardiac- and respiration-related signal contamination,
but smaller number of separated ICs (21), with 14 identifiable
RSNs. The corresponding MEVI2 data showed further reduction
of spurious connectivity in white matter, larger number of ICs (34)
comparable to multi-echo EPI and larger number of identified
RSNs (21).

In patients a corresponding trend was found: MEVI2 sep-
arated more ICs on average than MEVI4 (38.6± 13.4 versus
26.0± 12.1) with more ICs corresponding to RSNs (16.6± 7.8
versus 7.0± 5.3, p= 0.09). MEVI2 enabled identification of a
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FIGURE 1 | (A) Resting-state fMRI in a healthy control using whole brain
MEVI4 with TR: 276 ms. The spatial ICA map with Z -scores up to 15 shows a
clearly delineated default mode RSN. (B–D) ICA-based mapping of RSNs and
cardiac pulsatility using MEVI2 with TR: 136 ms. (B) Slowly varying signal

changes well above noise level (zmax > 10) distinguish (C) RSNs from (D)
cardiac-related signal pulsation. The corresponding spectrograms display (C)
the dynamically fluctuating low-frequency power spectrum of the RSN and
(D) the first and second harmonics of the cardiac pulsation.

larger number of RSNs (19.6± 9.1 versus 13.0± 8.9) and cardiac
components (7.6± 4.4 versus 4.0± 1.7, p= 0.16) compared to
MEVI4 (Table 1).

Using seed-based connectivity with meta-statistics (see below)
MEVI2 yielded larger peak correlation coefficients and larger
extent of connectivity across the two-slab volume compared with
MEVI4 across a wide range of time scales from 4 to 60 s (Figure 2).

RESTING-STATE DYNAMICS USING SEED-BASED CONNECTIVITY WITH
META-STATISTICS
The meta-statistics approach provided strong rejection of con-
founding signals from head movement, respiration, cardiac
pulsation, and signal drifts (Figures 3A,B), without using regres-
sion of movement parameters and signals from white matter and
CSF. The degree of rejection of confounding signals increased

with decreasing sliding-window width, while mean correlation
coefficients decreased only slightly. A window width of 60 s often
provided considerable artifact suppression, but a 15-s window was
preferred due to even more robust artifact suppression. The cor-
relation coefficients in white matter and CSF using this approach
were small, typically <0.2 (Figure 3B). Weighted subtraction of
signals from white matter, CSF, and the entire brain did not result
in consistent improvement of mapping the major RSNs.

Our data show high sensitivity for mapping intra- and inter-
network connectivity at time scales as short as 4 s, which is consis-
tent with the upper frequency range of signal fluctuation in major
RSNs shown in Table 2. Interestingly, the auditory network dis-
played connectivity at time scales as short as 1 s with little decrease
in mean correlation coefficient (Figures 3C–F). Using this meta-
statistics approach RSNs were detected in tens of seconds. Some
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of the major RSNs, such as the DMN, the auditory network, and
the visual network were often detectable in as little as 10–20 s. The
localization and spatial extent of principal nodes of major RSNs
using the seed-based analysis approach were comparable to the
ICA results (Figure 4).

Mapping of dynamic changes in intra-network FNC revealed
considerable differences in short-term fluctuations in different
nodes of major RSNs. For example, the IPL region (BA39+BA40)
showed some of the strongest fluctuation within the DMN
(Figure 5), consistent with a recent group ICA study (Allen et al.,
2012). FNC between the 6 seeds and 144 brain regions averaged
across an entire scan was predominantly positive and showed
extensive connectivity across many brain areas. In general, major

Table 2 | High-frequency cutoff of low-frequency resting-state signal

fluctuations in healthy controls.

Subject Mean (Hz) SD (Hz)

1 0.29 0.02

2 0.25 0.02

3 0.32 0.09

4 0.26 0.02

5 0.22 0.02

Mean 0.27 0.03

SD 0.04 0.03

nodes of connectivity with higher short-term correlation were
predominantly associated with lower standard deviation of short-
term correlation as shown in Figure 6, which is an example of
seed-based connectivity across 144 brain regions averaged across
nine subjects using a 15-s sliding window. On the other hand,
higher standard deviation was frequently measured in regions with
lower short-term correlation. The default mode and the visual
networks share a similar pattern of FNCs. There were notable
right-left asymmetries in the meta-means maps: for example,
FNC in the frontal network with BA45 showed the largest right
side dominance (difference= 0.2), along with BA25, BA44, BA46,
and BA47. The FNC in the attention network showed the largest
asymmetry for BA39. The DMN showed the largest asymmetry in
Medial Geniculum Body.

