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Abstract: It is assumed that crosstalk of central and peripheral tissues plays a role in the adaptive
response to physical activity and exercise. Here, we wanted to study the effects of training and genetic
predisposition in a marathon mouse model on mRNA expression in the pituitary gland. Therefore, we
used a mouse model developed by phenotype selection for superior running performance (DUhTP)
and non-inbred control mice (DUC). Both mouse lines underwent treadmill training for three weeks
or were kept in a sedentary condition. In all groups, total RNA was isolated from the pituitary gland
and sequenced. Molecular pathway analysis was performed by ingenuity pathway analysis (IPA).
Training induced differential expression of 637 genes (DEGs) in DUC but only 50 DEGs in DUhTP
mice. Genetic selection for enhanced running performance strongly affected gene expression in the
pituitary gland and identified 1732 DEGs in sedentary DUC versus DUhTP mice. Training appeared
to have an even stronger effect on gene expression in both lines and comparatively revealed 3828
DEGs in the pituitary gland. From the list of DEGs in all experimental groups, candidate genes
were extracted by comparison with published genomic regions with significant effects on training
responses in mice. Bioinformatic modeling revealed induction and coordinated expression of the
pathways for ribosome synthesis and oxidative phosphorylation in DUC mice. By contrast, DUhTP
mice were resistant to the positive effects of three-week training on protein and energy metabolism
in the pituitary gland.

Keywords: pituitary gland; treadmill training; DUhTP mice; pathway analysis; ribosome synthesis;
oxidative phosphorylation; miR-124

1. Introduction

The pituitary gland is located on the lower side of the brain and, under hypotha-
lamic control, regulates growth, reproductive development, stress response, and energy
metabolism. Complex endocrine control by the anterior pituitary gland is achieved by the
presence of different types and subtypes of cells with distinct gene expression patterns [1,2].
It produces growth hormone (GH), reproductive hormones such as luteinizing hormone
(LH) and follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), or
thyroid-stimulating hormone (TSH), and thus can influence growth and metabolism in
multiple tissues. In addition, pituitary glands contribute to energy homeostasis in concert
with the hypothalamus, which integrates peripheral and central stimuli in the arcuate
nucleus [3]. Due to its central position in hormone production, pituitary glands can also
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mediate adaptive or even benefitting effects of physical activity. Accordingly, the secretion
of growth hormone (GH) is increased in response to resistance training in humans [4].
Notably, exercise induced the secretion of GH to a significantly higher extent than phar-
macological stimulation [4]. On the histological level in rats, physical activity induced
specific adaptations in somatotropic cells, including increased cell size and the production
of larger secretory granules [5]. Exercise in different experimental settings also affected the
pituitary–gonadal [6], pituitary–adrenal [7], and pituitary–thyroid [8] hormone axes.

Because the pituitary gland is highly responsive to the effects of physical activity,
we postulated that physical activity also induces organ-wide molecular pathways in the
pituitary gland not directly related to distinct hormonal axes or distinct cell types. In order
to test this hypothesis at the genetic level, we used mice long-term selected for high running
performance (DUhTP mice) and unselected controls (DUC) and asked whether we can
use bulk RNA-sequencing (RNA-seq) to identify different transcriptional patterns in the
pituitary gland in marathon mice and controls. To identify the impact of physical activity,
we tested the effects of three-week training in both mouse models. Finally, we asked
whether the genetically fixed molecular pathways in pituitary glands of marathon mice
(DUhTP) can also be induced by three weeks of training in unselected control mice (DUC).
By this approach, we aimed to identify and test transcriptional signatures of physical
activity in pituitary glands.

2. Materials and Methods
2.1. Animals and Study Design

All in vivo experiments were performed according to national and international
guidelines and were approved by the internal institutional audit committee and by the
State of Mecklenburg–Western Pomerania (State Office for Agriculture, Food Safety, and
Fisheries; AZ 7221.3-1-014/17, date of approval: 25/04/2017). In this study, we used a
long-term selected mouse line (DUhTP), selected for high running endurance, and the
corresponding unselected control line DUC [9,10]. The mice were kept under controlled,
specified pathogen-free (SPF) conditions in H-Temp Polysulfon cages with a floor area
of 370 cm2 (Eurostandard Type II, Tecniplast, Hohenpeißenberg, Germany). The animals
received fresh drinking water and autoclaved Ssniff® M-Z food (Ssniff-Spezialdiäten
GmbH, Soest, Germany) ad libitum. Male animals were individually kept in cages from day
21, divided into two groups at 48 days of age, and assigned to a training program (Figure 1;
DUC trained (tr.), DUhTP tr.; n = 10).

Figure 1. Three-week training program for high running performance (DUhTP) and unselected control (DUC) mice. From
day 49, the animals passed a training program on a computer-controlled treadmill for 30 min (DUhTP) and 15 min (DUC)
for five days per week, respectively. The duration of running corresponds to 22.56% of their last tested submaximal running
performance. The final running speed of a half meter per second was stepwise increased.
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Mice from the sedentary group (n = 10) were individually kept in cages for three
weeks without any treatment (DUC sedentary (sed.); DUhTP sed.). Both experimental
groups from the mouse lines DUC and DUhTP were trained on a treadmill (TSE, Germany)
for three weeks. Because DUhTP and DUC mice had different running capacities, DUhTP
and DUC were trained for 30 and 15 min per day, respectively. These training intensities
correspond to 22.6% of the submaximal treadmill running capabilities in both mouse lines,
determined in previous generations ( [11], DUhTP: 2 h 13 min; DUC: 1 h 6 min). At the
age of 49 days, the training program started with an initial run by animals of both lines for
15 and 30 min. After a break of 2 days, regular training was started for a total duration of
three weeks (5 days training with a break over the weekend). For this purpose, the mice
performed a run on a treadmill with an initial speed of 0.2 m/s for 30 m, 0.25 m/s for
50 m, and a final speed of 0.33 m/min. The final distance/speed was increased in weekly
intervals up to a final speed of 0.5 m/min (Figure 1). Only the control mice could not
manage the final speed of 0.5 m/s, so they completed the last week of training with a final
speed of 0.42 m/s. After completing the final run, the mice were sacrificed, and tissue and
serum samples were collected. The tissues were weighed, shock-frozen in liquid nitrogen,
and stored at −70 ◦C for subsequent analysis.

2.2. Generation of DNA Library

The entire pituitary gland of each animal was homogenized in 1 mL of TRIzol reagent
(Invitrogen, Karlsruhe, Germany). Total RNA was extracted in accordance with the manu-
facturing instructions. The extracted RNA was additionally treated with DNase I using
the RNase-free DNase kit (Base-Zero DNase, Biozym, Hessisch Oldendorf, Germany) and
with the Zymo® RNA Clean&Concentrator kit (Zymo Research, Irvine, CA, USA). The
RNA quality was assessed using an Agilent RNA 6000 Nano kit and 2100 Bioanalyzer
(Agilent, Waldbronn, Germany). Samples with RNA integrity numbers (RIN) >8 [12] were
used to generate a DNA library using a TruSeq Stranded mRNA Sample Preparation kit
in accordance with the manufacture’s protocol (Illumina, Berlin, Germany). Essentially,
polyadenylated mRNA molecules were enriched from 2 µg of total RNA using poly-T
oligo-coated magnetic beads and chemically fragmented under elevated temperature con-
ditions. The fragmented RNA was then reverse-transcribed into cDNA using random
hexamers and Superscript II reverse transcriptase and ligated with TruSeq RNA adapters
containing a unique DNA sequencing index to enable multiplexing. The DNA libraries
were quality-control assessed for fragment-size distribution using an Agilent Technologies
2100 Bioanalyzer and Agilent DNA-1000 Chip kit.

