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Abstract

Identifying individuals with early mild cognitive impairment (EMCI) can be an effective strat-

egy for early diagnosis and delay the progression of Alzheimer’s disease (AD). Many

approaches have been devised to discriminate those with EMCI from healthy control (HC)

individuals. Selection of the most effective parameters has been one of the challenging

aspects of these approaches. In this study we suggest an optimization method based on

five evolutionary algorithms that can be used in optimization of neuroimaging data with a

large number of parameters. Resting-state functional magnetic resonance imaging (rs-

fMRI) measures, which measure functional connectivity, have been shown to be useful in

prediction of cognitive decline. Analysis of functional connectivity data using graph mea-

sures is a common practice that results in a great number of parameters. Using graph mea-

sures we calculated 1155 parameters from the functional connectivity data of HC (n = 72)

and EMCI (n = 68) extracted from the publicly available database of the Alzheimer’s disease

neuroimaging initiative database (ADNI). These parameters were fed into the evolutionary

algorithms to select a subset of parameters for classification of the data into two categories

of EMCI and HC using a two-layer artificial neural network. All algorithms achieved classifi-

cation accuracy of 94.55%, which is extremely high considering single-modality input and

low number of data participants. These results highlight potential application of rs-fMRI and

efficiency of such optimization methods in classification of images into HC and EMCI. This

is of particular importance considering that MRI images of EMCI individuals cannot be easily

identified by experts.
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Introduction

Alzheimer’s disease (AD) is the most common type of dementia, with around 50 million

patients worldwide [1,2]. AD is usually preceded by a period of mild cognitive impairment

(MCI) [3,4]. Identifying the subjects with MCI could be an effective strategy for early diagnosis

and delay the progression of AD towards irreversible brain damage [5–7]. While researchers

were fairly successful in diagnosis of AD, researchers were significantly less successful in diag-

nosis of MCI [8–11]. In particular, detection of early stages of MCI (EMCI) has been proven to

be very challenging [12–14]. Therefore, in this study we propose a novel method based on evo-

lutionary algorithms to select a subset of graph features calculated from functional connectivity

data to discriminate between healthy participants (HC) and EMCI.

It has been shown that the brain goes through many functionally, structurally and physio-

logically changes prior to any obvious behavioral symptoms in AD [15–17]. Therefore, many

approaches have been devised based on biomarkers to distinguish between HC, and different

stages of MCI, and AD [18–20]. For example, parcellation of structural magnetic resonance

imaging (MRI) data has been used in many studies as brain structure changes greatly in AD

[21–24]. Further, in two studies, we showed that T1-weighted MRI (structural MRI; sMRI)

can be used in classification of AD and MCI. Indeed, the majority of early studies looking at

classification of AD and HC was done on sMRI [22]. This is mostly due to costs and accessibil-

ity of sMRI data [23].

While structural neuroimaging has shown some success in early detection of AD, functional

neuroimaging has proven to be a stronger candidate [25–27]. Functional MRI (fMRI) allows for

the examination of brain functioning while a patient is performing a cognitive task. This tech-

nique is especially well suited to identifying changes in brain functioning before significant

impairments can be detected on standard neuropsychological tests, and as such is sensitive to

early identification of the disease processes [28,29]. While fMRI requires participants to perform

a task, resting-state fMRI (rs-fMRI) is capable of measuring the spontaneous fluctuations of

brain activity without any task, hence it is less sensitive to individual cognitive abilities [30–32].

One important feature of rs-fMRI is the ability to measure functional connectivity changes

[33,34], which has been shown to be a prevalent change in AD [35–38]. Furthermore, it is

shown that the increased severity of cognitive impairment is associated with increasing alter-

ation in connectivity patterns, suggesting that disruptions in functional connectivity may con-

tribute to cognitive dysfunction and may represent a potential biomarker of impaired

cognitive ability in MCI. In particular, research has highlighted that longitudinal alterations of

functional connectivity are more profound in earlier stages as opposed to later stages of the

disease [39]. Therefore, analysis of functional connectivity can provide an excellent opportu-

nity in identification of early states of AD.

As functional connectively analysis inherently relies of networks of activity, researchers

have used graph theory measures to investigate the global, as well as local, characteristics of dif-

ferent brain areas [40–43] Click or tap here to enter text. This method has been used success-

fully in a wide range of application in both healthy participants and patients [44] Click or tap

here to enter text. such as depression [45,46] Click or tap here to enter text., Parkinson’s dis-

ease [47] Click or tap here to enter text., as well as AD [48] Click or tap here to enter text.

Graph theories provides us with a way to study AD [48–53] and comprehensively compare

functional connectivity organization of the brain between patients and controls [43–45] Click

or tap here to enter text. and importantly between different stages of AD [54,55] Click or tap

here to enter text. This method can also unveil compensatory mechanisms, thus revealing

brain functional differences in participants with comparable level of cognitive ability [56–59]

Click or tap here to enter text.
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Graph theory analysis of rs-fMRI data, however, leads to a large number of parameters.