A group analysis in nine subjects demonstrated that intra-
network FNC measured using this sliding-window based meta-
statistics approach yielded intra-network correlation values that
were comparable in amplitude with previous studies using ICA
(Figure 7) (Allen et al., 2012). Intra-network FNC in major
nodes of six principal RSNs decreases moderately at 4 s sliding-
window width compared to 15 and 60 s sliding-window widths
(Figure 7A). Some of the strongest intra-network FNC was mea-
sured within the DMN. Consistent with previous studies, tempo-
ral fluctuations in intra-network FNC increased with decreasing
sliding-window width (Figure 7B).

A group analysis of inter-network FNC in nine subjects demon-
strated mean correlation values comparable to previous studies

FIGURE 2 | Seed-based mapping with 4 s sliding window of the
sensorimotor RSN comparing (A) MEVI4 (TR: 286 ms) and (B) MEVI2
(TR: 136 ms), which shows higher peak correlation and larger spatial
extent of connectivity across the two-slab volume compared with

MEVI4. (C) The spatial extent of connectivity decreases strongly with
sliding-window width, but it is larger with MEVI2 compared to MEVI4 at all
three time scales. (D) The mean correlation is comparable across the
range of time scales.
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FIGURE 3 | Seed-based connectivity of the sensorimotor RSN
measured with MEVI2 (TR: 136 ms). (A) Correlation across the entire
5 min scan without regression of confounding signal changes displays
widespread artifacts (yellow arrow) and edge artifacts due to head
movement (red arrows). (B) Sliding-window correlation analysis with
meta-statistics using a 4-s sliding-window removes the artifacts and reveals
the expected localization of the sensorimotor network in the mean
meta-statistics map. (C–F) Seed-based connectivity of the auditory RSN
shown as mean meta-statistics across the 5 min scan using sliding-window
widths of (C) 15 s, (D) 4 s, (E) 2 s, and (F) 1 s.

using ICA (Figures 8A–C) (Allen et al., 2012). Some of the
strongest inter-network FNC was measured between the DMN and
the visual network, and between the DMN and the attention net-
work. The inter-network connectivity increased moderately with
increasing sliding-window width between 4 and 60 s. The global
FNC averaged across nine subjects decreased moderately at 4 s
sliding-window width compared to 15 and 60 s sliding-window
widths (Figure 8D). Inline with the intra-network connectiv-
ity, temporal fluctuations in global FNC increased with decreas-
ing sliding-window width (Figure 8E). The DMN displayed the
strongest temporal fluctuation of global FNC at a time scale of 4 s.

Figure 8F shows a typical series of dynamic inter-network FNC
matrices in a single subject for a seed in the DMN, which show
both positive and negative FNC at short time scales (sliding-
window width: 15 s) between the seed in the DMN and five
seeds in task-positive RSNs. The corresponding five time courses
of the short-term FNC within the sliding-window demonstrate
rapidly changing correlations between positive and negative val-
ues (Figure 8G). The mean and the standard deviation across
these correlation time courses show considerable fluctuation of
inter-network coherence (Figure 8H). Similar short-term tempo-
ral dynamics of positive and negative FNC between the seed in the
DMN and the five seeds in task-positive RSNs were observed in all
subjects.

RESTING-STATE fMRI IN PATIENTS WITH NEUROLOGICAL DISORDERS
Patients exhibited a greater number of RSNs on average compared
to healthy controls (Table 1) due in part to the transition to the 32
channel coil. Spatial displacement of major RSNs and reduced con-
nectivity within RSNs was mapped in the vicinity of brain tumors
and vascular malformations. Unanticipated connectivity was also

found in some of the patients. The following cases demonstrated
noteworthy changes in functional organization.

Patient 1 with a frontal lobe brain tumor showed much stronger
activation of motor cortex and extensive activation of non-motor
areas adjacent to the tumor during left hand index finger tapping
compared to right hand index finger tapping (Figure 9). This may
reflect the increased effort of left hand task execution, which the
patient reported, and dysregulation of cerebro-vascular coupling
within the edema around the tumor. By contrast, the sensori-
motor RSNs measured in this patient showed comparable focal
connectivity within both motor cortices. Interestingly, the senso-
rimotor RSN was separated into two lateralized subnets, which
suggests reduced functional connectivity within the sensorimotor
RSN due to the tumor. In this patient we also illustrate the integra-
tion of RSN maps into the StealthStation neuronavigation system
(Medtronics, MN, USA) for presurgical planning using the sum of
all RSNs in the vicinity of the tumor (Figure 9H).

Functional connectivity mapping in patient 2 with a pos-
terior temporal lobe tumor showed decreased connectivity in
and adjacent to the lesion in DTI-based fiber tracking and in
the default mode RSN. Interestingly, the sensorimotor RSN was
not detected with ICA although the other major RSN were
present and task-based fMRI clearly localized sensorimotor cor-
tex. Seed-based connectivity using seed locations based on motor
activation that was detected in task-based fMRI mapped the
sensorimotor RSN.