2.3. Next-Generation Sequencing (NGS)

DNA library concentration was quantified using a KAPA qPCR Library Quantification
kit (KAPA-Biosystems, Wilmington, MA, USA). Normalized multiplexed DNA libraries
with the 0.5% spiked-in PhiX control were clonally cluster amplified using the cBot system
and paired-end sequenced for 2 × 101 bp using the high-output mode on a HiSeq2500
(Illumina) at our sequencing facility of the Genome Biology Institute, Leibniz Institute for
Farm Animal Biology (FBN), Dummerstorf, Germany.

2.4. Differential Gene Expression Analysis

The raw sequencing reads (fastq) were quality-assessed using FastQC (version 0.11.5)
(access date: 11/04/2019; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
and pre-processed by filtering out low-quality reads with a mean Q-score < 30 and read
length shorter than 30 bp and trimming adapter-like sequences. High-quality paired-end
reads were then aligned to the Ensembl reference mouse genome (GRCm38.p6) using
Hisat2 version 2.1.0 [13,14]. The number of reads uniquely mapped to each gene was
extracted from the HISAT2 mapping results using HTSeq version 0.8.0 [15].

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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2.5. Data Processing and Evaluation

The resulting gene count data were further analyzed for differently expressed genes
(DEGs) using EdgeR [16] and R dependency packages. Genes with lower read values
(count per million, cpm) were filtered out to obtain only genes with >0.5 cpm. These had
to be present in at least four libraries. EdgeR standard parameters were applied with the
trimmed mean of M values (TMM) option considering library size and composition bias
and the estimateGLMRobustDisp option to estimate interlibrary variation [16]. The glmFit
and glmLRT functions implemented in EdgeR were used for statistical testing of DEGs.
The RNA-seq data were then evaluated using the following pipeline: The list contained
a cpm value for each analyzed individual and each identified transcript. The average
reads cpm values of each transcript were compared between groups in pairs. Line and
training comparisons were performed (DUC tr. vs. sed., DUhTP tr. vs. sed., DUhTP sed.
vs. DUC sed., DUhTP tr. vs. DUC tr.). The data sets of the four comparison groups then
contained a gene identification (Gen-ID), the fold change (log2FC), the p-value, and the
false discovery rate (FDR; Supplementary Table S1). In all analyses, the FDR was defined
as the significance level of ≤0.05. For bioinformatic analyses, the DEGs data obtained from
the group comparisons were used. For the Venn diagram, the free Venny website (access
date: 08/03/2021; https://bioinfogp.cnb.csic.es/tools/venny/) was used [17].

2.6. Manhattan Plot

The “ggplot2” R packages [18] were used to perform the mirrored Manhattan plots
where only the significant (FDR ≤ 0.05) DEGs in each group comparison were visualized
with their genomic position. In these plots, each point represented a gene; the x-axis
reported the chromosome number, and the y-axis showed the DEGs as log2FC values. The
y-axis gray line, referring to the null log2FC value, was positioned in the middle of each
plot to recognize the upregulated genes as those points shown above that line and the
downregulated genes as those points shown under that line.

2.7. Validation by Fluidigm

The RNASeq data were validated by 2-step reverse transcription-quantitative PCR
(RT-qPCR) using the Fluidigm technique [19]. Thirteen DEGs of isolated pathways were
selected to validate if the reads’ cpm was >1 in more than 50% of the samples. Specific
primers (Supplementary Table S2) were identified with PrimerBank [20] and blasted using
the blastn® software [21] against mouse genome and transcript databases for their suitabil-
ity in the mouse. mRNA (250–1000 ng) was reverse-transcribed with GOScript™ Reverse
Transcriptase kit (Promega). The primers were quality checked with Roche LightCycler®

480 (Roche) using a cDNA dilution of 25 ng to 0.025 ng per reaction. For validation, specific
target amplification was performed with the final primer setup and TaqMan PreAmp
Mastermix in accordance with the manufacturer’s recommendations. All samples were
treated with exonuclease I and diluted. The sample and primer setup followed the in-
structions for a 48 × 48 array, performing a fast PCR program with a melting curve. Run
data were imported and analyzed by data analysis gene (DAG) expression; [22]. For qPCR
normalization step, three housekeeping genes were selected within a total of five through
the DAG tool Gene Stability Measurement, and the relative expression was calculated
for each sample-primer combination. Outliers were identified (Q = 0.1%) and removed
using the ROUT method GraphPad Prism V 8.4.2. Group independent correlation analysis
was performed for each gene between RNA sequencing signals (cpm) and relative qPCR
expression (2−∆∆Ct). The Pearson correlation coefficient and p-value were calculated and
displayed with GraphPad Prism. Group means and log2FC calculations were calculated
according to RNASeq data.

2.8. Pathway Analysis

Ingenuity® Pathway Analysis (IPA®, Qiagen, Germantown, MD, USA) was used for
the bioinformatic analysis of the holistic data, linking the contents of large data sets from

https://bioinfogp.cnb.csic.es/tools/venny/
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RNA sequencing with the current literature, organizing, linking, and visualizing them [23].
The bioinformatic interpretation was performed with the core analysis of IPA® below the
limit of FDR at 0.05. Pathway analysis was performed with the comparison groups and
used with the default settings of the program. To indicate significant up- or downregulation
pathways, only those with a—log (p-value) ≥ 1.3 and a |z-score| ≥ 2 were considered for
further interpretation. In addition, we used the freely accessible Pathview website (access
date: 08/03/2021; https://pathview.uncc.edu) to visualize KEGG (Kyoto Encyclopedia of
Genes and Genomes) paths. The definitions of the options were: for gene data, the DEGs
(FDR ≤0.05) loaded with Gen-ID (ENSEMBL) and log2FC; as species restricted to Mus
musculus. The DEGs were manually matched with the KEGG pathways “ribosome” and
“oxidative phosphorylation” for all comparison groups.

2.9. Localization of DEGs in Published Quantitative Trait Locus (QTLs) Associated with
Training Response

Masset and colleagues [24] identified several QTL regions associated with training
response in mice after genotyping through a specific single nucleotide polymorphism
(SNP) panel [25,26]. We used this information to explore the genome regions around the
most important SNPs reported [24] for pre-training, post-training, and change-work in
the mouse. We therefore asked if the DEGs identified in the present study were located in
the genomic regions described by Masset et al. [24]. To this end, we selected the genome
region of 1 megabase (Mb) around the SNPs reported (0.5 Mb upstream and downstream of
each SNP). We extracted reference genes present in these regions from the Mouse Genome
Database through the search tool “Gene & Markers Query” [27] and compared them with
the significant DEGs in each of our group comparisons. The presence of DEGs in genomic
regions of previously identified QTLs may add an additional argument for the biomarker
content of potential candidate genes identified here.