Therefore, to reduce computational complexity, it is essential to select an optimal subset of fea-

tures that can lead to high discrimination accuracy [60,61]. Feature selection is particularly

complicated due to the non-linear nature of classification methods: more parameters do not

necessarily lead to better performance, and there is also a dependency of parameters [62,63].

Therefore, it is extremely important to utilize a suitable optimization method that can deal

with nonlinear high-dimensional search spaces.

Evolutionary algorithms (EA) are biologically-inspired algorithms that are extremely effec-

tive in optimization algorithms with large search spaces [64–66]. These methods, in contrast

with many other search methods such as complete search, greedy search, heuristic search and

random search [67,68], do not suffer from stagnation in local optima and/or high computa-

tional cost [69,70]. Feature selection has been used to improve the quality of the feature set in

many machine learning tasks, such as classification, clustering and time-series prediction [71].

Classification and time-series prediction are particularly relevant to many neurodegenerative

diseases: classification can be used in identification of those with brain damage [72,73] and

time-series prediction can be used in estimation of disease progression [74,75].

EA has been used in characterization and diagnosis of AD [76–78]. Such methods have

achieved reasonably high accuracy in classification of AD and HC (70–95%). They, however,

have been unsuccessful in classification of the MCI patients [79]. Therefore, in this study, we

devised a method that achieves higher accuracy in the classification of HC and EMCI partici-

pants compared to the past-published research. We used MRI and rs-fMRI data of a group of

healthy participants and those with EMCI. We applied graph theory to extract a collection of

1155 parameters. This data is then given to five different EA methods to select an optimum

subset of parameters. These selected parameters are subsequently given to an artificial neural

network to classify the data into two groups of HC and EMCI. We aimed at identifying the

most suitable method of optimization based on accuracy and training time, as well as identify-

ing the most informative parameters.

Methods

Participants

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), posi-

tron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD).

Data for 140 participants were extracted from the ADNI [80–82]. See Table 1 for the details

of the data. EMCI participants had no other neurodegenerative diseases except MCI. The

EMCI participants were recruited with memory function approximately 1.0 SD below

expected education adjusted norms [83]. HC subjects had no history of cognitive impairment,

head injury, major psychiatric disease, or stroke.

Proposed method

sMRI and rs-fMRI data was extracted from the ADNI database [82]. The data is given to

CONN toolbox [84] in MATLAB v2018 (MathWorks, California, US). CONN is a tool for pre-

processing, processing, and analysis of functional connectivity data. Preprocessing consisted of

reducing subject motion, image distortions, and magnetic field inhomogeneity effects and
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application of denoising methods for reduction of physiological effects and other sources of

noise. The processing stage consisted of extraction of functional connectivity and graph theory

measures. In this stage, through two pipelines, a collection of 1155 parameters are extracted

(see below) [84,85]. These parameters are then given to one of the dimension reduction meth-

ods (five EA and one statistical method) to select a subset of features. The selected features are

finally given to an artificial neural network to classify the data into two categories of HC and

EMCI. The classification method was performed via a 90/10 split; 90% of the data was used for

the training and 10% of the data was used for validation. See Fig 1 for the summary of the pro-

cedure of the method.

Data acquisition and processing

Brain structural sMRI data with 256×256×170 voxels and 1×1×1 mm3 voxel size were extracted

for all subjects. MRI data preprocessing steps consisted of non-uniformity correction, segmen-

tation into grey matter, white matter and cerebrospinal fluid (CSF) and spatial normalization

to MNI space.

Table 1. Demographics of the data for participants included in this study.

EMCI HC P
n 68 72

Female (n [%]) 38 [55.88] 38 [52.77]

Age (mean [SD]) 71.73 [7.80] 69.97 [5.60] 0.297

MMSE (mean [SD]) 28.61 [1.60] 28.40 [4.60] 0.302

CDR 0.5 or 1 0 < 0.001

notes: CDR: Clinical dementia rating, MMSE: Mini-mental state exam, HC: Healthy control, EMCI: Early mild

cognitive impairment.

https://doi.org/10.1371/journal.pone.0267608.t001

Fig 1. Procedure of the proposed method. T1-MRI (sMRI) and resting-state fMRI (rs-fMRI) data of healthy participants (HC; n = 72) and patients with early

mild cognitive impairment (EMCI; n = 68) are extracted from ADNI database 82. Preprocessing, parcellation of brain area (132 regions based on AAL and

Harvard-Oxford atlas) and extraction of the functional connectivity (8 network parameters with a total of 32 nodes), as well as the 7 graph parameters are done

using CONN toolbox 84. Subsequently the global network is calculated based on the network parameters. The 1155 ([132 brain regions + 32 nodes of brain

networks + 1 global network] × 7 graph parameters) extracted parameters are given to one of the optimization methods to select the best subset of parameters

that lead to best classification method. Optimization methods consisted of five evolutionary algorithms (boxes with grey shading) and one statistical algorithm.