Patient 3 with a temporal lobe AVM exhibited extensive recruit-
ment of brain regions in the vicinity of the AVM during right
finger tapping, which may reflect the considerably increased effort
of task execution compared to left hand finger tapping and dys-
regulation of cerebro-vascular coupling in the vicinity of the AVM
(Figures 10A–K). The resting-state sensorimotor network showed
a complete disconnection on the side of the AVM, resulting in the
detection of with three separate RSNs in the left and the right
sensorimotor cortex and the supplementary motor area.

Patient 4 with an occipital lobe AVM displayed asymmetrical
activation in visual cortex during visual stimulation that excluded
the rims of the AVM (Figures 10L–Q). Interestingly, a visual
imagery task that involved imagining the “aura” resulted in a com-
plex activation pattern along the rims of the AVM, suggesting that
these regions may be involved in the visual aura associated with the
seizure. The major visual RSN, which was detected both with ICA
and seed-based correlation analysis, excluded the rims of the AVM.
However, a seed placed in the AVM revealed extensive connectivity
with secondary visual cortex.

Patient 6 with temporal lobe epilepsy exhibited hyperplasia
in anterior left frontal cortex (Figures 11A–D), which in DTI-
based fiber tracking shows reduced connectivity and, uncharac-
teristically for epilepsy, hypermetabolism in this region in the
FDG-PET scan. Cortical recordings using an implanted electrode
grid (Figure 11B) showed that this region was not the source of
epileptic activity. The default mode RSN showed asymmetric con-
nectivity in the frontal cortex. The attention RSN displayed spatial
asymmetry as well, whereas the visual RSN displayed connectivity
with the hyperplasia lesion. The lesion itself was also connected
to other cortical regions, which was mapped in a separate IC. In
this patient we also illustrate the integration of RSN maps into the
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FIGURE 4 | Comparison of (left) ICA and (right) seed-based connectivity in a single subject for mapping (A) the default mode RSN, (B) the visual RSN,
(C) the sensorimotor RSN, and (D) the auditory using MEVI2 atTR: 136 ms.

StealthStation neuronavigation system (Medtronics, MN, USA)
for presurgical planning.

Functional connectivity mapping in patient 7 with cortical
epilepsy revealed progressive changes in functional connectivity
during eight consecutive resting-state scans (Figures 11E–J). In
the third scan the visual RSN became spatially asymmetric. In the
fourth scan a new RSN was detected that encompassed right pos-
terior parietal and temporal cortex, a region that showed interictal
spike activity in EEG and MEG. The visual RSN was spatially asym-
metric and the sensorimotor RSN was not detected. In the fifth
scan a spatially asymmetric visual RSN was detected again. In scan
6 the spatial asymmetry of the visual RSN increased, excluding the

right posterior temporal lobe, and negative correlation with the
right motor and posterior parietal cortex was seen. In scan 8 the
previously detected RSN in right posterior parietal and temporal
cortex extended into more inferior brain regions.

CARDIAC-RELATED PULSATILITY
Cardiac-related physiological signal fluctuation in healthy controls
was mapped into clearly separated ICs in insular cortex, cortex,
sagittal sinus, brain stem, and CSF. Several cardiac-related ICs
of vascular origin with Z -scores ranging from 8.1 to 20.7 were
detected in insular cortex, cortex, sagittal sinus (Figure 12), in
addition to pulsation in the brain stem (Z = 22.2) and in the
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ventricles (Z = 16.5). This pulsation, which was detected on a
beat-by-beat basis, was synchronous with peripheral pulse record-
ing throughout the entire scan. Power spectra showed significant
amplitude at the first harmonic and in some cases also at the sec-
ond harmonic (Figure 12C). The waveform of the cardiac-related
signal pulsation in insular cortex (Figures 12D,E) was inverted
with respect to typical Transcranial Doppler Ultrasound (TDU)

FIGURE 5 | Dynamic changes in temporal correlation within the default
mode RSN measured at 30 s intervals using MEVI2 (TR: 136 ms) and
sliding-window seed-based correlation analysis with 30 s window in a
healthy control.

and phase contrast MRI waveforms obtained from the middle
cerebral artery (e.g., Wagshul et al., 2011), which suggests that the
cardiac-related signal pulsation in our MEVI data is dominated
by BOLD contrast rather than in-flow effects as usually assumed
for BOLD contrast fMRI (e.g., Kruger and Glover, 2001). The
signal pulsation in our data is also consistent with the pulsation
waveform measured in cingular cortex in one of the early studies
using conventional EPI (Dagli et al., 1999). The first harmonic
of the cardiac-related pulsation was stronger in components with
vascular origin (insula, sagittal sinus) compared to components
originating from the ventricles and the brain stem (Figure 13).
Multiple ICs with strongly enhanced cardiac-related signal pulsa-
tion were measured in patient 1 with a brain tumor and in patient 3
with an arterio-venous malformation (Figure 13B). Distinct time
shifts on the order of 100 ms were measured between cardiac-
related ICs in and adjacent to the AVM, which reflect different
phases of the cardiac-related pulse wave propagation. The sta-
tistical analysis showed a trend (t -test, p= 0.14) toward a larger
amplitude ratio R in gray matter in patients compared with healthy
controls (Figure 13C).