3. Results
3.1. RNA-Sequencing Data and Validation by RT-qPCR

Using RNA-seq, an average of 39.3 ± 7.5 million reads per sample were generated in
the pituitary gland of DUC mice and 30.7 ± 4.9 million reads per sample in the pituitary
gland of DUhTP mice. Around 96% were successfully mapped to the mouse reference
genome (GRCm38.p6), and we only selected the mapped reads corresponding to exonic
regions, which were approximately 88%. After considering genetic and training compari-
son, we detected a total of 17,429 expressed genes (data not shown) in the mice’s pituitary
gland; 6188 DEGs of them showed a significant (FDR ≥0.05) difference in their expression
level between groups (Table 1).

Table 1. Overview of differentially expressed genes (DEGs) in the pituitary glands from trained and
sedentary DUhTP and DUC mice with a false discovery rate (FDR) ≤0.05.

Comparison Number of DEGs (FDR ≤ 0.05)

Total Up Down

DUC tr. vs. DUC sed. 637 428 209
DUhTP tr. vs. DUhTP sed. 50 38 12
DUhTP sed. vs. DUC sed. 1732 890 842

DUhTP tr. vs. DUC tr. 3828 1617 2211
Numbers of differentially expressed transcripts are shown in black: total genes, in red: upregulated, and in green:
downregulated DEGs. Abbreviations: sed. = sedentary, tr. = trained, vs. = versus.

Single DEGs identified by RNA-seq were cross-validated through Fluidigm assays
(Supplementary Table S3). The significant Pearson correlation coefficients ranging from
0.5630 (p ≤ 0.01) to 0.9850 (p ≤ 0.001) (Figure 2) confirmed a good concordance between
RNA-seq and RT-qPCR results for the pituitary gland.

https://pathview.uncc.edu
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Figure 2. Validation of RNA-seq data by the Fluidigm technique for 13 differentially expressed genes (DEGs) from selected
pathways in the pituitary gland. For each gene, the total reads (count per million, cpm) obtained by RNA-seq were plotted
on the x-axis and RT-qPCR data (2−∆∆Ct) on the y-axis. Stars at the gene name indicate that outliers were removed during
processing, as described in Materials and Methods. Corresponding correlation coefficients (r) and p-values are shown.

3.2. Global Effects of Training and Phenotype Selection on Gene Expression in the Pituitary Gland

As an effect of training, 637 and 50 genes were differentially expressed between the
trained and sedentary groups in DUC or DUhTP mice, respectively (Table 1). As an effect
of genetic selection, 1732 genes were differentially expressed in sedentary DUhTP versus
DUC mice, and 3828 genes were differentially expressed in the trained DUhTP versus
DUC mice.

The Venn diagram provides the number of common and differently expressed genes
in all experimental groups (Figure 3). Training had a clear effect on gene expression in
DUC mice’s pituitary glands since 637 transcripts were characterized by altered abundance
in response to training. By contrast, in DUhTP mice, only 50 transcripts indicated an effect
of training on gene expression in pituitary glands. Notably, from these 50 transcripts, only
two transcripts were also regulated in unselected control mice. Furthermore, 465 transcripts
regulated by training in DUC mice overlapped with genetic selection for high running
performance in untrained and trained DUhTP mice. However, most transcripts identified in
DUhTP mice (4152) revealed no overlap with training effects on gene expression identified
in unselected control mice. Therefore, the effect of training on gene expression is clear in
DUC mice, whereas in DUhTP mice, most of the transcripts affected by training in DUC
mice are genetically fixed in DUhTP mice. Almost 90% of the differentially expressed genes
in sedentary and trained DUhTP mice versus DUC mice, respectively, had no overlap with
the effects observed in trained versus sedentary DUC mice.
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Figure 3. Venn diagram of differentially expressed genes (DEGs) in all comparison groups (FDR ≤
0.05, sed. = sedentary, tr. = trained, vs. = versus).

3.3. Identification of TOP5 Regulated mRNA Transcripts

Table 2 provides the TOP5 up- and downregulated genes in all experimental groups. In
response to training, all TOP5 genes differed between the two genetic groups. Accordingly,
training had effects on transcripts associated with calcium sensitivity (Syt2, Vsnl1), Mg2+
transport (Cldn19), regulation of post-synaptic actin cytoskeleton modification (Camkv),
and glutamate uptake (Grm4) in DUC mice. At the same time, transcripts for ion channels
(Kcnj13, Slc6A20, Slc6A12, and Slc22A6) were substantially suppressed in DUC mice
in response to training. In DUhTP mice, genes linked with RNA transcription (Rn7sk,
Ciart), sodium ion transport (Asic2), blood pressure (Corin), and circulatory regulation
(Ciart, Per2) were the most strongly induced ones by training. In addition, training
inhibited the abundance of genes associated with oxidative stress (Gstp3) and detoxification
(Aldh3b2) as well as receptor binding (Rpsa-ps10, Rxfp1, Cd72) in DUhTP compared to
sedentary littermates.

In the Venn diagram, 835 DEGs overlapped in the genetic model (DUhTP vs. DUC
sed. and DUhTP vs. DUC tr.). Remarkably, the same TOP5 upregulated genes could be
found in both genetic groups (DUhTP vs. DUC sed. and DUhTP vs. DUC tr.). Accordingly,
TOP DEGs identified ribosomal proteins 2 and 26, double homoeobox B-like 1, complement
component 1 R, and glyceraldehyde-3P-dehydrogenase to be particularly induced in the
pituitary gland of DUhTP mice compared to DUC mice. In contrast, transcription for the
ribosomal protein L26 and chromobox 3, histone H2a protein type 1, and ATP synthase
pseudogene was substantially decreased in trained or sedentary DUhTP mice compared to
corresponding unselected controls.

Although several markedly regulated genes (TOP5) were located on chromosome
14 (genetic effect) and chromosome 3 (effect of training; Table 2), the global comparison
revealed the contribution of all chromosomes to the differential gene expression in response
to phenotype selection or training (Figure 4a–d, Table S1).
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Table 2. TOP5 up- and downregulated genes in all comparison groups. The five most upregulated and five most down-
regulated genes are listed with the corresponding regulation intensity and chromosome localization. Abbreviation:
sed. = sedentary, tr. = trained, vs. = versus.

Comparison Gen-ID Regulation (log2FC) Description Chromosome

DUC tr.
vs. sed.

Syt2 4.1 Synaptotagmin 2 1

Camkv 3.5 CaM kinase, vesicle-associated 9

Cldn19 3.4 Claudin 19 4

Vsnl1 3.3 Visinin-like 1 12

Grm4 3.2 Metabotropic glutamate receptor 4 17

Kcnj13 −4.0 Potassium channel protein 1

Slc6a20 −3.7 Na+- and Cl--dependent transporter 9

Slc6a12 −3.6 Na+/Cl--dependent betaine/GABA transporter 6

Gm15387 −3.6 High-mobility group 1 protein (pseudogene) 15

Slc22a6 −3.4 Na+-dependent transporter 19

DUhTP tr.
vs. sed.