The outputs of these methods are given to an artificial neural network (ANN) with two hidden layers to classify the data into HC and EMCI. AAL: Automated

anatomical atlas; GA: Genetic algorithm; NSGA-II: Nondominated sorting genetic algorithm II; ACO: Ant colony optimization; SA: Simulated annealing; PSO:

Particle swarm optimization; seven graph features: Degree centrality, betweenness centrality, path length, clustering coefficient, local efficiency, cost and global

efficiency.

https://doi.org/10.1371/journal.pone.0267608.g001

PLOS ONE Classification of early-MCI patients using rs-fMRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0267608 June 21, 2022 4 / 24

https://doi.org/10.1371/journal.pone.0267608.t001
https://doi.org/10.1371/journal.pone.0267608.g001
https://doi.org/10.1371/journal.pone.0267608


Rs-fMRI data were obtained using an echo-planar imaging sequence on a 3T Philips MRI

scanner. Acquisition parameters were: 140 time points, repetition time (TR) = 3000 ms, echo

time (TE) = 30 ms, flip angle = 80˚, number of slices = 48, slice thickness = 3.3 mm, spatial res-

olution = 3×3×3 mm3 and in plane matrix = 64×64. FMRI images preprocessing steps con-

sisted of motion correction, slice timing correction, spatial normalization to MNI space, low

frequency filtering to keep only (0.01–0.1 Hz) fluctuations.

CONN toolbox [84,85] is used to process the sMRI and rs-fMRI data. The output of this

toolbox is 1155 values consisting of: (a) 132 distinct brain areas according to Automated Ana-

tomical Labeling (AAL) and Harvard-Oxford atlases, (b) eight brain networks containing 32

nodes and (c) a global network parameter that is the average of seven graph parameters [86–

88]. All these values are multiplied by seven graph parameters, see below. See supplementary

data for details of these parameters. The sMRI images were used to register the functional

images and improve the analysis of the rs-fMRI data.

Functional connectivity

Functional connectivity, also called “resting state” connectivity, is a measure for the temporal

correlations among the blood-oxygen-level-dependent (BOLD) signal fluctuations in different

brain areas [89–91]. The functional connectivity matrix is the correlation, covariance, or the

mutual information between the fMRI time series of every two brain regions, which is stored

in an n×n matrix for each participant, where n is the number of brain regions obtained by atlas

parcellation [91]. To extract functional connectivity between different brain areas we used

Pearson correlation coefficients formula as following [84,92]:

r xð Þ ¼
R

Sðx; tÞRðtÞdt

ð
R

R2ðtÞdt
R

S2ðx; tÞdtÞ
1
2

ZðxÞ ¼ tanh� 1ðrðxÞÞ;

where S is the BOLD time series at each voxel (for simplicity all-time series are considered cen-

tral to zero means), R is the average BOLD time series within an ROI, r is the spatial map of

Pearson correlation coefficients, and Z is the seed-based correlations (SBC) map of Fisher-

transformed correlation coefficients for this ROI [93].

Graph parameters

We used the graph theory technique to study topological features of functional connectivity

graphs across multiple regions of the brain [86–94]. Graph nodes represented brain regions

and edges represented interregional resting-state functional connectivity. The graph measure-

ments in all of the ROIs are defended using nodes = ROIs, and edges = suprathreshold connec-

tions. For each subject, graph adjacency matrix A is computed by thresholding the associated

ROI to-ROI Correlation (RRC) matrix r by an absolute (e.g., z>0.5) or relative (e.g., highest

10%) threshold. Then, from the resulting graphs, some measurements can be computed

addressing topological properties of each ROI within the graph as well as of the entire network

of ROIs. The adjacency matrix is employed for estimating common features of graphs includ-

ing (1) degree centrality (the number of edges that connect a node to the rest of the network)

(2) betweenness centrality (the proportion of shortest paths between all node pairs in the net-

work that pass through a given index node), (3) average path length (the average distance from

each node to any other node), (4) clustering coefficient (the proportion of ROIs that have con-

nectivity with a particular ROI that also have connectivity with each other), (5) cost (the ratio
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of the existing number of edges to the number of all possible edges in the network), (6) local
efficiency (the network ability in transmitting information at the local level), (7) global effi-
ciency (the average inverse shortest path length in the network; this parameter is inversely

related to the path length) [95].

Dimension reduction methods

We used five EA to select the most efficient set number of features. These algorithms are as

follows:

Genetic algorithm (GA): GA is one of the most advanced algorithms for feature selection

[96]. This algorithm is based on the mechanics of natural genetics and biological evolution for

finding the optimum solution. It consists of five steps: selection of initial population, evalua-

tion of fitness function, pseudo-random selection, crossover, and mutation [97]. For further

information refer to supplementary Methods section. Single point, double point, and uniform

crossover methods are used to generate new individuals. In this study we used 0.3 and 0.1 as

mutation percentage and mutation rate, respectively; 20 members per population, crossover

percentage was 14 with 8 as selection pressure [74,98].

