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Abstract

Background

A brief gonadotropin-releasing hormone analogues (GnRHa) stimulation test which solely

focused on LH 30-minute post-stimulation was considered to identify girls with central preco-

cious puberty (CPP). However, it was tested using traditional statistical methods. With

advanced computer science, we aimed to develop a machine learning-based diagnostic

model that processed baseline CPP-related variables and a brief GnRHa stimulation test for

CPP diagnosis.

Methods

We recruited girls suspected of precocious puberty and underwent a GnRHa stimulation

test at Children Hospital 2, Vietnam, and Cathay General Hospital, Taiwan. Clinical data,

bone age measurement, and 30-min post-stimulation blood test were used to build up the

predictive model. The candidate model was developed by different machine learning algo-

rithms that were mainly evaluated by sensitivity, specificity, the area under the receiver

operator characteristic curve (AUC), and F1-score in internal and external validation data to

classify girls as CPP and non-CPP at different time-points (0-min, 30-min, 60-min, and 120-

min post-stimulation).
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Results

Among the 614 girls diagnosed with PP, 524 (85.3%) had CPP. The random forest algorithm

yielded the highest value of F1-score (0.976), specificity (0.893), positive predicted value

(0.987), and relatively high value of AUC (0.972) that contributed to high probability to iden-

tify CPP. The performance metrics of the 30-min post-stimulation diagnostic model including

sensitivity and specificity surpassed those of the 0-minute model (0-min) and were equiva-

lent to those of the model obtained 60-min and 120-min post-stimulation. Hence, our

machine learning-based model helps shorten the stimulation test to 30 minutes after

GnRHa injection, in general, it requires 120 minutes for a completed GnRHa stimulation

test.

Conclusions

We developed a diagnostic model based on clinical features and a single sample 30-minute

post-stimulation to identify CPP in girls that can reduce distress for children caused by multi-

ple blood samplings.

Introduction

Central precocious puberty (CPP) caused by the early activation of the hypothalamic-pitui-

tary-gonadal axis is defined by the early development of secondary sex characteristics, acceler-

ation of linear growth, advanced bone age, and a pubertal response to gonadotropin-releasing

hormone (GnRH) test [1]. The annual incidence of CPP has substantially increased in children

(mainly girls) [1]. CPP results in significantly shorter final height due to early closure of the

epiphyses [2], which are calcified under the influence of estrogen [3,4]. In addition, children

with early pubertal timing may be linked to psychosocial difficulties and negative health impli-

cations, including increased risk of type 2 diabetes [5], cardiovascular disease [5], depression

[6], and premature death [7]. In girls, early puberty is associated with an increased risk of

breast cancer [8], which urges a quick response in diagnosing and timely intervention.

In terms of CPP diagnosis, it is hard to distinguish actual CPP from precocious thelarche,

which is often non-progressive or may resolve spontaneously. Hence, the GnRH stimulation

test is needed as a gold standard to identify CPP [2]. Since in case of unavailable exogenous

GnRH, the GnRH analogue (GnRHa) stimulation test can be substituted to diagnose CPP

[3,9] and the cutoff peak LH level of>5 IU/L is widely used to identify CPP [3,10]. However,

the stimulation test is constrained by different time points (at 30, 40, 60, and 120 min) and is

expensive that carries a financial burden in those countries where health care service is not

free. Intriguingly, the baseline luteinizing hormone (LH) level was a promising biomarker to

diagnose CPP [11]. However, the diagnostic cutoff of baseline LH for CPP diagnosis varies

from 0.1 to 1.5 IU/L, with a sensitivity ranging from 60% to 100% [10–15].

Regarding a brief GnRHa stimulation test, recent studies have raised the recommendation

that a single sample 30- or 40-min post-stimulation is sufficient for CPP diagnosis in children

[16–18] but using traditional statistical approach regardless of machine learning. Pan et al.
[19,20] established a machine learning-based model using only baseline features, such as breast

stages, pubic hair stages, body composition, basal serum LH, follicle-stimulating hormone

(FSH), bone age assessment, pelvic ultrasonography to predict CPP in girls that did not entail

the GnRHa stimulation test. No machine learning-based model conveying a single-sample
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30-min post-stimulation in diagnosing CPP in girls has been established. Therefore, we aimed

to develop and validate a diagnostic model for girls with CPP that handle multiple baseline

CPP-related characteristics, and sex hormone measurements obtained 30 min post-stimula-

tion using machine learning techniques.