Rn7sk 3.1 snRNA (transcription regulation) 9

Ciart 2.2 Circadian-associated repressor of transcription 3

Asic2 1.6 Neuronal sodium channel 1, acid sensitive ion channel 2 11

Corin 1.4 Serine peptidase, neuronal natriuretic peptide convertase 5

Per2 1.4 Periodic circadian regulator 2 in neuronal pacemaker 1

Gstp3 −4.7 Glutathione S-transferase; oxidative stress 19

Rpsa-ps10 −3.9 Ribosomal protein SA (pseudogene), cell surface receptor 3

Rxfp1 −3.0 Peptide receptor 1 of the relaxin/insulin-like family 3

Aldh3b2 −2.9 Aldehyde dehydrogenase 19

Cd72 −1.3 Lymphocyte receptor 4

DUhTP sed.
vs.

DUC sed.

Rps2-ps13 6.6 Ribosomal protein2 (pseudogene) X

Rps26-ps1 6.2 Ribosomal protein26 (pseudogene) 8

Duxbl1 5.3 Double homeobox B-like 1 14

C1r 5.1 Complement component 1 R 6

Gm4804 4.6 Glyceraldehyd-3P-dehydrogenase (pseudogene) 12

Gm8104 −8.5 Unknown 14

Gm7233 −7.7 Unknown 14

Cbx3-ps7 −7.7 Chromobox 3 (pseudogene) 1

Gm6356 −7.3 Unknown 14

Gm15772 −7.3 Ribosomal protein L26 (pseudogene) 5

DUhTP tr. vs.
DUC tr.

Rps2-ps13 6.4 Ribosomal protein2 (pseudogene) X

Rps26-ps1 6.4 Ribosomal protein26 (pseudogene) 8

C1r 5.7 Complement component 1 R 6

Gm4804 5.2 Glyceraldehyd-3P-dehydrogenase (pseudogene) 12

Duxbl1 5.2 Double homeobox B-like 1 14

Gm42743 −8.9 Unknown 3

Hist1h2al −8.5 Histone H2a-protein type 1, core protein 13

Gm16440 −7.7 Unknown 14

Gm10039 −7.5 ATP synthase (pseudogene) 11

Gm7233 −7.4 Unknown 14
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Figure 4. Mirrored Manhattan plots of the significant (FDR ≤ 0.05) differently expressed genes (DEGs) concerning the
chromosome location in all comparison groups. Each point represents one gene in its genomic position. The chromosome
numbers are reported in the x-axis, the level of expression in the y-axis as log2FC values. The maximum and minimum
limits of the y-axis represent the range of log2FC values of each comparison. The gray line in the middle corresponds to
log2FC = 0. All points visualized above the line belong to upregulated genes, while all the points visualized under the line
are downregulated genes. The comparison groups are shown as (a) DUC tr. vs. sed., (b) DUhTP tr. vs. sed., (c) DUhTP sed.
vs. DUC sed., and (d) DUhTP tr. vs. DUC tr. Abbreviation: sed. = sedentary, tr. = trained, vs. = versus.

3.4. Functional Analysis of DEGs

In order to study the potential interaction of genes and pathways related to physical
activity and running performance in mice, we compared genes and pathways regulated
by both training and phenotype selection. Functional analyses were performed by IPA,
including all DEGs, to identify canonical pathways in the experimental groups (Table 3). In
response to training, two pathways were activated (EIF2 signaling, oxidative phosphoryla-
tion), and four canonical pathways were inhibited (GP6 signaling, cardiogenesis promoting
factors, basal cell carcinoma signaling, liver fibrosis signaling) in the pituitary gland from
DUC mice. The effect of training on protein metabolism and the oxidative phosphorylation
(OXPHOS) pathway was exclusively observed in DUC mice. In fact, training did not
affect molecular or metabolic pathways in the pituitary gland of the DUhTP mice at all. In
addition, the direct comparison between sedentary DUhTP mice and sedentary DUC mice
revealed no effect either on protein metabolism or on the OXPHOS pathway. Instead, two
different canonical pathways were significantly inhibited (unfolded protein response and
LXR/RXR activation).
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Table 3. Significantly, enriched canonical pathways (Fisher’s exact test adjusted p-value ≤ 0.05) were deduced from DEGs
of the pituitary gland in all comparison groups.

Group Canonical Pathway z-Score Molecules

DUC tr.
vs. sed.

EIF2 signaling 4.7

Eif3g, Eif3i, Fau, Hras, Rpl10, Rpl11, Rpl12, Rpl13, Rpl18, Rpl18a, Rpl19, Rpl26, Rpl27, Rpl27a, Rpl28,
Rpl30, Rpl31, Rpl35, Rpl36a, Rpl37, Rpl37a, Rpl38, Rpl41, Rpl6, Rpl8, Rpl9, Rplp2, Rps10, Rps12, Rps13,

Rps14, Rps15, Rps16, Rps17, Rps19, Rps20, Rps21, Rps23, Rps25, Rps27a, Rps28, Rps29, Rps3, Rps5,
Rps6, Rps8, Rps9, Rpsa, Sos2

Oxidative
phosphorylation 4.5

Atp5f1d, Atp5mc2, Atp5mf, Atp5pd, Atp5po, Cox4i1, Cox6a1, Cox6b1, Cox7a2l, Cox8a, Mt-Nd5,
Ndufa1, Ndufa11, Ndufa13, Ndufa2, Ndufa7, Ndufb10, Ndufb11, Ndufb4, Ndufb7, Ndufb8, Ndufs7,

Uqcr10, Uqcr11

GP6 signaling pathway −3.2 Cert1, Col3a1, Col4a1, Col4a2, Col4a3, Col4a4, Col5a1, Lamc3, Prkca, Prkce

Factors promoting
cardiogenesis in

vertebrates
−2.5 Bmp6, Bmp7, Camk2a,Crebbp, Prkca, Prkce, Tcf4, Tcf7l2, Tgfbr2, Wnt6

Basal cell carcinoma
signaling −2.0 Bmp6, Bmp7, Dvl3, Tcf4, Tcf7l2, Wnt6

Hepatic fibrosis
signaling pathway −2.2 Col3a1, Crebbp, Dvl3, Fth1, Ftl, Hras, Lepr, Pdgfrb, Prkca, Prkce, Rhobtb2, Sos2, Tcf4, Tcf7l2, Tgfbr2,

Tnfrsf11b, Wnt6

DUhTP
tr. vs. sed. None

DUhTP sed.
vs. DUC sed.

Unfolded protein
response −2.1 Calr, Cebpg, Cebpz, Dnajc3, Edem1, Hspa1b, Os9, P4hb, Ubxn4

LXR/RXR activation −2.5 Abcg4, Alb, Apoa2, Arg2, Ccl2, Cd36, Gc, Hpx, Il1r2, Il33, Ncor2, Serpina1, Tnfrsf11b, Ttr, Vtn

DUhTP tr.
vs. DUC tr.