Nondominated sorting genetic algorithm II (NSGA-II): NSGA is a method to solve multi-

objective optimization problems to capture a number of solutions simultaneously [99]. All the

operators in GA are also used here. NSGA-II uses binary features to fill a mating poll. Nondo-

mination and crowding distance are used to sort the new members. For further information

refer to supplementary Methods section. In this study the mutation percentage and mutation

rate were set to 0.4 and 0.1, respectively; population size was 25, and crossover percentage was

14.

Ant colony optimization algorithm (ACO): ACO is a metaheuristic optimization method

based on the behavior of ants [100]. This algorithm consists of four steps: initialization, crea-

tion of ant solutions (a set of ants build a solution to the problem being solved using phero-

mones values and other information), local search (improvement of the created solution by

ants), and global pheromone update (update in pheromone variables based on search action

followed by ants) [101]. ACO requires a problem to be described as a graph: nodes represent

features and edges indicate which features should be selected for the next generation. In fea-

tures selection, the ACO tries to find the best solutions using prior information from previous

iterations. The search for the optimal feature subset consists of an ant traveling through the

graph with a minimum number of nodes required for satisfaction of stopping criterion [102].

For further information refer to supplementary Methods section. We used 10, 0.05, 1, 1 and 1

for the number of ants, evaporation rate, initial weight, exponential weight, and heuristic

weight, respectively.

Simulated annealing (SA): SA is a stochastic search algorithm, which is particularly useful

in large-scale linear regression models [103]. In this algorithm, the new feature subset is

selected entirely at random based on the current state. After an adequate number of iterations,

a dataset can be created to quantify the difference in performance with and without each pre-

dictor [104,105]. For further information refer to supplementary Methods section. We set ini-

tial temperature and temperature reduction rate with 10 and 0.99, respectively.

Particle swarm optimization (PSO): PSO is a stochastic optimization method based on the

behavior of swarming animals such as birds and fish. Each member finds optimal regions of

the search space by coordinating with other members in the population. In this method, each

possible solution is represented as a particle with a certain position and velocity moving

through the search space [106–108]. Particles move based on cognitive parameter (defining

the degree of acceleration towards the particle’s individual local best position, and global
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parameter (defining the acceleration towards the global best position). The overall rate of

change is defined by an inertia parameter. For further information refer to supplementary

Methods section. In this paper simulation we use 20 as the warm size, cognitive and social

parameters were set to 1.5 and inertia as 0.72.

Statistical approach: To create a baseline to compare dimension reduction methods based

on evolutionary algorithms, we also used the statistical approach to select the features based on

the statistical difference between the two groups. We compared the 1155 parameters using two

independent-sample t-test analyses. Subsequently we selected the parameters based on their

sorted p values.

Classification method

For classification of EMCI and HC we used a multi-layer perceptron artificial neural network

(ANN) with two fully-connected hidden layers with 10 nodes each. Classification method was

performed via a 10-fold cross-validation. We used Levenberg-Marquardt Back propagation

(LMBP) algorithm for training [109–111] and mean square error as a measure of performance.

The LMBP has three steps: (1) propagate the input forward through the network; (2) propagate

the sensitivities backward through the network from the last layer to the first layer; and finally

(3) update the weights and biases using Newton’s computational method [109]. In the LMBP

algorithm the performance index F(x) is formulated as:

FðxÞ ¼ eTðxÞeðxÞ;

where e is vector of network error, and x is the vector matrix of network weights and biases.

The network weights are updated using the Hessian matrix and its gradient:

xkþ1 ¼ xk � ðJ
TJ þ mIÞ� 1JTe ¼ xk � ðHþ mIÞ

� 1G;

Where J represent Jacobian matrix. The Hessian matrix H and its gradient G are calculated using:

H ¼ JTJ

G ¼ JTe;

where the Jacobian matrix is calculated by:

J ¼ Smam� 1;

where am−1 is the output of the (m−1)th layer of the network, and Sm is the sensitivity of F(x) to

changes in the network input element in the mth layer and is calculated by:

Sm ¼ FmðnmÞðwmþ1ÞSmþ1;

where wm+1 represents the neuron weight at (m+1)th layer, and n is the network input [109].

Results

The preprocessing and processing of the data was successful. We extracted 1155 graph param-

eters per participant (see S1–S11 Figs). This data was used for the data optimization step.

Using the five EA optimization methods and the statistical method, we investigated the perfor-

mance of the classification for different numbers of subset of parameters. Fig 2 shows the per-

formance of these methods for 100 subsets of parameters with 1 to 100 parameters. These plots

are created based on 200 repetitions of the EA algorithms. To investigate the performance of

the algorithms with more repetitions, we ran the same algorithms with 500 repetitions. These
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simulations showed no major improvement of increased repetition (maximum 0.84%

improvement; see S11 Fig).

A threshold of 90% was chosen as the desired performance accuracy. Statistical modeling

performance constantly less than this threshold. The five EA methods achieved this perfor-

mance with varying number of parameters. Fig 3 shows the accuracy percentage and the opti-

mization speed of the five EA methods.