DISCUSSION
ICA AND SEED-BASED CONNECTIVITY
Mapping of intrinsic signal variation mostly in the low-frequency
band <0.1 Hz has emerged as a powerful tool and adjunct to task-
related fMRI and DTI-based fiber tracking for mapping functional
connectivity within and between RSNs (Fox et al., 2005; De Luca
et al., 2006; Raichle and Snyder, 2007; Schopf et al., 2010; Li et al.,
2011). Recent studies have shown that dozens of different RSNs
can be measured across groups of subjects (Abou-Elseoud et al.,
2010; Allen et al., 2011). However, source separation with ICA in

FIGURE 6 | Seed-based FNC between 6 seed regions and 144 brain
regions using MEVI2 (TR: 136 ms) and meta-statistics averaged across
nine healthy subjects at the end of the scan. Spatial means of (A) left

hemisphere meta-statistics means, (B) right hemisphere meta-statistics
means, (C) left hemisphere meta-statistics standard deviations, and (D) right
hemisphere meta-statistics standard deviations.
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FIGURE 7 | Seed-based intra-network FNC at the end of the scan averaged across nine healthy subjects using MEVI2 (TR: 136 ms). Spatial means of the
meta-statistics (A) means and (B) standard deviation in a subset of 18 selected Brodmann areas as a function of sliding-window width (4, 15, and 60 s).

individual subject data using conventional EPI is limited by the
contrast-to-noise ratio of the signal fluctuations and aliasing of
cardiac- and respiration-related signal fluctuations, which requires
model-based retrospective deconvolution methods (Glover et al.,
2000). Our data using MEVI and ICA show that a considerable
number of RSNs that have been mapped in a recent group study
(Allen et al., 2011) can be identified in single subjects. Our data
also show that source separation in single subjects exhibits con-
siderable inter-individual variability. This variability may reflect
inter-individual differences in dynamic cycling between differ-
ent FNC states, including hypersynchronization, drowsiness, and
low synchronization (Allen et al., 2012), as well as in neurovas-
cular coupling and physiological signal fluctuation. Physiological
noise correction might further improve ICA analysis, in particular
in data sets that exhibit low contrast-to-noise ratio in the RSN
signal time courses. Given the spatial heterogeneity in cardiac-
related signal pulsation shown in our study this approach will
require a comprehensive analysis of ICA source separation as a
function of contrast-to-noise ratio in the RSN, respiration, and
cardiac frequency bands using regionally adaptive signal pulsa-
tion models. This approach will be explored in a future study.
Movement during the fMRI acquisition is a major confound for
resting-state connectivity studies obscuring networks as well as
creating false-positive connections (Satterthwaite et al., 2012; Van
Dijk et al., 2012) despite state-of-the-art motion “correction” in
post-processing. Monitoring these dynamics in real-time to assess
data quality is expected to improve consistency of data quality in
clinical research studies and our understanding of the underlying
neurophysiological mechanisms.

Seed-based correlation analysis (Van Dijk et al., 2010) and spa-
tial ICA (Calhoun et al., 2001) are the principal tools to map
functional connectivity, which have been shown to provide simi-
lar results (Van Dijk et al., 2010; Erhardt et al., 2011). Seed-based
connectivity measures have been shown to be the sum of ICA-
derived within- and between-network connectivities (Joel et al.,
2011). Seed-based correlation analysis is suitable for real-time

resting-state fMRI due to the high sensitivity of correlation analysis
and straightforward interpretation of results (Cole et al., 2010a).
In contrast, data driven approaches, such as ICA, in single subjects
may require considerable user interaction to interpret resulting
maps and time courses. Semi-automated data sorting routines for
ICA are under development, but actual real-time applications have
not yet been demonstrated (Soldati et al., 2013a,b). A model-based
approach such as seed-based correlation analysis that uses prior
knowledge is advantageous compared to ICA for detecting small
signal changes. However, seed-based techniques are sensitive to
the choice of the seed regions (Cole et al., 2010a). Furthermore,
seed-based correlation analysis requires regression of confound-
ing signals, which typically include the six parameters of motion
correction and their derivatives, and the average signal from up
to three brain regions (whole brain over a fixed region in atlas
space, ventricles, and white matter in the centrum semiovale).
Regression of these signals is computationally intensive and may
remove RSN signal changes that are temporally correlated with
confounding signals. Here we introduce the combination of seed-
based sliding-window correlation analysis with a meta-statistics
approach that employs a running mean and standard deviation
(Welford, 1962) across dynamically updated correlation maps to
generate cumulative meta-statistics maps. Our data show that this
meta-statistics approach provides strong rejection of confounding
signals from head movement, respiration, cardiac pulsation, and
signal drifts (Figure 3) and high sensitivity for mapping inter- and
intra-network connectivity dynamics at time scales as short as 1 s
without the need for regression of confounding signals (Figures 6
and 7). Furthermore, this methodology is suitable for real-time
mapping of FNC dynamics as shown in Figures 5 and 8.