Materials and methods

Participants and study design

This study was adhered to the guidelines of the Declaration of Helsinki and was approved by

the Institutional Review Board of the University of Medicine and Pharmacy at Ho Chi Minh

City, Vietnam, and Cathay General Hospital, Taiwan. Written consent has been obtained from

each patient or their parents after fully explaining the purpose and nature of all procedures

used.

For this cross-sectional study, we recruited girls who had been diagnosed as having preco-

cious puberty (PP) and were admitted to Children’s Hospital 2 in Southern Vietnam between

January 2010 and December 2016 and Cathay General Hospital in Taipei, Taiwan, between

March 2020 and February 2021. PP was defined when girls with at least one sign of puberty or

who had progressive pubertal development associated with rapid growth in girls< 8 years or

girls who began menarche < 9 years [2]. All girls with PP underwent the GnRHa stimulation

test to identify CPP. We excluded girls diagnosed with congenital adrenal hyperplasia or hypo-

thyroidism. Fig 1 illustrates the flowchart of the study (Fig 1).

GnRH stimulation test and CPP diagnosis

The GnRHa stimulation test was performed in Children’s Hospital 2, Vietnam, and Cathay

General Hospital, Taiwan. A standard dose of 0.1 mg of Triptorelin (Ipsen Pharma, Georges

Gorse, Boulogne-Billancourt, France) was administered subcutaneously, with blood sampling

conducted at the basal time point (0), 30, 60, and 120 min for LH measurement. All samples

were analyzed LH and FSH using immunochemiluminometric assay (ICMA) (ARCHITECT

i2000SR, 2016144 Abbott, Abbott Park, IL, USA). The ARCHITECT LH was designed to have

an assay imprecision of� 7% and� 10% total coefficient variation (CV) for LH values� 70

IU/L and LH values> 70 IU/L, respectively. The LH assay is designed to have a mean recovery

of 100% ± 8% for LH levels across the range of 10–70 UI/L. Eventually, the detection value

ranges from 0.09 IU/L to 250 IU/L. Meanwhile, the ARCHITECT FSH assay was standardized

with the World Health Organization (WHO) First International Standard (IS) FSH 95/510,

with the mean recovery of WHO 1st IS FSH being 96.05%. The operating range of assays was

established by the precision profile, which was defined to have a total CV< 10%. ICMA FSH

assay was compared to the AxSYM FSH assay, in which the serum detection ranges from 0.46

to 120.45 IU/L.

Girls received a CPP diagnosis if they exhibited the following criteria: (a) onset of secondary

sexual characteristics including breast development and/or pubic hair development at age< 8

years and (b) peak LH level� 5 IU/L combined with a ratio of peak LH to FSH value� 0.6

after GnRHa stimulation test [2,21]. Girls who did not present with secondary sexual charac-

teristics at age< 8 years and exhibited a negative response to the GnRHa stimulation test were

considered non-CPP cases [3].

Covariates

According to the Tanner stage, the presence of secondary sexual characteristics, such as breast

development, pubic hair development, and menstruation/menarche, was recorded according
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to reports from parents and caregivers and examination by pediatric endocrinologists [22].

We measured the participants’ body weight and height to calculate the body mass index (BMI)

[4]. Because in growing children BMI varies with age and sex, body weight, height, and BMI

Fig 1. The flowchart of the study. Definition of abbreviations: AdaBoost, adaptive boosting; AUC, the area under the receiver operating

characteristic curve; kNN, k-nearest neighbors; LIME, local interpretable model-agnostic explanations; XGBoost, extreme gradient boosting.

https://doi.org/10.1371/journal.pone.0261965.g001
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were converted into Z-scores according to the global application of the WHO Reference 2007

for children aged 5–19 years [23] that could help to compare weight status in different popula-

tions and to define obesity [24]. Obesity was defined as BMI� +2 standard deviations (SDs,

equivalent to BMI 30 kg/m2 at 19 years) from the BMI-for-age (BMI Z-score). Left-hand radi-

ography was used to measure bone age according to the method proposed by Greulich and

Pyle [25], and the difference between bone age and chronological age (BA-CA) was calculated

as bone–age − chronological age (years). Laboratory measurements included basal serum

estradiol, LH, and FSH before and after the GnRHa stimulation test.