Oxidative
phosphorylation −7.6

Atp5e, Atp5f1a, Atp5f1b, Atp5f1d, Atp5mc1, Atp5mc2, Atp5mc3, Atp5mf, Atp5mg, Atp5pb, Atp5pd,
Atp5pf, Atp5po, Cox10, Cox4i1, Cox5a, Cox6a1, Cox6b1, Cox6c, Cox7a2, Cox7a2l, Cox7b, Cox8a, Cyc1,

Cycs, Mt-Co2, Mt-Co3, Mt-Nd4l, Ndufa1, Ndufa10, Ndufa11, Ndufa12, Ndufa13, Ndufa2, Ndufa3,
Ndufa4, Ndufa5, Ndufa6, Ndufa7, Ndufa8, Ndufa9, Ndufab1, Ndufb10, Ndufb11, Ndufb2, Ndufb3,

Ndufb4, Ndufb5, Ndufb6, Ndufb7, Ndufb8, Ndufb9, Ndufs2, Ndufs3, Ndufs4, Ndufs6, Ndufs7, Ndufs8,
Ndufv1, Ndufv2, Ndufv3, Sdhc, Sdhd, Uqcr10, Uqcr11, Uqcrb, Uqcrc1, Uqcrfs1, Uqcrq

EIF2 signaling −5.0

Acta1, Akt1, Atf3, Atf4, Atf5, Eif2ak2, Eif2b1, Eif2b3, Eif2b5, Eif3d, Eif3g, Eif3h, Eif3i, Eif3k, Eif3l, Eif4a1,
Eif4e, Fau, Hras, Hspa5, Map2k2, Mt-Rnr1, Myc, Pik3cg,Pik3r2, Ppp1ca, Rpl10, Rpl10a, Rpl11, Rpl12,
Rpl13, Rpl14, Rpl15, Rpl17, Rpl18, Rpl18a, Rpl19, Rpl23, Rpl27, Rpl27a, Rpl28, Rpl31, Rpl35, Rpl36a,
Rpl36al, Rpl37, Rpl37a, Rpl38, Rpl4, Rpl41, Rpl5, Rpl6, Rpl7, Rpl7a, Rpl7l1, Rpl8, Rpl9, Rplp0, Rplp2,
Rps10, Rps11, Rps12, Rps13, Rps14, Rps15, Rps15a, Rps16, Rps17, Rps18, Rps19, Rps2, Rps20, Rps21,

Rps23, Rps24, Rps25, Rps26, Rps27a, Rps27l, Rps28, Rps29, Rps3, Rps4y1, Rps5, Rps6, Rps8, Rps9, Rpsa

Synaptogenesis
signaling
pathway

−2.1

Adcy1, Adcy3, Adcy5, Akt1, Ap1g2,Ap2a1, Ap2a2, Ap2m1, Ap2s1, Arpc2, Arpc3, Arpc4, Arpc5l,
Atf2,Atf4, Bad, Bet1l, Calm1 (Includes Others), Camk2b, Cdh1, Cdh12,Cdh24, Cdh6, Cdh8, Cdk5, Cfl1,

Clasp2, Cplx3, Creb3, Crebbp,Efna3, Epha6, Gosr2, Grin2c, Grin3a,Grina, Grm4, Hras, Hspa8, Itsn2,
Kalrn, Lrrtm2, Map1b, Nap1l1,Nap1l4, Napa, Nlgn2, Nlgn3, Nrxn1, Pik3cg, Pik3r2, Plcg2, Prkag1,

Prkar1b, Rab3a, Rab5c, Rac1, Rasgrp1, Reln, Shf, Sncb, Syn3,Syt1,Syt12, Syt14,Syt2, Syt6, Thbs3, Vti1b

TCA cycle II
(eukaryotic) −2.7 Aco2, Dhtkd1, Fh, Idh3a, Mdh1, Mdh2, Ogdhl, Sdhaf4, Sdhc, Sdhd, Suclg1

Estrogen
receptor
signaling

−2.9

Adcy1, Adcy3, Adcy5, Agt, Akt1, Arg2, Atf2, Atf4, Atp5f1a, Atp5f1d, Atp5mc1, Atp5pb, Bad, Cfl1,
Creb3, Crebbp,Cyc1, Egfr,Eif2b1, Eif2b3, Eif2b5, Eif4e, Ep300,Esr2, Foxo6, Gna14,Gnal, Gnat2, Gng11,
Gng5, Hras, Map2k2, Mdk, Med12,Med21, Mmp14,Mmp17, Mmp19, Mmp20, Mmp7, Myc, Myl12a,
Myl6, Myl6b, Myl9, Ncoa1, Ncoa2,Nos3, Pcna, Pdia3, Pgf, Pik3cg,Pik3r2, Plcb2, Plce1, Plcg2, Plch1,

Prkaa2, Prkag1, Prkar1b, Prkcg,Sdhc, Sdhd, Shf, Sra1, Thrap3, Uqcrfs1, Vegfd

Pentose phosphate
pathway −2.4 G6pd, H6pd, Pgd, Rpe, Taldo1, Tkt

Dolichyl diphospho-
oligosaccharide

biosynthesis
−2.4 Alg1, Alg3, Alg8, Dpagt1, Dpm2, Dpm3

tRNA charging −2.1 Farsb, Hars1, Iars2,Kars1, Lars2, Mars1, Nars1, Rars1, Sars1, Tars1, Wars2

Endocannabinoid
neuronal synapse

pathway
2.2 Adcy1, Adcy3, Adcy5, Cacna1h, Cacna2d4, Cacnb2, Cacng5, Cacng6, Faah, Gna14, Gnal, Gng11, Gng5,

Grin2c, Grin3a,Grina, Kcnj9, Mapk13, Ndufs2, Pdia3, Plcb2, Plce1, Plcg2, Plch1,Prkag1, Prkar1b

Integrin
signaling −2.1

Acta1, Actn1, Akt1, Arf1, Arf4, Arf5, Arhgap26,Arpc2, Arpc3, Arpc4, Arpc5l, Capn10, Capn5,Capn8,
Hras, Itga11, Itga7, Itga8,Itgal, Itgb3,Itgb5, Itgb6,Map2k2, Myl12a, Myl9, Parva, Pfn1, Pik3cg, Pik3r2,

Plcg2,Ptk2, Rac1, Rhob, Rhobtb2, Rhof, Rhog, Rnd2, Tnk2, Tspan5, Zyx

Pathways with a |z-score| ≥2 were considered as significantly activated and inhibited in the pituitary of the corresponding group,
respectively. Font color of the gene symbol indicates lower expression (green) and higher expression (red) concerning the control for each
comparison (unselected or untrained). Abbreviation: sed. = sedentary, tr. = trained, vs. = versus.

However, the comparison of trained DUhTP mice to trained DUC mice demonstrated
robust activation of protein metabolism and OXPHOS in trained DUC mice since all,
except a few members of both pathways, were significantly inhibited in the pituitary
gland of DUhTP animals compared with trained DUC mice. Interestingly, considering
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genetic selection and running performance enhances the selection-dependent differences
between the lines and revealed the significant regulation of additional canonical pathways
by training. In trained DUhTP mice, nine canonical pathways were inhibited compared to
trained DUC mice. Only the endocannabinoid neuronal synapse pathway was upregulated
in trained DUhTP mice vs. trained unselected controls.

By examining genomic regions in the proximity of 11 SNPs previously reported by
Masset et al. [24] to be related to training adaptation, we identified which genes changed
their expression levels in response to training (DUC tr. vs. sed. and DUhTP tr. vs. sed.),
genetic selection (DUhTP sed. vs. DUC sed.), or both together (DUhTP tr. vs. DUC tr.).