Independent component analysis on the other hand is a pow-
erful data driven approach that has been applied in many group
studies and is suitable for single subject analysis (Koopmans et al.,
2012). ICA also performs spatial filtering, which enables seg-
regation of spatially overlapping components. However, source
separation with ICA is sensitive to the selection of the model order,
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FIGURE 8 | (A–E) Seed-based inter-network FNC averaged across nine
healthy subjects using MEVI2 (TR: 136 ms) and (F–H). Simulated real-time
monitoring of inter-network FNC in a single subject using MEVI2 (TR: 136 ms)
with the 12-channel coil and a 15-s sliding window. Subject average of the
meta-statistics correlation coefficient matrix for six seeds at a time scale of
(A) 4 s (B) 15 s, and (C) 60 s at the end of the scan. Group-averaged (D) mean
and (E) standard deviation of global FNC for six seeds at time scales of 4, 15,

and 60 s at the end of the scan. (F) Selected connectivity matrices for 15 s
sliding windows at time points of low (64, 83 s), high (95 s), and intermediate
(190 s) synchronization in a single subject. (G) Corresponding time courses of
the correlations between the cuneus seed time course of the DMN and the
seed time courses of five major task-positive RSNs within the sliding window.
(H) Corresponding time courses of the mean and standard deviation of the
correlation time courses in (G) as a metric of inter-network FNC.

which is a priori unknown and necessitates dimensionality esti-
mation approaches, such as the MDL, BIC, and AIC (Calhoun
et al., 2001; Li et al., 2007). Furthermore, automated ordering

of ICA components to enable consistent identification of RSNs
is challenging. Using the MDL criterion to determine the model
order resulted in a relatively small number of ICs relative to the
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FIGURE 9 | Presurgical mapping in patient 1 with right prefrontal
low-grade oligodendroglioma. (A) T2-weighted MRI. Task-based fMRI
using MEPI (TR: 2 s). (B) Right hand finger tapping shows sharp
delineation of eloquent cortex. (C) Left hand finger tapping shows diffuse
activation in the vicinity of the tumor. Resting-state fMRI using MEVI2 (TR:
136 ms) and ICA shows (D) left sensorimotor cortex localization ICA
(zmax =7.9) consistent with task-activation in (B,E) right sensorimotor RSN

mapping with showing more focal localization (zmax =12). Seed-based
analysis shows focal localization of the sensorimotor RSN consistent with
ICA: (F) left motor seed and (G) right motor seed (arrows). (H) Sum of all
seed-based resting-state networks in the vicinity of the tumor integrated
into presurgical planning. Color scales for task-based correlation analysis
and seed-based connectivity (top), and ICA (bottom) are shown on the
right.

large number of time points in a MEVI scan. At shorter simu-
lated scans times the ICA was less able to separate sources and
we found that multiple RSNs were merged in single ICs. Our
resting-state data also suggest that using a larger number of com-
ponents than provided by the MDL criterion may be advantageous
for separating RSNs that are co-localized in a single IC in some
of our data. Interestingly, the number ICs detected by the MDL
criterion increased considerably when spatially interpolating the
data, which suggests that spatial dimensionality independent of
spatial information content plays an important role in source
separation with ICA. This dependence of ICA source separa-
tion on preprocessing warrants further investigation. The effects

of increasing model order on the noise level and segregation of
RSNs in individual subject data need to be addressed in a future
study. Furthermore, it will be of interest to investigate the loss
of MEVI information in the initial PCA-based data reduction
step. The performance of ICA source separation with high-speed
fMRI requires further investigation as sensitivity for detecting
and for separating RSNs varied across subjects. For example, in
some subjects the ICA time course displayed dynamic mixing and
unmixing of different signal sources throughout the entire ICA
time course. In other cases a separation of a steady signal pulsa-
tion time course into two complementary ICs with time courses
that displayed decreasing and increasing pulsation amplitude was
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FIGURE 10 | Presurgical mapping in two patients with arterio-venous
malformations (AVM). Patient 3 with left parietal AVM : (A) T1-weighted
MRI, (B) T2-weighted MRI, (C) MR-angiogram, (D) DTI-based fiber tracking
show distortion of motor pathways. Task-based fMRI using MEPI (TR: 2 s):
(E) right hand finger tapping shows distributed activation around the lesion
(indicated by arrow) beyond the left motor cortex and in the supplementary
motor area and (F) left hand finger tapping shows focal localization of right
motor cortex. Resting-state fMRI using MEVI2 (TR: 136 ms) and ICA
segregates the sensorimotor RSN into three subnetworks with focal
localization of motor areas: (G) a right sensorimotor RSN (zmax =7.9), (H) a
left sensorimotor RSN (zmax =8.9), and (I) a supplementary motor area RSN
(zmax = 9.4). ICA also segregates the default mode RSN into two