Model development based on machine learning algorithms: Training and

validation

We excluded variables with missing values; accordingly, a robust model could be obtained

without modification of the original variables. CPP-related variables [2] were finally selected

for the development of the machine learning models. Specifically, nine variables were extracted

from the participants’ clinical records: age (years), body weight (Z-score), height (Z-score),

BMI (Z-score), obesity (yes/no), breast development (Tanner stages 1 to 5), pubic hair (Tanner

stages 1 to 5), menstrual/menarche (yes/no), BA-CA (years). The remaining five variables

were basal estradiol, LH, and FSH levels and LH and FSH levels 30 min after stimulation test.

In terms of different theories attributed by the accuracy, high speed, and simplicity, we eval-

uated the performance of the models by using different machine learning and ensemble learn-

ing algorithms, including k-nearest neighbors (kNN), logistic regression (LR), random forests

(RF), adaptive boosting (AdaBoost), and extreme gradient boosting (XGBoost) algorithms

[26–28].

Data of 576 Vietnamese participants were split into 75% for the training dataset and 25%

for testing model performance (internal validation). Besides, we tested the candidate model by

using 38 Taiwanese participants as external validation. Each data set comprised a case/control

design corresponding to CPP and non-CPP cases. Cross-validation was used to assess how the

proposed system results will generalize the CPP and non-CPP subjects. All the samples were

randomly allocated to five subsets with an equal number of samples during this process. Then,

we trained five separate recognition systems using four out of the five subsets and validated the

fifth holdout subset.

Due to the model referenced to the GnRHa stimulation test, sensitivity, and specificity refer

to the proportion of those who were diagnosed as CPP (true positive rate) and non-CPP (true

negative rate), respectively were considered. The accuracy is commonly used to measure the

performance of the binary classification model. However, as our dataset is imbalanced in two

classes (CPP and non-CPP) and there is a trade-off between increasing the sensitivity and the

precision (or predicted positive value, PPV), we consider F1-score as a fairer metric to select

the candidate model than the accuracy due to F1-score is the weighted average of precision

and recall (or sensitivity) that takes both false positives and false negatives into account. These

evaluation measurements are defined as follows:

Sensitivity ¼
TP

TP þ FN

Specificity ¼
TN

TN þ FP

Positive predicted value PPVð Þ ¼
TP

TP þ FN
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Negative predicted value NPVð Þ ¼
TN

TN þ FN

Accuracy ACCð Þ ¼
TPþ TN

TN þ TN þ FP þ FN

F1 � score ¼ 2 �
Sensitivity � Precision
Sensitivityþ Precision

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false nega-

tives. Moreover, to overcome the possibilities of the imbalance dataset, we reported the

receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) values

to see the overall performance at different threshold points.

In general, the standard GnRH stimulation test requires different time points (0 min, 30

min, 60 min, and 120 min) to identify CPP. To emphasize the efficacy of the candidate model

which included baseline characteristics and FSH-, LH 30-min post-stimulation, the model per-

formance was compared to those of the 60-min post-stimulation model that were added LH

and FSH levels obtained 60 min after stimulation. Similarly, its model performance was com-

pared to those of models deriving from FSH-, LH 120-min post-stimulation. All developed

models were tested and applied on the internal validation (Vietnamese girls) and external vali-

dation (Taiwanese girls).

Model interpretation

To overcome the disadvantages of the black-box machine learning model and provide physi-

cians with more information on the prediction model in clinical practice, we used the local

interpretable model-agnostic explanations (LIME) algorithm to interpret feature contributions

for each prediction [19,29,30]. LIME analysis revealed the probability score as well as the cutoff

for prediction by the model. After installing the LIME package, 50% of the data was used for

testing and visualization in our model interpretation. LIME analysis was conducted on both

testing and validation data to examine the different effects of the samples.

Statistical analysis

Data for continuous variables and categorical variables are presented as the mean ± SD and

percentages. Pearson’s χ2 test was used to analyze categorical variables, and the independent

Student’s t-test analyzes continuous variables. All computations and visualizations were ana-

lyzed using Python with packages such as Scikit-learn, Pandas, Lime, and Matplotlib.

Results

Study characteristics

Out of 614 girls with PP (mean age 7.4 ± 1.7 years), 85.3% were diagnosed as having CPP.