The comparisons demonstrated that the selected line activated only one gene (Dnah9)
in response to training, which was not present in the unselected line, located on chromo-
some 11 close to the variant reported for the change-work in Masset et al. [24]. Importantly,
no DEGs were found in the selected line in response to activity for pre- or post-training vari-
ants, underlining the high performance of this mouse line obtained by long-term genetic
selection. In turn, the unselected line activated three genes close to pre-training variants
on chromosomes 2 and 8 and one gene close to a post-training variant on chromosomes
14. The Ces1d gene, located on chromosome 8, was found overexpressed in DUhTP mice
when comparing both lines in sedentary conditions. Interestingly, in response to training,
DUC mice showed an expression increase higher (log2FC 0.67) than sedentary DUhTP
mice compared to sedentary controls (log2FC 0.59). MiR-124a-1hg, identified within the
post-training chromosome 14 variants [24], was overexpressed in trained DUC mice com-
pared to sedentary DUC (log2FC 2.54) and trained DUhTP mice (log2FC 2.03). In DUhTP
animals, training did not alter miR124a-1hg expression.

Regarding the response to genetic selection, we found seven genes (including Ces1d
mentioned above) distributed on chromosomes 1, 2, 8, and 19 and differentially expressed
only in sedentary DUhTP pituitary glands.

Finally, ten DEGs (including Dnah9 and Mir124a-1hg) were found distributed on chromo-
somes 1, 4, 11, 14, and 19 in response to genetic selection along with training. The genes found
on chromosome 2 (Accs) and 19 (Avpi1, Crtac1) were also observed in sedentary DUhTP mice.
Table 4 provides information on all DEGs identified in the present study and which are located
in the direct neighborhood of known QTLs with an effect on training response in mice [24].

Table 4. Identification of DEGs, located in the direct neighborhood (0.5 Mb up and downstream) of previously published
genetic markers and residing in Quantitative Trait Locus (QTL) regions with significant effects (marked with an asterisk) on
training response in mice [24].

Response to Exercise Response to Genetic
Selection

Response to Genetic Selection
with Exercise

Condition SNPs Chromosome:
Position (bp)

DUC
tr. vs. sed.

DUhTP
tr. vs. sed.

DUhTP sed.
vs. DUC sed.

DUhTP tr.
vs. DUC tr.

Pre-
training

rs4222922 1: 193,272,691 NA NA Traf3ip3 Gm37691, Irf6, Hsd11b1, Syt14
rs4223268 2: 93,419,862 Alx4, Tspan18 NA Accs Accs
rs368717 * 3: 120,768,827 NA NA NA NA
rs3089148 8: 92,941,850 Ces1d NA Ces1d NA

rs3689508 * 14: 9,760,330 NA NA NA Fhit
rs3679049 * 19: 42,060,307 NA NA Avpi1, Crtac1, Marveld1 Avpi1, Crtac1, Exosc1, Rrp12

Post-
training

rs368717 * 3: 120,768,827 NA NA NA NA
rs3667625 4: 54,194,913 NA NA NA Rps15a-ps8

rs3660830 * 14: 64,812,463 Mir124a-1hg NA NA Mir124a-1hg
rs3023460 17: 93,199,618 NA NA NA NA
rs3023517 19: 59,969,286 NA NA Fam204a NA

Change rs3023267 11: 65,710,376 NA Dnah9 NA Dnah9
rs3660830 * 14: 64,812,463 Mir124a-1hg NA NA Mir124a-1hg

The table provides information on chromosomal localization and regulation by phenotype selection (genetic effect), training (exercise),
and phenotype selection with training. Font color of the gene symbol indicates lower expression (green) and higher expression (red) with
respect to the control for each comparison (unselected or untrained). Underlined genes are considered as affected only by genetic effect
because of no change of expression (log2FC) between phenotype selection and phenotype selection with training comparison. QTL regions
with significant effect are marked with an *. Abbreviation: sed. = sedentary, tr. = trained, vs. = versus, NA = not available, SNP = single
nucleotide polymorphism, bp = base pairs.
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3.5. Pathway Analysis

Because the protein metabolic and OXPHOS pathways were consistently elevated in
DUC in response to training, both KEGG paths were visualized using Pathview in more
detail. Figure 5 shows the training- and line-related effects on gene expression of ribosomal
transcripts in the ribosomal pathway called EIF2 signaling. Accordingly, fractions from both
the small and large ribosomal subunits were increased by training in DUC mice (Figure 5A).
Intriguingly, 49 out of a total of approximately 80 ribosomal proteins were increased, and no
inhibitory effect of training on gene expression of the EIF2 pathway was identified in DUC
mice. In DUhTP mice, training did not affect gene expression of ribosomal proteins (Figure
5B). Direct comparison of trained DUC and trained DUhTP mice (Figure 5D) revealed a
significant increase in RNA transcripts coding ribosomal proteins in the pituitary gland of
trained DUC mice compared with trained DUhTP mice, caused by significant transcript
upregulation in DUC mice in response to training. Even more, this comparison identified
several additional ribosomal proteins regulated by training or by genetic selection for
running performance. Accordingly, the present study identified 72 transcripts coding for
ribosomal proteins, which are regulated exclusively in control mice in response to training.
An effect of training in DUhTP mice was completely absent (Figure 5B).

Figure 5. Regulation of ribosome expression in the pituitary gland and the influence of training. KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway analyses of DEGs (FDR ≤ 0.05) in all comparison groups ((A): DUC tr. vs. sed.; (B): DUhTP
tr. vs. sed.; (C): DUhTP sed. vs. DUC sed.; (D): DUhTP tr. vs. DUC tr.) via https://pathview.uncc.edu (access date:
08/03/2021). Abbreviation: sed. = sedentary, tr. = trained, vs. = versus.

As the second canonical pathway significantly activated by training, oxidative phos-
phorylation was identified in DUC (Figure 6A) but not in DUhTP mice (Figure 6B). In

https://pathview.uncc.edu
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DUC mice, training increased the expression of 34 transcripts coding for OXPHOS proteins,
summarized in Figure 6A. Collectively, the activation of these OXPHOS members indi-
cated activation of complexes I, III, IV, and V in DUC mice’s pituitary gland in response
to training (Figure 6A). Similar to the protein metabolic pathway, also by comparison of
trained DUC vs. trained DUhTP mice, almost all transcripts were significantly higher
in unselected controls. Again, several additional transcripts from the OXPHOS pathway
were identified by comparing the interaction of training and genetic selection for running
performance. Eighty-six transcripts were significantly higher in trained DUC mice than in
trained DUhTP mice, and only seven OXPHOS subunits were higher in trained DUhTP vs.
trained DUC mice (Table 3 and Figure 6D). Three of the upregulated transcripts belong
to the mitochondria-encoded subunits ND3, ND4L, and ND5 of complex I (Figure 6D).
Considering the DEGs of the untrained animals of both lines (Figure 6C), a total of 12
OXPHOS transcripts (six up- and six downregulated) were affected. Ten of these tran-
scripts were also regulated by training, whereby two transcripts changed their relative
direction of expression. These transcripts were encoding NADH dehydrogenase (7.1.1.2)
and cytochrome C oxidase (7.1.1.9).