subnetworks (J,K) that do not extend into the left parietal cortex (zmax =6.2
and 8.5, respectively). Patient 4 with right occipital AVM : (L) T2-weighted
MRI. Task-based fMRI using MEPI (TR: 2 s). (M) Visual stimulation does not
activate the lesion and (N) imagination of the experience of the “aura”
associated with epilepsy activates and deactivates areas at the rim of the
lesion. (O) Intraoperative image. (P) Resting-state fMRI using MEVI2 (TR:
136 ms) and ICA shows a visual RSN that does not extend into the AVM
consistent with visual stimulation (zmax =12.6). (Q) Seed-based functional
connectivity of the visual RSN with a seed in BA 17 (green box) does not
show visual eloquence within the AVM. Color scales for task-based
correlation analysis and seed-based connectivity (top), and ICA (bottom) are
shown on the right.
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FIGURE 11 | Presurgical mapping in two patients with epilepsy
Resting-state fMRI using MEVI2 (TR: 136 ms) and ICA. Patient 6 with
temporal lobe epilepsy. (A) The T2-weighted MRI shows hyperplasia in
anterior left frontal cortex and left mesial temporal lobe sclerosis. (B)
Presurgical planning using resting-state networks encompassing language
areas and the area of dysplasia. ICA shows (C) a resting-state network
encompassing the area of dysplasia (zmax =15.6) and (D) abnormal
connectivity between the area of dysplasia and the visual RSN (zmax =9.0).
Patient 7 with cortical epilepsy. (E) The T1-weighted MRI shows cortical

thickening in the right posterior temporal lobe (yellow circle) (F) FDG-PET
shows hypometabolism in this region (yellow circle). ICA shows dynamic RSN
changes in consecutive scans. (G) An unanticipated RSN emerges in right
posterior parietal and temporal cortex during scan 4 (zmax =15.0). (H,I) In scan
6 the visual RSN displays spatial asymmetry that excludes the right posterior
temporal lobe and exhibits negative correlation with the right motor and
posterior parietal cortex (zmax =17.3). (J) The unanticipated RSN in right
posterior parietal and temporal cortex extends into inferior regions during
scan 8 (zmax =16.3). The color scale for ICA is shown on the right.

observed. Several studies have shown that optimization of the data
analysis methodology, such as using back-projection methods,
reduces inter-session variability (Smith et al., 2005; Chen et al.,
2008). Further work across larger groups of subjects is thus nec-
essary to assess the reproducibility of source separation in single
subjects.

There is now increasing evidence that RSNs are not stationary
(Hou et al., 2006; Kang et al., 2011), which has attracted consider-
able interest in recent studies (Chang and Glover, 2010; Scholvinck
et al., 2010; Allen et al., 2012). However, the neural correlates of
resting-state fluctuations in fMRI are not well understood and are
a focus of current research (Morcom and Fletcher, 2007; Shmueli
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FIGURE 12 | Cardiac-related signal pulsation measured in a healthy
control using MEVI2 (TR: 136 ms). (A) ICA time course of the pulsation. (B)
ICA spatial map shows pulsation predominantly in insular cortex and medial
gray matter (zmax =12.5). The color scale for ICA is shown on the right. (C)

Corresponding raw power spectrum shows the cardiac frequency and its first
harmonic. (D) Fitted MEVI2 signal time course, which is inverted with respect
to (E) a typical Transcranial Doppler Ultrasound waveform from the middle
cerebral artery (from Wagshul et al., 2011).

et al., 2007; Pizoli et al., 2011; Wong et al., 2011). The seed-based
real-time sliding-window correlation analysis with meta-statistics
developed in this study enables sensitive analysis of fluctuations in
resting-state connectivity at much shorter time scales compared
to ICA and hypothesis-driven analysis of connectivity between
specific nodes of RSNs. The decreases in connectivity fluctua-
tion with increasing sliding-window width measured in our data
highlights the advantage of ultra-high-speed fMRI for character-
izing the temporal dynamics of resting-state connectivity and for
monitoring transitions between resting states. It also emphasizes
that averaging across several minutes of a resting-state scan may
underestimate the maximum strength of functional connectivity
between regions that exhibit strongly fluctuating connectivity.