Table 1 presents the numbers of girls with and without CPP in the discovery and validation

data sets. As shown in Table 1, 25 variables significantly differed between girls with and with-

out CPP; exceptions were the Z-scores of weights and BMI and the baseline LH-to-FSH ratio

(Table 1). Besides, girls in the external validation dataset were older than girls in the internal

validation dataset (8.4 ± 1.1 vs. 7.5 ± 1.4, p<0.001). Also, there were significant mean differ-

ences in BA-CA, body weight, height, basal estradiol, FSH 60 min, FSH 120 min, and LH 120
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min between girls in the external validation dataset and those in the internal validation dataset

(data not shown).

Assessment of different machine learning-based diagnostic models of CPP

in girls

Random Forest yielded the best result of all the algorithms in F1-score, specificity, and PPV (Table

2). The Random Forest also exhibited high sensitivity (0.961) and a high AUC value (0.984) (Fig 2).

Table 1. Basic characteristics of girls who underwent the GnRHa stimulation test in discovery and testing data set.

Variables Discovery data set Testing data set P valuea

Vietnamese patients (n = 432) Vietnamese girls (n = 144) Taiwanese girls (n = 160)

CPP (n = 376) Non-CPP (n = 56) CPP (n = 122) Non-CPP (n = 22) CPP (n = 95) Non-CPP (n = 65)

Medical record

Mother AAM (y) 13.8±1.4 14.6±1.3 13.9±1.2 14.1±2.4 11.6±1.0 12.1±1.9 <0.01

Age (y) 7.2±1.8 7.5±1.5 7.4±1.4 7.6±1.0 8.5±1.1 8.4±1.2 <0.01

Age < 2 y, n (%) 5,1.3% 7,58.4% 1,0.8% 3,13.6% 0 0 <0.01

Age 2–6 y, n (%) 24,6.4% 23,41.1% 10,8.2% 6,27.2% 3 (75.0%) 1 (25.0%)

Age > 6 y, n (%) 347,52.4% 26,46.4% 111,91.0% 13,59.2% 92 (59.0%) 64 (41.0%)

Weight (kg) 31.7±6.8 22.2±8.2 31.4±7.2 24.±10. 35.6±8.6 35.0±7.1 <0.01

Weight (Z-score) 1.3±1.0 1.1±0.9 1.3±1.0 1.2±0.9 0.9±1.1 0.8±1.5 0.20

Height (cm) 131.3±12.5 113.6±17.3 131.1±9.6 114.2±20.6 138.5±8.2 136.2±6.5 <0.01

Height (Z-score) 1.2±1.1 0.8±0.9 1.2±1.1 1.1±1.0 0.7±1.1 0.4±1.1 0.02

BMI (kg/m2) 17.9±2.4 16.5±2.7 18.1±2.7 17.2±3.1 18.3±2.8 18.8±3.3 0.03

BMI (Z-score) 0.9±1.1 0.9±1.0 0.8±1.3 0.8±0.9 0.7±1.1 0.7±1.9 0.90

Obesity (yes), n (%) 197,91.6% 18,8.4% 66,45.8% 6,27.3% 12 (13.4%) 77 (86.6%) <0.01

Breast development (Stage 2, 3, 4) 375,99.7% 46,82.1% 122100% 16,72.7% 64 (57.1%) 48 (42.8%) <0.01

Pubic hair (Stage 2, 3, 4) 127,33.8% 6,10.7% 35,28.6% 5,22.7% 15 (83.3%) 3 (16.7%) <0.01

Menarche (yes), n (%) 45,11.9% 16,28.6% 11,9.0% 4,18.2% 33 (75.0%) 11 (25.0%) <0.01