There is growing body of literature showing gender differences. It has been shown that

women are more likely to suffer from AD. Therefore, to investigate whether our analysis

method performs better on a particular gender or not, we split the data into two groups of

female and male participants. Our analysis showed that there is no meaningful difference

between the two groups (see S2 Table).

To investigate whether increasing number of parameters would increase performance, we

performed similar simulations with maximum 500 parameters in each subset. This analysis

showed that the performance of the optimization methods plateaus without significant

increase from 100 parameters (Fig 4). This figure shows that performance of the optimization

methods was between 92.55–93.35% and 94.27–94.55% for filtered and absolute accuracy,

respectively. These accuracy percentages are significantly higher than 81.97% and 87.72% for

filtered and absolute accuracy in the statistical classification condition.

To investigate the contribution of different parameters in the optimization of classification

we looked at the distribution of parameters in the 100 subsets calculated above (Fig 5). GA and

Fig 2. Classification performance of the five evolutionary algorithm (EA) methods and the statistical method for parameter subsets with 1 to 100

elements. The light blue color shows the average of the five EV algorithms. The number on the top left-hand corner represents the difference between the

relevant plot and the mean performance of the EA methods. The green plot subplot in each panel represents superiority of the relevant EA as compared to the

statistical method for different 100 subsets. The percentage value above the subplot shows the mean superior performance for the 100 subsets compared to the

statistical method. These plots show that the EA performed significantly better than the statistical method. GA: Genetic algorithm; NSGA2: Nondominated

sorting genetic algorithm II; ACO: Ant colony optimization; SA: Simulated annealing; PSO: Particle swarm optimization.

https://doi.org/10.1371/journal.pone.0267608.g002
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Fig 3. Performance of the five evolutionary algorithms (EA) in terms of (a) percentage accuracy and (b) optimization speed. The values in the legend of panel

(a) show the minimum number of parameters required to achieve minimum 90% accuracy. The values in the legend of panel (b) show the minimum

optimization speed to achieve minimum 90% accuracy based on panel (a). GA: Genetic algorithm; NSGA2: Nondominated sorting genetic algorithm II; ACO:

Ant colony optimization; SA: Simulated annealing; PSO: Particle swarm optimization.

https://doi.org/10.1371/journal.pone.0267608.g003

Fig 4. Performance of different optimization methods for increased number of parameters per subset. The light blue dots indicate the performance of

algorithms for each subset of parameters. The dark blue curve shows the moving average of the samples with window of ±20 points (Filtered Data). The red

curve shows the mean performance of the five evolutionary algorithms. GA: Genetic algorithm; NSGA2: Nondominated sorting genetic algorithm II; ACO:

Ant colony optimization; SA: Simulated annealing; PSO: Particle swarm optimization.

https://doi.org/10.1371/journal.pone.0267608.g004
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NSGA showed that the majority of the subsets consisted of repeated parameters: out of the

1155 parameters only about 200 of the parameters were selected in the 100 subsets. SA, ACO

and PSO, on the other hand, showed a more diverse selection of parameters: almost all the

parameters appeared in at least one of the 100 subsets.

To identify the parameters that are most predominantly involved in classification of HC

and EMCI, we extracted the list of the five most indicative brain regions and networks,

Table 2. These are selected based on the total number of times that they appeared in the 100

simulations using the five EA’s.

Discussions

Using CONN toolbox, we extracted 1155 graph parameters from rs-fMRI data. The optimiza-

tion methods showed superior performance over statistical analysis (average 20.93% superior-

ity). The performance of the EA algorithms did not differ greatly (range 92.55–93.35% and

94.27–94.55% for filtered and absolute accuracy, respectively) with PSO performing the best

(mean 0.96% superior performance) and SA performing the worst (mean 1.07% inferior per-

formance), (Fig 2). The minimum number of required parameters to guarantee at least 90%

accuracy differed quite greatly across the methods (PSO and SA requiring 7 and 49 parameters,

respectively). The processing time to achieve at least 90% accuracy also differed across the EA

methods (SA and NSGA2 taking 5.1s and 22.4s per optimization) (Fig 3). Increased number of

parameters per subset did not increase the performance accuracy of the methods greatly

(Fig 4).

Classification of data into AD and HC has been investigated extensively. Many methods

have been developed using different modalities of biomarkers. Some of these studies achieved

accuracies greater than 90% [112]. Classification of earlier stages of AD, however, has been

more challenging; only a handful of studies have achieved accuracy higher than 90%, Table 3.