Figure 6. Regulation of oxidative phosphorylation in the pituitary gland influenced by selection and training. The KEGG
pathway analyses were obtained by using the DEGs (FDR ≤ 0.05) of all comparison groups ((A): DUC tr. vs. sed.; (B): DUhTP
tr. vs. sed.; (C): DUhTP sed. vs. DUC sed.; (D): DUhTP tr. vs. DUC tr.) via https://pathview.uncc.edu (access date:
08/03/2021). Abbreviation: sed. = sedentary, tr. = trained, vs. = versus.

https://pathview.uncc.edu
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4. Discussion

This study’s original motivation was based on a unique mouse model DUhTP, which
has been selected for superior performance for over nearly 35 years [9,10,28]. The advanced
running capacities were due to phenotype selection only, and interaction with physical
activity was excluded during the selection experiment because running wheels were not
offered in the cages. In fact, voluntary physical activity is not elevated in DUhTP compared
to unselected controls (DUC) [29]. Because pituitary glands hold a central position in the
endocrine control of energy metabolism, we asked whether canonical pathways in this
tissue were affected by repeated physical exercise (training) or long-term selection for
running performance. In particular, we sought to determine whether phenotype selection
for endurance exercise regulates the identical pathways activated by training. In the present
study, we addressed tissue-wide adaptations in the pituitary gland and, therefore, studied
transcriptome in bulk RNA.

The transcriptome in pituitary glands from phenotype-selected marathon mice (DUhTP)
and unselected controls (DUC) was sequenced using an NGS method, and the effects of
genotype (DUhTP vs. DUC) and physical activity (trained vs. sedentary) were investigated
through comparison of animals from four groups (DUC trained vs. sedentary, DUhTP
trained vs. sedentary, DUhTP sedentary vs. DUC sedentary, DUhTP trained vs. DUC
trained). Validation by the Fluidigm® technique revealed a significant correlation between
RNA sequencing and RT-qPCR results for the tested genes. The total number of pituitary
transcripts with more than 17,000 identifications was comparable to 16,654 genes identified
before in the same tissue from mice [30], 16,009 genes in cattle breeds [31] but lower than
24,873 genes obtained in laying hens [32]. Notably, on a cellular level, only 4506 different
genes were expressed in the pituitary gland from human embryos on average, as demon-
strated by single-cell transcriptomics, which is related to the cellular heterogeneity in the
pituitary gland and/or due to the developmental status of the tissues [2].

If compared to phenotype selection, training had a moderate effect on gene expression
in the pituitary gland. Interestingly, in DUhTP mice, training had almost no effect on gene
expression since less than 0.3% of all DEGs were affected by physical activity. Thus, we
may conclude that phenotype selection genetically fixed the training-induced metabolic
responses in DUhTP mice by direct or indirect mechanisms. In fact, 465 from a total of
637 genes in DUC regulated by training were genetically fixed by phenotype selection in
DUhTP mice. This may further imply that although these 465 genes affected by phenotype
selection in DUhTP mice have an association with physical activity, the majority of all DEGs
in DUhTP vs. DUC mice (n = 5560 DEGs) could not directly be linked to physical activity
by the present approach. In other words, since the present study may only explain 8.4% of
all DEGs in DUhTP mice vs. DUC mice, we may assume that more than 90% of all DEGs
are related to longer-term or shorter-term effects or have no function for physical activity.

Nevertheless, the comparison of DEGs in pituitary glands from marathon mice and
unselected controls demonstrated that marathon mice are less responsive to training. This
may further suggest that specific adaptations in DUC mice in response to training have
already resulted from the genetic selection in DUhTP mice. As discussed further down, we
may argue that training was perceived on a different level by DUhTP and DUC mice and
that endocrine or metabolic feedbacks between peripheral tissues and the pituitary gland
were different in both mouse lines. Nevertheless, in DUC mice, the pituitary gland was
responsive to the effects of physical exercise.

4.1. Genomic Effects and Identification of Candidate Genes

We next addressed the question of whether the DEGs identified by RNA-seq were
overrepresented in distinct chromosomes. This question was related to the particular
roles postulated for chromosomes 3, 6, 19, and 14 in the adaptive response to exercise in
mice [24,33]. Five of the candidate genes present in the TOP5 of the up- and downregulated
transcripts in DUhTP vs. DUC mice were located on chromosome 14 (line-associated).
Notably, Duxbl1 was the only candidate upregulated in DUhTP vs. DUC mice. Since
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Duxbl1 is regulated by retinoic acid and involved in the transition of embryonic stem cells
to the two-cell state [34], an effect of Duxbl1 on embryonic stem cell reprogramming was
discussed. Notably, the retinoic acid pathway was activated in muscle from human subjects
in response to resistance training, and thus activation of developmental processes has been
debated [35]. Retinoic acids are regulators of growth and development and are required
for the adaptive immune response [36]. The retinoic acid pathway was further involved
in developmental neurogenesis [37]. Exercise-related neurogenesis was demonstrated in
the absence of retinoic acid receptor activation in mice [38]. In addition, chromosomes
3 and 6 were identified by the presence of one DEG per chromosome in DUhTP mice
vs. DUC mice. Therefore, we selected the genomic regions close to 11 SNPs reported by
Massett et al. (2009) as associated with pre-training, post-training, and work-change in
mice. We asked whether DEGs identified by the present study may map to the genomic
regions involved in training responses, according to Masset et al. [24]. By this comparison,
Dnah9 was identified as a candidate gene in DUhTP mice affected by training. Dnah9 has
a role in the proper development of motile monocilia, and loss-of-function mutants are
characterized by laterality defects and subtle respiratory ciliary-beating defects in human
subjects [39]. A potential effect of Dnah9 for DUhTP mice is not directly evident. Moreover,
we identified the Ces1d gene on chromosome 8, overexpressed in sedentary DUhTP and
trained DUC mice, suggesting that this gene is genetically fixed in sedentary DUhTP mice
related to the selection for high running performance. Ces1d encodes a carboxylesterase in
mice and humans and is involved in lipid metabolism [40]. It has been demonstrated that
Ces1d has a key role for establishment or maintenance of cytosolic lipid droplets (CLDs)
and energy metabolism by regulating lipid transfer rate during development [41,42]. In
the context of our study, this would imply that years of selection resulted in increased
expression of Ces1d, which is associated with increased formation of cytosolic energy stores
in the pituitary gland. As a result of training, Ces1d transcription was further increased in
unselected controls, hypothetically leading to increased cytosolic lipid droplets’ formation.

Regarding the variants reported as significant by Masset et al., 2009, we further
identified Fhit (fragile histidine triad protein), located close to rs3689508 in chromosome 14,
by the comparison of trained DUhTP vs. DUC mice. Fhit represents a tumor repressor [43]
and regulates blood pressure in men and mice [44]. Finally, Mir124a-1hg, localized near the
SNP rs3660830 on chromosome 14, could be detected with elevated expression in trained
DUC but not in trained DUhTP. This marker has a significant effect on post-training effects
and training capacity [24]. The gene product, miR-124, plays a role in neurogenesis in
the developing [45] and mature brain [46]. In the hippocampus of singly housed mice,
exercise reduced miR-124 levels and has been discussed concerning stress resilience [47].
MicroRNAs are further discussed as mediators of beneficial exercise effects on peripheral
organs such as the heart [48]. In rats, swimming reduced miR-124 levels and has been
discussed in a synergistic relationship with AKT/mTOR signaling, as PI3-K is a target of
miR-124 [49]. Therefore, altered miR-124 may have adaptive central and peripheral effects
in our experimental system, which opens an interesting field for future studies.