Bone age X-ray image

Bone age (y) 9.9±1.8 5.7±2.4 9.8±1.7 5.8±2.8 9.3±1.5 8.7±1.1 <0.01

BA-CA (y) 2.3±1.1 0.3±1.1 2.3±1.1 0.1±0.9 1.6±0.9 1.8±0.7 <0.01

Laboratory test

E2 (pg/mL) 39.9±23.7 54.0±44.6 0.7±0.4 0.5±0.5 28.9±17.5 22.8±15.5 0.03

Basal FSH (IU/L) 3.5±1.7 1.6±1.5 3.5±1.8 1.6±1.4 3.7±3.5 2.9±2.1 <0.01

Basal LH (IU/L) 1.7±2.7 0.1±0.1 1.4±1.6 0.1±0.4 3.0±5.0 2.2±1.8 <0.01

Basal LH/FSH 0.5±1.5 0.7±3.3 0.5±1.9 2.1±9.4 0.9±0.8 1.1±1.1 0.39

GnRHa stimulation test

FSH 30 min (IU/L) 9.7±4.7 6.0±5.1 9.2±4.6 6.6±4.8 18.1±59.8 11.5±4.5 <0.01

LH 30 min (IU/L) 21.3±19.1 1.9±1.6 19.8±17.8 2.0±1.7 22.9±26.8 17.8±17.7 <0.01

LH/FSH 30 min 2.2±2.6 0.4±0.3 2.0±1.5 0.3±0.2 1.9±2.0 1.5±1.3 <0.01

FSH 60 min (IU/L) 12.6±6.4 8.0±6.7 11.5±5.8 8.8±6.5 13.0±4.7 12.9±4.5 <0.01

LH 60 min (IU/L) 24.4±21.5 2.5±2.3 21.7±19.2 2.4±2.0 19.8±24.9 14.5±24.8 <0.01

LH/FSH 60 min 2.0±2.8 0.4±0.7 1.8±1.3 0.3±0.1 1.5±1.7 1.2±1.0 <0.01

FSH 120 min (IU/L) 14.8±6.9 10.±9.2 13.4±6.2 12.±9.1 9.1±3.2 9.4±2.1 <0.01

LH 120 min (IU/L) 21.9±18.9 2.6±2.7 19.7±18.2 2.5±2.1 10.9±3.1 10.5±2.5 <0.01

LH/FSH 120 min 1.5±1.1 0.4±0.8 1.4±1.1 0.2±0.1 1.2±1.3 1.2±0.4 <0.01

Abbreviation definition: AAM, age at menarche; BA-CA, difference between the bone age and the chronological age; BMI, body mass index; FSH, follicle-stimulating

hormone; LH, luteinizing hormone; GnRHa, gonadotropin-releasing hormone analogue.
a Differences in baseline characteristics between girls with and without CPP in the entire population (593 girls with CPP and 143 girls without CPP).

https://doi.org/10.1371/journal.pone.0261965.t001
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Optimal features for predicting CPP in girls: Training and validation

We evaluated the ability of the correlation algorithm to find an optimal set of features. To assist

physicians in the clinic when timely detection is necessary, we focused on the critical variables,

including 30-min post-stimulation LH ("LH30"), "BA-CA" and “Basal_LH” that were the three

top-ranking variables associated with accurate prediction in our model (Fig 3). The models

that only included these critical features improved the sensitivity (from 0.966 ± 0.015 to

0.971 ± 0.019) and NPV (from 0.767 ± 0.106 to 0.800 ± 0.135) that helps a higher chance to

support negative prediction (Table 2).

Fig 4 compares the model performance of three critical variables in different datasets (train-

ing, internal validation, and external validation). Most metrics of our proposed model were

comparable between training and internal validation in terms of sensitivity, specificity, PPV,

F1-score. Meanwhile, the model tested in the external population showed a lower specificity,

PPV, accuracy, and F1-score, except for NPV at the highest value (100%) which returns no

false-negative (Fig 4).

Comparison of different time points used in the models for CPP in girls

We built different models in different time points, including baseline (0-min), 30-, 60-, and

120-min post-stimulation. Fig 5 shows that the AUC value of the 30-min diagnostic model was

higher than those of 0-min, 60-min, and 120-min post-stimulation models at both 14-variable

and three-variable models (Fig 5). Then we validated the diagnostic model conveying three

critical variables in different time points.

The internal validation results show no differences in sensitivity, PPV, NPV, and F1-score

between 30-min and 60-min and 120-min models. Compared to the baseline (0-min) model,

the 30-min model improved the specificity (0.682 vs. 0.910), which is necessary for a diagnostic

test to identify true negatives (girls without CPP). However, its specificity was equal to those of

Table 2. Model performance of different algorithms in the training dataset (n = 432).