The majority of these studies implemented convolutional and deep neural networks that

require extended training and testing durations with many input data. For example, Payan

et al. (2015) applied convolutional neural networks (CNN) on a collection of 755 HC and 755

MCI and achieved accuracy of 92.1% [113]. Similarly, Wang et al. (2019) applied deep neural

networks to 209 HC and 384 MCI data and achieved accuracy of 98.4% [114] (see also [115–

118]). Our method achieved an accuracy of 94.55%. To the best of our knowledge, between all

Fig 5. Distribution of different parameters over the 100 subsets of parameters. (a) Percentage of presence of the 1155 parameters. In the Statistical method,

which is not present in the plot, the first parameter was repeated in all the 100 subsets. Numbers in the legend show the percentage repetition of the most

repeated parameter. (b) Cumulative number of unique parameters over the 100 subsets of parameters. This plot shows that GA and NSGA2 concentrated on a

small number of parameters, while the SA, ACO and PSO selected a more diverse range of parameters in the optimization. Numbers in the legend show the

number of utilized parameters in the final solution of the 100 subsets of parameters. GA: Genetic algorithm; NSGA2: Nondominated sorting genetic algorithm

II; ACO: Ant colony optimization; SA: Simulated annealing; PSO: Particle swarm optimization.

https://doi.org/10.1371/journal.pone.0267608.g005
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the studies published to date, this accuracy level is the second highest accuracy after Wang et al

(2019) [114].

Research has shown that having a combination of information from different modalities

supports higher classification accuracies. For example, Forouzannezhad et al. (2018) showed

that a combination of PET, MRI and neuropsychological test scores (NTS) can improve perfor-

mance by more than 20% as compared to only PET or MRI [118]. In another study, Kang et al.

(2020) showed that a combination of diffusion tensor imaging (DTI) and MRI can improve

accuracy by more than 20% as compared to DTI and MRI alone [147]. Our analysis, while

achieving superior accuracy compared to a majority of the prior methods, was based on one

biomarker of MRI, which has a lower computational complexity than multi-modality data.

Interpretability of the selected features is one advantage of the application of evolutionary

algorithms as the basis of the optimization algorithm. This is in contrast with algorithms based

on CNN or deep neural networks (DNN) that are mostly considered as black boxes [149].

Although research has shown some progress in better understanding the link between the fea-

tures used by the system and the prediction itself in CNN and DNN, such methods remain dif-

ficult to verify [150,151]. This has reduced trust in the internal functionality and reliability of

such systems in clinical settings [152]. Our suggested method clearly selects features based on

Table 2. Summary of the five most indicative brain areas and networks in the classification of healthy (HC) and early mild cognitive impairment (EMCI).

Brain Area Brain Networks

Method Area Graph Param. Network Graph Param.

GA SFG Local Efficiency Global Network Global Efficiency

Insular Cortex Local Efficiency Global Network Local Efficiency

Frontal Pole Degree Centrality Global Network Clustering Coefficient

Middle Frontal Gyrus Betweenness Centrality Global Network Average Path Length

Inferior Frontal Gyrus; pars triangularis Clustering Coefficient Global Network Betweenness Centrality

NSGA-II Insular Cortex Local Efficiency Global Network Betweenness Centrality

SFG Local Efficiency Global Network Local Efficiency

Frontal Pole Degree Centrality Global Network Cost

Middle Frontal Gyrus Betweenness Centrality Global Network Clustering Coefficient

Precentral Gyrus Local Efficiency Global Network Global Efficiency

SA SFG Local Efficiency Language–IFG Degree Centrality

IFG; pars triangularis Degree Centrality Visual–Occipital Global Efficiency

Lingual Gyrus Betweenness Centrality Visual–Lateral Average Path Length

Thalamus Cost Dorsal Attention–FEF Betweenness Centrality

MTG; temporooccipital part Average Path Length Language–pSTG Degree Centrality

ACO Occipital Pole Local Efficiency Fronto-parietal–PPC Degree Centrality

SFG Global Efficiency Dorsal Attention–FEF Local Efficiency

Middle Frontal Gyrus Global Efficiency Visual–Occipital Cost

Inferior Temporal Gyrus; posterior division Degree Centrality Default Mode–LP Cost

Intracalcarine Cortex Betweenness Centrality Dorsal Attention–FEF Clustering Coefficient

PSO Occipital Pole Local Efficiency Dorsal Attention–FEF Local Efficiency

SFG Local Efficiency Visual–Medial Global Efficiency

Frontal Medial Cortex Betweenness Centrality Dorsal Attention–FEF Local Efficiency

Supplementary Motor Cortex Local Efficiency Language–pSTG Clustering Coefficient

Lingual Gyrus Betweenness Centrality Salience–Anterior Insula Degree Centrality

Notes: FEF: Frontal-eye-field, IFG: Inferior frontal gyrus, LP: Lateral parietal, PPC: Posterior parietal cortex, MTG: Middle temporal gyrus, pSTG: Posterior superior

temporal gyrus, SFG: Superior frontal gyrus.

https://doi.org/10.1371/journal.pone.0267608.t002
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Table 3. Summary of the studies aiming at categorization of healthy (HC) and mild cognitive impairment (MCI) using different biomarkers and classification

methods. Only best performance of each study is reported for each group of participants and classification method. Further details of the following studies are in S1 Table.