Our seed-based sliding-window correlation analysis combined
with meta-statistics revealed considerable short-term temporal
fluctuation of intra- and inter-network FNC between positive and
negative values at short time scales. FNC averaged across an entire
5 min scan was predominantly positive across subjects as shown
in Figure 8, which is consistent with previous studies demonstrat-
ing positive overall correlation between RSN time courses before
regression of the global mean (Fox et al., 2009; Murphy et al.,
2009). A recent study demonstrated that correlation coefficients

between the PCC and its anti-correlated regions without global
regression were substantially weaker than those of the positive
correlations within regions of the DMN, consistent with previ-
ous studies (Chang and Glover, 2010). That study also showed
considerable fluctuation in signal correlation at time scales of 2
and 4 min. The observed anti-correlation between the DMN and
task-positive networks remains a topic of ongoing investigation
and intense debate with regards to the validity of global signal
regression (Fox et al., 2009; Murphy et al., 2009; Uddin et al., 2009;
Cole et al., 2010b; Chai et al., 2012). With seed-based connectiv-
ity the observation of correlations and anti-correlations is highly
dependent on the choice of seed locations. Future studies will have
to more thoroughly investigate correlations with a wider range of
seed locations. In summary, the measurement of short-term cor-
relations and anti-correlations at time scales much shorter than
those reported in previous studies, using high-speed fMRI with-
out global signal regression, will facilitate the characterization of
the neurobiological basis of the observed anti-correlations.

Monitoring RSN fluctuations online in correlation with other
observables of subject behavior and state would provide a new
approach for studying the physiological and cognitive correlates
of resting-state fluctuations. Our real-time methodology enables
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FIGURE 13 | Cardiac-related signal pulsation in different brain areas
measured using MEVI2 (TR: 136 ms) in (A) a healthy control and (B)
patient 3 with an AVM. Selected slices from the spatial ICA show regions
with cardiac-related signal pulsation [zmax ranging from 7.7 to 14.4 in (A) and
from 5.3 to 14.4 in (B)]. Interpolated ICA time courses within a 6.8-s window
showing remarkable morphological waveform differences and shifts in phase

in the AVM and in adjacent gray matter regions. The ratio R of the power
spectrum amplitudes at the cardiac frequency versus the first harmonic is
shown in the insets. (C) Group analysis across healthy controls (n=9) and
patients (n=6) shows regional differences in R (ratio of the power spectrum
amplitudes at the cardiac frequency versus the first harmonic). The color scale
for ICA is shown between (B) and (C).

experimental neurofeedback based on intra- and inter-network
connectivity, which may provide a means for self-controlling the
temporal dynamics of resting-state fluctuations. For example, by
controlling activation of task-positive networks it may be possi-
ble to modulate the anti-correlated default mode RSN, which may
have implications for cognitive behavioral therapy.

SENSITIVITY OF MEVI
Inline with recent studies, we show that the detection of major
RSNs and separation of physiological signal fluctuation in sin-
gle subjects is facilitated by the high temporal resolution MEVI,
which avoids aliasing of cardiac- and respiration-related signal
fluctuations, and by the high BOLD sensitivity of MEVI (Posse
et al., 2012). As recent studies have shown high temporal resolution
improves separation of RSNs using ICA (Smith et al., 2012) and
may facilitate detecting the temporal dynamics of RSNs at frequen-
cies above 0.1 Hz (Boubela et al., 2013; Boyacioglu et al., 2013; Chu
et al., 2013; Lee et al., 2013), which as a recent study suggests may
exhibit greater spatial and temporal stability than low-frequency
connectivity (Lee et al., 2013). Consistent with these studies our
data show that MEVI improves separation of RSNs and facili-
tates detecting the higher frequency ranges of resting-state signal
fluctuation, which as our data show extend up to 0.27 Hz.

High-speed fMRI reveals respiration-related signal changes at
the edges of the MEVI slabs, which may be due to movement,
B0-shifts, or a combination of both, whereas the center of the
slabs was free of these signal changes. This spatial separation of
respiration-related artifacts represents a distinct advantage of 3D
encoding with MEVI compared to multi-slice EPI, where these
signal changes are not spatially separable and may thus be more
difficult to remove.