Different algorithms

mean (SD)

Sen.(%) Spec. (%) PPV (%) NPV (%) F1-score

14-variable modela

kNN 94.5±1.0 66.8±8.5 95.2±1.8 87.9±1.4 0.948±0.009

Naïve Bayes 98.0±1.6 55.9±6.4 89.4±3.9 90.8±1.1 0.934±0.019

Logistic Regression 96.9±2.0 81.4±6.4 97.3±0.9 89.8±1.6 0.971±0.011

Random Forest 96.6±1.5 89.3±7.9 98.7±0.9 76.7±10.6 0.976±0.012

AdaBoost 97.6±0.6 81.1±2.4 97.1±0.6 90.6±0.5 0.973±0.005

XGBoost 97.4±1.8 79.9±12.4 96.5±2.6 90.2±1.5 0.969±0.011

Three-variable modelb

kNN 97.6±1.4 84.4±5.2 97.6±1.1 83.6±10.0 0.976±0.006

Naïve Bayes 97.8±2.1 74.0±11.4 95.5±2.0 85.5±13.8 0.966±0.018

Logistic Regression 97.1±1.9 86.0±6.6 98.1±0.7 80.0±13.5 0.976±0.013

Random Forest 97.1±1.9 86.7±8.8 98.1±1.2 80.0±13.5 0.976±0.012

AdaBoost 97.4±1.3 84.0±5.5 97.6±1.1 82.0±9.3 0.975±0.007

XGBoost 97.6±1.1 82.7±5.5 97.3±0.9 83.8±7.8 0.975±0.006

a Predictive model includes ages (yrs), BMI (Z-score), height (Z-score), body weight (Z-score), obesity (yes), breast stage (1 to 5), pubic hair stage (1 to 5), menarche

(yes), BA-CA (yrs), estradiol (pg/mL), FSH (IU/L), LH (IU/L) at initial visit, and LH (IU/L) and FSH (IU/L) at 30th min post-stimulation in the training dataset.
b Predictive model includes BA-CA (yrs), estradiol (pg/mL), LH (IU/L) at initial visit, and LH (IU/L) at 30th min post-stimulation in the training dataset.

Definition of abbreviations: Sen., sensitivity; Spe., specificity; PPV, positive predictive value or precision; NP, negative predictive value.

https://doi.org/10.1371/journal.pone.0261965.t002
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60-min and 120-min models (Fig 6). Meanwhile, most performance metrics resulting from

external validation were lower than those of internal validation. At last, the 30-min model sur-

passed the baseline (0-min) model in all the performance metrics, especially specificity (60%)

in which accurately identified 60% of girls with non-CPP as GnRHa-stimulation test negative.

Compared to 60-min and 120-min models, the 30-min model performed equivalent values of

PPV and F1-score (Fig 6). Herein, a simplified model at 30-min post-stimulation was sufficient

to identify CPP in girls.

Local interpretable model-agnostic explanations for interpretation

Fig 7 illustrates one positive sample and one negative sample for both Vietnamese and Taiwan-

ese girls. For positive prediction, “LH30” > 4.61 IU/L, “BA-CA” > 2.12 years, “Basal_LH”

>1.99 IU/L supports to identify CPP with a probability of 100% (Fig 7A & 7C). For negative

prediction, “LH 30”< 4.61 IU/L, “BA-CA”< 1.16 years, and “Basal_LH”� 0.14 IU/L supports

a non-CPP diagnosis with a probability of 97%. Considerably, “LH30” > 25.06 IU/L supports

positive prediction with a probability of 77% that emphasizes the important role of “LH30” in

the candidate model (Fig 7D).

Fig 2. ROC curves of different algorithms in the training dataset. Predictive model included baseline characteristics

and blood sampling 30 mins post-stimulation in the training dataset. Definition of abbreviations: AUC, an area under

the receiver operating characteristic curve (ROC); kNN, k-nearest neighbors; AdaBoost, adaptive boosting; XGBoost,

extreme gradient boosting.

https://doi.org/10.1371/journal.pone.0261965.g002
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Fig 3. Feature importance ranking. This figure lists the relative importance of baseline characteristics and 30-minute post-stimulated

gonadotropin levels in the developed machine learning-based model for the CPP diagnosis in girls. Definition of abbreviations: BA-CA,

the difference between the bone age and the chronological age; BMI, body mass index; E2, basal estradiol; FSH, follicle-stimulating

hormone; LH, luteinizing hormone.

https://doi.org/10.1371/journal.pone.0261965.g003

Fig 4. Comparison of the performance of the three-variable proposed model in a different dataset. Definition of abbreviations: NPV, negative

predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pone.0261965.g004
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Discussion