HC MCI

Study " Cit. Method Modalities n Cat. n Acc%

Wolz et al (2011) [119] LDA MRI 231 sMCI 238 68

cMCI 167 84

Zhang et al (2011) [120] SVM MRI+FDG-PET+ CSF 231 SMCI 238 82

LDA PMCI 167 84

Liu et al (2012) [121] SRC MRI 229 MCI 225 87.8

Gray et al (2013) [122] RF MRI+PET+CSF+genetic 35 MCI 75 75

Liu et al (2013) [123] SVM + LLE MRI 137 sMCI 92 69

cMCI 97 81

Wee et al (2013) [124] SVM MRI 200 MCI 200 83.7

Guerrero et al (2014) [125] SVM MRI 134 EMCI 229 65

MRI 175 cMCI 116 82

Payan & Montana (2015) [113] CNN MRI 755 MCI 755 92.1

Prasad et al (2015) [127] SVM DWI 50 EMCI 74 59.2

LMCI 38 62.8

Suk et al (2015) [127] DNN MRI+PET 52 MCI 99 90.7

Shakeri et al (2016) [128] DNN MRI 150 EMCI 160 56

MRI LMCI 160 59

Aderghal, Benois-Pineau et al (2017) [129] CNN MRI 228 MCI 399 66.2

Aderghal, Boissenin et al (2017) [130] CNN MRI 228 MCI 399 66

Billones et al (2017) [115] CNN MRI 300 MCI 300 91.7

Guo et al (2017) [131] SVM rs-fMRI 28 EMCI 32 72.8

LMCI 32 78.6

Korolev et al (2017) [132] CNN MRI 61 LMCI 43 63

EMCI 77 56

Wang et al (2017) [116] CNN MRI 229 MCI 400 90.6

Li & Liu (2018) [133] CNN MRI 229 MCI 403 73.8

Qiu et al (2018) [117] CNN MRI+MMSE+

LM

303 MCI 83 90.9

Senanayake et al (2018) [134] CNN MRI+NM 161 MCI 193 75

Altaf et al (2018) [135] SVM MRI 90 MCI 105 79.8

Ensemble MRI MCI 75

KNN MRI MCI 75

Tree MRI MCI 78

SVM clinical+MRI MCI 83

Ensemble clinical+MRI MCI 82

KNN clinical+MRI MCI 86

Tree clinical+MRI MCI 80

Forouzannezhad et al (2018) [118] SVM MRI 248 EMCI 296 73.1

MRI LMCI 193 63

PET LMCI 73.6

PET+MRI LMCI 76.9

PET+MRI EMCI 75.6

PET+MRI+NTS LMCI 91.9

PET+MRI+NTS EMCI 81.1

Hosseini Asl et al (2018) [136] CNN MRI 70 MCI 70 94

(Continued)
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activity of distinct brain areas, which are easy to interpret and understand [78–153]. This can

inform future research by bringing the focus to brain areas and the link between brain areas

that are more affected by mild cognitive impairment.

Our analysis showed that dorsal attention network is altered in EMCI, confirming past lit-

erature [154–156]. Dorsal attention network in addition to the ventral attention network form

the human attention system [157]. The dorsal attention network employs dorsal fronto-

Table 3. (Continued)

HC MCI

Study " Cit. Method Modalities n Cat. n Acc%

Jie, Liu, Shen et al (2018) [137] SVM rs-fMRI 50 EMCI 56 78.3

Jie, Liu, Zhang et al (2018) [138] SVM rs-fMRI 50 MCI 99 82.6

Raeper et al (2018) [118] SVM + LDA MRI 42 EMCI 42 80.9

Basaia et al (2019) [140] CNN MRI 407 cMCI 280 87.1

sMCI 533 76.1

Forouzannezhad et al (2019) [141] DNN MRI 248 EMCI 296 61.1

MRI LMCI 193 64.1

PET EMCI 58.2

PET LMCI 66

MRI+PET EMCI 68

MRI+PET LMCI 71.7

MRI+PET+NTS EMCI 84

MRI+PET+NTS LMCI 84.1

Wang et al (2019) [114] DNN MRI 209 MCI 384 98.4

Wee et al (2019) [142] CNN MRI 300 LMCI 208 69.3

EMCI 314 51.8

242 MCI 415 67.6

Kam et al (2020) [143] CNN rs-fMRI 48 EMCI 49 76.1

Fang et al (2020) [144] GDCA MRI+PET 251 EMCI 79.2

Forouzannezhad et al (2020) [145] GP MRI 248 EMCI 296 75.9

MRI LMCI 193 62.1

MRI+PET EMCI 75.9

MRI+PET LMCI 78.1

MRI+PET+DI EMCI 78.8

MRI+PET+DI LMCI 79.8

PET LMCI 76.1

Jiang et al (2020) [146] CNN MRI 50 EMCI 70 89.4

Kang et al (2020) [147] CNN DTI 50 EMCI 70 71.7

CNN MRI EMCI 73.3

DTI+MRI EMCI 94.2

Yang et al (2021) [148] SVM rs-fMRI 29 EMCI 29 82.8

LMCI 18 87.2

our method EA + ANN rs-fMRI 68 EMCI 72 94.5

Notes: " table sorted based on the year of publication. Acc: Classification accuracy percentage between MCI and HC groups; ANN: Artificial neural networks; Cat.:

Category of MCI; Cit.: Citation; cMCI: MCI converted to AD; CNN: Convolutional neural networks; DI: Demographic information; DNN: Deep neural network; DTI:

Diffusion tensor imaging; DWI: Diffusion-weighted imaging; EA: Evolutionary algorithms; EMCI: Early-MCI; GDCA: Gaussian discriminative component analysis;

GP: Gaussian process; KNN: K nearest neighbors; LDA: Linear discriminative analysis; LLE: Locally linear embedding; LM: Logical memory; LMCI: Late-MCI; NTS:

Neuropsychological test scores; MMSE: Mini-mental state examination (MMSE); NM: Neuropsychological measures; PET: Positron emission therapy; rs-fMRI: Resting-

state fMRI; sMCI: Stable MCI; NM: Neuropsychological measures; SRC: Sparse representation-based classifier; SVM: Support vector machine.

https://doi.org/10.1371/journal.pone.0267608.t003
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parietal areas, including intraparietal sulcus (IPS) and frontal eye fields (FEF). It is involved in

mediation of goal-directed process and selection for stimuli and response. Specifically, our

data highlighted the role of the FEF in the dorsal attention network. This is in line with past lit-

erature showing the role of FEF in cognitive decline [158]. Our data also revealed the impor-

tance of superior frontal gyrus (SFG) in cognitive decline [159,160]. SFG is thought to

contribute to higher cognitive functions and particularly to working memory (WM) [161].

Additionally, SFG interconnects multiple brain areas that are involved in a diverse range of

cognitive tasks such as cognitive control and motor behavior [162].

In terms of graph parameters, our results showed importance of local efficiency, between-

ness centrality and degree centrality in classification of EMCI and HC. Local efficiency is a

parameter for the transformation of information in a part of the network. This parameter indi-

cates the efficiency between two nodes and represents the efficiency in exchange of informa-

tion through a network edge [87,163]. Reduction of this parameter has been linked with

cognitive decline in past literature [164]. Betweenness centrality for any given node (vertex)

measures the number of shortest paths between pairs of other nodes that pass through this

node, reflecting how efficiently the network exchanges the information at the global level.

Betweenness centrality is high for nodes that are located on many short paths in the network

and low for nodes that do not participate in many short paths [164]. Finally, degree centrality

reflects the number of instantaneous functional connections between a region and the rest of

the brain within the entire connectivity matrix of the brain. It can assess how much a node

influences the entire brain and integrates information across functionally segregated brain

regions [165] (see also [166]). Our data showed that changes in these parameters can effectively

contribute in classification of early-MCI patients from healthy controls.

We implemented five of the most common evolutionary algorithms. They showed similar

overall optimization performance ranging between 92.55–93.35% and 94.27–94.55% for fil-

tered and absolute accuracy, respectively. They, however, differed in optimization curve, opti-

mization time and diversity of the selected features. PSO could guarantee a 90% accuracy with

only 7 features. SA on the other hand required 49 features to guarantee a 90% accuracy.

Although SA required more features to guarantee a 90% accuracy, it was the fastest optimiza-

tion algorithm with only 5.1s for 49 features. NSGA-II on the other hand, required 22.4s to

guarantee a 90% accuracy. These show the diversity of the algorithms and their suitability in

different applications requiring highest accuracy, least number of features or fastest optimiza-

tion time [71,76,167].

One distinct characteristic of GA and NSGA-II was the more focused search amongst fea-

tures as compared to the other methods. GA and NSGA-II selected 222 and 224 distinct fea-

tures in the first 100 parameter sets, respectively, while the other methods covered almost the

whole collection of features, covering more than 97.6%. Notably GA and NSGA-II showed

“curse of dimensionality” (also known as “peaking phenomenon”) with optimal number of

features around 50 parameters [168–171]. Therefore, perhaps the features selected by GA and

NSGA-II are more indicative of distinct characteristics of the differences between HC and

EMCI.

Our analysis was conducted on a sample of 140 patients. This number of datapoint in the

context of classification using ANN and CNN is relatively small. For instance, Wang et al

(2019) 114 used 593 samples. Having additional samples can provide more reliable results.

Therefore, future research should aim to explore a larger dataset.

In this study, we proposed a method for classification of the EMCI and HC groups using

graph theory. These results highlight the potential application of graph analysis of functional

connectivity and efficiency of evolutionary algorithm in combination with a simple perceptron

ANN in the classification of images into HC and EMCI. We proposed a fully automatic
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procedure for predication of early stages of AD using rs-fMRI data features. This is of particu-

lar importance considering that MRI images of EMCI individuals cannot be easily identified

by experts. Further development of such methods can prove to be a powerful tool in the early

diagnosis of AD.
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