4.2. Molecular Pathway Analysis

Long-term selection for high treadmill performance, as a rule, had an inhibitory
effect on molecular or metabolic pathways in the pituitary gland. Accordingly, the direct
comparison of untrained DUhTP and DUC mice suggested inhibition of the LXR/RXR and
the unfolded protein response (UPR) pathway. The UPR pathway is activated in response
to cellular stress and is required to control protein quality during protein translation [50].
In the pituitary gland, the UPR pathway was discussed in the context of hormone secretion
under the control of selenoprotein T [51]. By contrast, the LXR/RXR pathway seems to play
a role in controlling the metabolism and inflammatory response in pituitary glands [52].
In addition, control of the RXR pathway was discussed earlier based on the elevated
expression of Duxbl1 in trained DUhTP vs. controls.
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In line with the high number of DEGs in trained DUhTP vs. trained DUC mice, several
different canonical pathways were affected by the interaction of genetic group and physical
activity. The pathway analysis collectively suggested the inhibition of carbon-, lipid-,
and protein-metabolism, steroid-signaling, synaptic signaling, and appetite regulation in
trained DUhTP vs. trained DUC mice. Integrin signaling was also identified, indicating
differential effects on intracellular signaling pathways in trained DUhTP mice vs. unse-
lected controls. Notably, in the liver of untrained DUhTP mice, activation of carbohydrate-,
lipid-, and steroid metabolism was described compared to DUC mice [53].

Because EIF2 signaling and the OXPHOS pathways appeared as the only two path-
ways activated by physical activity, we now discuss potential roles during adaptive re-
sponse to exercise, respectively. First of all, neither pathway was activated in the pituitary
glands of DUhTP mice, suggesting that other adaptations are present that prevent or elimi-
nate activation of both pathways. While this assumption cannot be answered here, we can
identify both pathways as the first line of adaptive response in untrained control animals.
From approximately 80 ribosomal proteins, 49 members were increased by training in DUC
mice. In addition, in response to training, but in human muscle, the EIF2 pathway was
identified by IPA [35]. However, a negative effect was found, resulting in the downregula-
tion of 70 rRNA transcripts. In this study, the training period lasted for 20 weeks, resulting
in part in a marked hypertrophic response. Accordingly, the different regulation directions
could be related to different species, tissues, and training parameters. Accordingly, our
study supports regulation of protein synthesis in response to physical activity, initially
provided by Phillips et al. [35]. Interestingly, in this study in human muscle, EIF2 signaling
was negatively correlated with mTOR pathway activation and lean mass [35]. Ribosome
synthesis is a highly coordinated process, and the interaction of different ribosomal proteins
establishes two principal functions, namely t-RNA decoding and protein translation [54].
Both functions are separated into two different subunits. Since training had a positive
effect on gene expression coding for ribosomal proteins from both subunits, we assumed a
coordinated adaptive response in DUC mice resulting in a coordinated increase of both
ribosomal subunits resulting in an increased capacity of protein translation in response
to training.

Training induced mRNA expression of several oxidative phosphorylation chain sub-
units, except Mt-Nd5, in unselected controls. Accordingly, gene set enrichment analysis in
trained versus untrained control mice identified significant activation of oxidative phospho-
rylation in pituitary glands. From a significant increase in total oxidative phosphorylation,
an increase in energy production could be assumed since this pathway is also associated
with pituitary adenoma [55]. Notably, the enhanced energy production could be linked to
the elevated demands of protein translation, as discussed earlier. Accordingly, both path-
ways could be interpreted as a common signature of exercise-related adaptation to increase
the pituitary gland’s secretory capacity, whose protective effects could be associated with
an improved pituitary function [56].

Notably, the effects of training on both metabolic pathways were not observed in
pituitary glands from marathon mice. Instead, trained DUhTP mice were characterized
by similar OXPHOS subunits’ expression as untrained controls but by lower expression
than trained control mice. This clearly demonstrates that pituitary glands can respond
to training by different mechanisms: In untrained DUC mice, molecular pathways of
protein synthesis and energy metabolism were increased by training. In DUhTP mice
with high endurance exercise performance, these pathways were unaffected by training.
Instead, many different transcripts were increased in response to training, suggesting
specific effects in different cell populations from the pituitary gland. In addition, the high
number of DEGs in untrained DUhTP mice compared to untrained controls may point to a
plethora of cell-type-specific adaptations during the long history of phenotype selection in
DUhTP mice. Therefore, and as a limitation of the present study, future investigations will
have to address these specific effects using single-cell transcriptomics. Nevertheless, the
differential response to training in marathon mice and controls could be due to different
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metabolites in the two mouse lines’ circulation. For example, lactate [57] or butyrate [58]
were demonstrated to control GH-secretion by pituitary cells from rats and, therefore, were
discussed as potential metabolic effectors of exercise on neuroendocrine responses. As
a general limitation, phenotype selection cannot be used for the differentiation of direct
versus indirect effects. In order to identify direct or indirect effects on gene expression of the
pituitary gland from our animal model, we would have to perform metabolomics studies
to identify candidate metabolites, which then could be tested using ex vivo assessment in
pituitary explants. However, and as an advantage, results in phenotype-selected models
may contain a higher degree of physiological relevance since genotype-based models may
not always provide effects that, in fact, play a role under physiological conditions. Finally,
non-inbred mice used in the present manuscript have a higher phenotypic variance than
inbred mice, which are often used as genotype-based mouse models for functional genome
analysis. Accordingly, elevated phenotypic variability could have prevented the detection
of hormonal pathways in cellular subpopulations from the pituitary gland. To cope with
the issue of sensitivity, other methods like single-cell/nucleus RNA sequencing may be
useful, as described earlier in this manuscript. However, since higher phenotypic variance
is a function of higher genetic variability due to the non-inbred genetic background present
in the animal model used here, it can also be perceived as an advantage due to a better
representation of broader populations.

5. Summary and Conclusions

An effect of training on the regulation of molecular pathways in the pituitary gland
was observed in control mice (DUC) but not in mice long-term selected for high treadmill
performance (DUhTP). In particular, two metabolic pathways involved in protein transla-
tion and energy metabolism were induced by training in DUC mice. Since both pathways
were defined by increased mRNA transcript abundance in response to training and also
in comparison to DUhTP mice, we assumed increased protein synthesis and elevated
energy supply in DUC mice in response to training. Comparative analysis of DEGs with
the literature supported the role of miR-124 for adaptive training responses. Accordingly,
miR-124 was decreased by phenotype selection in marathon mice or by exercise in rats [49]
and located in the close neighborhood to a QTL region associated with training responses
in mice [24]. Accordingly, the role of miR-124, which targets the AKT/mTOR pathway,
appears as an interesting subject for subsequent studies in our experimental mouse model.
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(d) DUhTP vs. DUC tr. Table S2: List of DEGs and housekeeping genes selected for RT-qPCR
validation with corresponding forward and reverse primers. Table S3: Comparison of log2FC
of mRNA abundance measured with RNA-sequencing (NGS) and quantitative real-time PCR for
selected genes; significant p-value in bold. Abbreviation: sed. = sedentary, tr. = trained, vs. = versus.
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