Girls suspected CPP requires a time-consuming GnRHa stimulation test, which is a gold stan-

dard for CPP diagnosis. This study developed a machine learning-based model employing dif-

ferent clinical data sources, especially a brief GnRHa stimulation test (only 30-min post-

Fig 5. AUC values of predictive models in a different time point in the training dataset. Model performance of the 14-variable proposed model

(A) and three-variable model (B) at 0 min, 30th min, 60th min, and 120th min post-stimulation in the training dataset. Definition of abbreviation:

AUC, an area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0261965.g005

Fig 6. Performance metrics of and three-variable predictive model in the internal and external dataset. Model performance of the three-variable model

was evaluated at 0 min, 30th min, 60th min, and 120th min post-stimulation in the internal and external dataset. Definition of abbreviations: NPV, negative

predictive value; PPV, positive predictive value.

https://doi.org/10.1371/journal.pone.0261965.g006
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stimulation) to determine girls with CPP. The model was achieved according to the highest

performance metric of F1-score (0.976) and a high AUC value (0.972). A significant strength

of our study is conveying a simple GnRHa stimulation test to build up an appropriate model

for CPP diagnosis. The model was tested in the internal and external data. Notably, the perfor-

mance metrics of the candidate model surpassed those of the baseline (0-min) model and were

equivalent to those of 60-min and 120-min models. Our finding indicates the trend of CPP

diagnosis using a machine learning-based model that helps make a better diagnosis than tradi-

tional methods.

As stated, the LH obtained after 30- or 40-min post-stimulation was recommended to diag-

nose CPP with an extensive range of sensitivity and specificity (90%–99% and 81%–100%,

respectively [2,16,17,31,32] regardless of the machine learning application. Pan et al. [19,20]

and Wenyong et al [33] firstly applied machine learning to propose a prescreening tool for

CPP in girls, but they solely determined baseline clinical characteristics without taking the

GnRHa stimulation test. To strengthen it, added FSH- and LH 30-min post-stimulation can be

considered in developing a diagnostic model of CPP in girls. The current model yielded a

higher AUC value ranging from 0.981 to 0.984 than those of the model proposed by Pan et al.
[19,20], especially in terms of sensitivity and specificity, which are crucial metrics indicating

the number of correctly predicted CPP cases [34]. These differences were possibly derived

from a single sampling 30-min post-stimulation which is the gold standard in clinical practice

for CPP diagnosis in the present study. Compared to previous studies, the similarity of

machine learning algorithm was used, for instance, XGBoost [19,20], Random Forest [19],

logistic regression [33]. Notably, apart from given CPP-related variables consisting of sexual

characteristics (breast stages, pubic hair stages), sexual hormones, gonadotropins, and bone-

age assessment at baseline in most studies [19,20,33], pelvic ultrasonography [20,33] was not

Fig 7. LIME analysis in different populations. LIME analysis for Vietnamese girls (A, B) and Taiwanese girls (C, D) according to positive and negative responses.

Definition of abbreviations: BA-CA, the difference between the bone age and the chronological age; Basal_LH, luteinizing hormone level at baseline; CPP, central

precocious puberty; LH30, luteinizing hormone level 30 min after stimulation.

https://doi.org/10.1371/journal.pone.0261965.g007
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assessed in the current study. Indeed, Pan et al [20] declared that pelvic ultrasonography alone

could not differentiate girls with CPP from non-CPP well. Therefore, our 14-variable model

was the best option in distinguishing between positive and negative responses to the stimula-

tion test with the F1-score of 0.976 and AUC of 0.972 based on the Random Forest algorithm,

in line with the previous finding [19].

Regarding the importance ranking of the top three features, the performance metrics of the

three-variable model, including basal LH, BA-CA, and LH 30-min post-stimulation were

slightly lower than those of a 14-variable model. The three-variable model was doubly vali-

dated in internal data and external data set. The specificity and NPV of the model derived

from internal validation data increased up to 0.910 and 0.952, respectively, which helps to indi-

cate the accuracy of the CPP diagnostic model in terms of "no false negative." However, the

model performance deriving from external data showed a lower specificity, PPV, and

F1-score. These differences may be attributed to significant age differences between two popu-

lations in the validated data set that led to differences in average values of the following impor-

tant features, such as BA-CA, basal LH, basal FSH, FSH_30. Additionally, different race/

ethnicity factors could affect pubertal development. Last but not least, the performance metrics

of our 30-min model were much higher than those of the baseline (0-min) model and were

equivalent to the 60-min and 120-min models in terms of AUC (Fig 5), sensitivity, specificity,

PPV, NPV, and F1-score (Fig 6). Herein, our diagnostic model combining basal LH, BA-CA,

and LH 30-min post-stimulation is reliable to identify CPP in girls.