CLINICAL FEASIBILITY STUDIES
There is now increasing evidence that alterations in functional
connectivity are detectable in neurologic (Bettus et al., 2010;
Pereira et al., 2010; Luo et al., 2011; Negishi et al., 2011) and psy-
chiatric (Greicius, 2008; Broyd et al., 2009) disorders, which may
have diagnostic value. The clinical cases in this study demonstrate
that high-speed fMRI has high sensitivity for mapping major RSNs
and disease-related changes in functional connectivity in individ-
ual patients. Spatial displacement of major RSNs and reduced
connectivity within RSNs was mapped in the vicinity of brain
tumors and vascular malformations. Resting-state fMRI is par-
ticularly advantageous for mapping the sensorimotor cortex in
patients with motor impairment, which may be challenging with
task-based fMRI due to attention-related unspecific activation
and dysregulation of cerebro-vascular coupling in the vicinity
of brain lesions. Localization of sensorimotor cortex in patients
with motor disability and in the vicinity of brain lesions with
impaired cerebro-vascular coupling was more focal in resting-
state fMRI compared with task-based fMRI. Segregation of the
sensorimotor RSN into laterality-specific subnetworks in patients
with brain tumors and AVMs in this study suggests disruption of
functional connectivity in the sensorimotor cortex. This dynamic
measure of functional integration is complementary to the sta-
tic connectivity metric obtained with fiber tracking in DTI. Our
data show that disease-related changes in resting-state connectiv-
ity in the vicinity of brain lesions may manifest as decreases or
increases in connectivity between nodes of major RSNs, or even
as separate lesion-specific RSNs. Anti-correlations between the
DMN and task-positive networks that may be affected by brain
lesions provide insights into competitive mechanisms that con-
trol resting-state fluctuations (Fox et al., 2005; Uddin et al., 2009).
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Inter-individual variability in connectivity may be elevated by cer-
tain disease conditions, in particular in the vicinity of brain lesions
known to impair neurovascular coupling and in brain regions
with inflammation. For example, gliomas may be associated with
mass effect that can distort anatomy, and may affect eloquent cor-
tex function by tumor infiltration and abnormal neurovascular
coupling, generally greater with higher grade, potentially com-
promising detection of BOLD fMRI signal (Holodny et al., 2000;
Hou et al., 2006; Jiang et al., 2010). While resting-state fMRI may
provide a sensitive approach for studying neurovascular corre-
lates of disease processes that is complementary to structural MRI
and DTI, further studies are required to characterize the speci-
ficity of this connectivity information and to quantitatively assess
the impact of altered cerebro-vascular reactivity in the vicinity of
brain lesions on resting-state connectivity. As a range of patholog-
ical tissue changes, such as hyperplasia, inflammation, and edema,
may impact apparent resting-state connectivity, it is necessary to
investigate whether these changes are indeed indicative of true
changes in functional connectivity or whether they are a side-effect
of changes in regional cerebro-vascular reactivity.

In two of our patients with epilepsy it was feasible to monitor
dynamic changes in major RSNs and the emergence of a sep-
arate RSN associated with cortical dysplasia. In patient 7 with
cortical epilepsy a separate RSN emerged dynamically in right
posterior parietal and temporal cortex, a region that exhibited
interictal spike activity. While these findings may be related to
interictal spike activity during the scans, a more definitive assess-
ment requires concurrent EEG-fMRI, which is under development
in our laboratory. The high sensitivity of high-speed fMRI is
expected to be advantageous for studying the infrequent hemody-
namic responses to interictal spike activity in patients with epilepsy
compared to conventional EPI. MEVI is compatible with the stan-
dard 12-channel head array coil that accommodates an EEG cap.
It employs small flip angle excitation resulting in low RF power
levels, which minimizes saturation of the EEG amplifiers.

CARDIAC-RELATED PULSATILITY
Only recently was arterial pulse wave propagation mapped with
fMRI (Tong and Frederick, 2012). There is increasing evidence
that aging, hypertension, dementia, and Alzheimer disease may
have a common microvascular origin and that traumatic brain
injury is associated with microvascular damage (Wagshul et al.,
2011). However, lack of a non-invasive method capable of assess-
ing pulsatile blood volume in small resistance arteries proves to
be the limitation to investigate cerebral microvessels (Wszedybyl-
Winklewska et al., 2011).

Our data show that cardiac-related signal pulsation has region
specific waveforms and may carry clinically relevant functional
information about cerebro-vascular pulsatility in cortex and in

vascularized brain lesions. The high temporal resolution of MEVI
enables measurement of the pulsation waveform on a beat-by-
beat basis using spatial ICA. Increasing the temporal resolution
of MEVI to 50 ms is desirable to more fully resolve regional dif-
ferences in the pulsation waveform and in the phase of the pulse
wave propagation. This real-time approach is complementary to
phase contrast MRI and TDU as it extends the measurement of
cardiac-related pulsatility into gray matter and enables monitoring
of dynamic changes in pulsatility waveform.

CONCLUSION
We have shown that ultra-high-speed resting-state fMRI is a sen-
sitive tool for presurgical mapping of connectivity within the
sensorimotor network, which is complementary to task-based
fMRI. Preliminary results in patients with neurological disease
demonstrate high sensitivity for monitoring altered resting-state
connectivity in the vicinity of brain lesion. Localization of senso-
rimotor cortex in patients with motor disability and in the vicinity
of brain lesions with impaired cerebro-vascular coupling is more
focal in resting-state fMRI compared with task-based fMRI, which
is advantageous for presurgical mapping. Resting-state fMRI thus
provides unique insights into altered functional connectivity asso-
ciated with brain lesions, which is advantageous for presurgical
mapping. Ultra-high-speed fMRI also enables whole brain online
monitoring of vascular pulsation and may be useful to assess alter-
ations in arterial pulse wave propagation and vascular compliance
in patients with neurological diseases.

The multi-slab EVI pulse sequence and the TurboFIRE software
tool are available for research use. Please contact the corresponding
author for additional information.
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