LH level obtained 30 minutes after stimulation was crucial in identifying girls with CPP

[17,18]. The cutoff value of> 5 IU/L for the peak LH level of stimulation test is commonly

used to confirm CPP [3,10] in the clinic. After the GnRHa stimulation test, the peak LH level

was observed at 30 min post-stimulation [14] that raised the significant diagnostic value of

30-min blood sampling. Therefore, our model interpreted the contributions of features using

the reference of peak LH level (5 IU/L) [3,10]. As stated, the “LH30” > 4.61 IU/L (~5 IU/L)

positively contributed to the high predicted probability of diagnosing CPP in girls. By contrast,

“LH30” < 4.61 IU/L contributed a 22% probability to predict non-CPP. Secondly, “BA-CA”

was the second-top rank feature. Although premature adrenarche is often associated with

BA-CA� 2 years [35], a recent study reported that BA-CA was the most effective predictor of

positive response to the GnRHa stimulation test [36]. We found that girls with CPP presented

with greater BA-CA than those without CPP, in line with previous findings [36,37]. LIME

analysis revealed that girls with a “BA-CA” of> 2.13 years were at high risk for CPP in both

populations, whereas a “BA-CA” of< 1.16 years helped exclude CPP diagnosis. In line with a

previous study, BA-CA could be an additional factor in conjunction with the 30-min post-

stimulation LH to diagnose CPP in girls [38]. Also, another feature is basal LH which has been

served as a biomarker for CPP diagnosis and the diagnostic cutoff of basal LH varies from 0.1

to 1.5 IU/L (9). LIME revealed that the “basal LH”>1.99 IU/L contributed a 5% probability of

identifying CPP, and the “basal LH”< 0.14 IU/L supported the negative prediction. Fig 7 also

illustrates that the different combinations of variables may produce different prediction proba-

bilities with similar predictive accuracy. Notably, out of secondary sexual characteristics

needed, our candidate model conveying “basal LH”, “BA-CA”, and “LH30” that are clinically

important features demonstrated that our model is reliable and effective in diagnosing CPP in

girls.

The present study had several limitations. First, owing to this being a cross-sectionally

study, we did not include the growth velocity rate which was modulated by the early activation

and maturation of the hypothalamic-pituitary-gonadal axis [3]. Therefore, linear growth accel-

eration could be used in further study. Also, we could not differentiate progressive from non-

progressive PP to avoid unnecessary treatment for the latter in the current study. Secondly, the
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performance metrics of our model derived from the external data were lower than expected. It

was possibly due to the smaller sample size. Though the number of CPP cases has substantially

increased [1], the overall incidence was quite low (15.3 per 100,000 girls) in Asia [39] that

made it difficult to have a larger sample size in Taiwan that requires a further study to investi-

gate the annual incidence rate of CPP in this country. In addition, the high prevalence of CPP

in this population (68.4%, 26/38), at the expense of a negative association between disease

prevalence and diagnostic specificity [40]. Another reason may result from race/ethnicity fac-

tor that affects pubertal development [41]. However, the specificity, PPV, NPV, and F1-score

of models set at the 30-min post-stimulation was higher than those at baseline (0-min).

Thirdly, we recruited only girls in a single-center, one of the most prominent pediatric hospi-

tals in Southern Vietnam. Hence, the current diagnostic model may not be well-performed in

other areas or countries, which merits further study in a larger population and multi-country.

In conclusion, the present study is the first to develop a machine learning-based diagnostic

model consisting of different data sources, especially a brief GnRHa stimulation, thereby it

helps to reduce the time-consuming and distress caused by the GnRHa stimulation test for

children. Notably, our diagnostic model conveyed the important clinic features, such as basal

LH, BA-CA, and 30-min LH, that make it reliable and effective in diagnosing CPP in girls.
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