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Abstract

In utero exposure to maternal obesity increases the offspring’s risk of obesity in later life. We have also previously reported
that offspring of obese rat dams develop hepatic steatosis, mild hyperinsulinemia, and a lipogenic gene signature in the
liver at postnatal day (PND)21. In the current study, we examined systemic and hepatic adaptations in male Sprague-Dawley
offspring from lean and obese dams at PND21. Indirect calorimetry revealed decreases in energy expenditure (p,0.001) and
increases in RER values (p,0.001), which were further exacerbated by high fat diet (45% kcals from fat) consumption
indicating an impaired ability to utilize fatty acids in offspring of obese dams as analyzed by PRCF. Mitochondrial function is
known to be associated with fatty acid oxidation (FAO) in the liver. Several markers of hepatic mitochondrial function were
reduced in offspring of obese dams. These included SIRT3 mRNA (p = 0.012) and mitochondrial protein content (p = 0.002),
electron transport chain complexes (II, III, and ATPase), and fasting PGC-1a mRNA expression (p,0.001). Moreover, hepatic
LCAD, a SIRT3 target, was not only reduced 2-fold (p,0.001) but was also hyperacetylated in offspring of obese dams
(p,0.005) suggesting decreased hepatic FAO. In conclusion, exposure to maternal obesity contributes to early
perturbations in whole body and liver energy metabolism. Mitochondrial dysfunction may be an underlying event that
reduces hepatic fatty acid oxidation and precedes the development of detrimental obesity associated co-morbidities such
as insulin resistance and NAFLD.
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Introduction

The obesity epidemic continues to worsen worldwide, with the

most alarming increases occurring in children [1]. If the current

trends of childhood obesity continue, it is projected that 60 million

children will be overweight or obese by 2020 worldwide [1].

Obesity in children is not only becoming more prevalent, but is

also beginning at younger ages, even as young as infants (0–11 mo)

[2,3]. Accelerated growth during infancy and perhaps even in utero

programs not only increased susceptibility for obesity in later life,

but also increases the risk of several obesity-related co-morbidities,

such as insulin resistance and cardiovascular disease [4–6]. This

occurrence of early onset obesity suggests that the intrauterine

environment may be contributing to the obesity epidemic through

fetal programming of offspring metabolism and disruption of

energy balance [7,8].

Using a rat model of gestational obesity, we have previously

shown that maternal obesity, at the time of conception, leads to

greater fat mass, increased body fat percentage, and insulin

resistance in the offspring in later life (postnatal day (PND) 130),

and worsens when challenged with a high fat diet (HFD) [9].

Further, indications of metabolic abnormalities in these offspring

are apparent as early as PND21 and include hepatic steatosis, mild

hyperinsulinemia, and a lipogenic gene signature in the liver [10].

It is possible that maternal obesity-induced exposure to elevated

fatty acids in utero leads to a shunting of fatty acids towards

lipogenesis and away from fatty acid oxidation. However, the

precise mechanisms that contribute to increased susceptibility of

offspring from obese dams to develop nonalcoholic fatty liver

disease (NAFLD) in early life, and obesity in later life, remain

poorly understood.

Hepatic mitochondria are of maternal origin, and as such, may

be an important target to consider for investigating metabolic

perturbations in offspring of obese women. Mitochondria are

critical sites of metabolism and are associated with energy sensing.

For example, mitochondrial dysfunction in the liver has been

associated with the development of NAFLD in obese rats, as shown

by: reduced fatty acid oxidation; decreased cytochrome c protein

content in the liver [11,12]; and decreased carnitine palmitoyl-CoA

transferase-1 activity [11]. Moreover, maternal exposure to a high

fat diet prior to conception, and during gestation and lactation, has

been reported to lead to the development of NAFLD and insulin
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resistance [13] in adult offspring that was linked to reduced

mitochondrial electron transport chain activity in mice [14].

Furthermore, mitochondrial dysfunction has been linked to human

patients diagnosed with NAFLD [15].

In the current study, we examined systemic and hepatic

metabolic adaptations in offspring from lean and obese dams at

PND21. First, we studied whether maternal obesity alters energy

expenditure and substrate utilization in offspring using indirect

calorimetry. Second, we sought to determine the role of mito-

chondrial function in offspring by measuring gene expression and

protein content of key mitochondrial markers in the liver. Third, we

investigated fasting-induced changes in hepatic mitochondrial

markers involved in energy status. Our results demonstrate that

offspring from obese rat dams have increased susceptibility to

develop systemic and hepatic energy utilization perturbations that

are mediated, in part, by mitochondrial dysfunction at weaning.

Materials and Methods

Animals and chemicals
Female Sprague-Dawley rats (150–175g) were obtained from

Charles River Laboratories (Wilmington, MA). Animals were

housed in an AAALAC-approved animal facility in a temperature

and light controlled room (12 h light-12 h dark cycle). All

experimental protocols were approved by the Institutional Animal

Care and Use Committee at the University of Arkansas for

Medical Sciences (Protocol # 2971). Unless specified, all chemicals

were obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO).

Experimental protocol
Virgin female Sprague-Dawley rats were intragastrically

cannulated and allowed to recover for 10 d as previously described

[9,16–19]. Rats were fed liquid diets at either 155 kcal/kg3/4 ? day

(referred to as lean dams) or at 220 kcal/kg3/4 ? d (40% excess

calories, referred to as obese dams). We have previously

reported body weights and body compositions of lean and obese

dams [9]. Total enteral nutrition (TEN) diets met National

Research Council (NRC) nutrient recommendation and have been

used previously by our group [9,16–22]. Infusion of diets was

carried out for 23 h/d using computer controlled pumps for 3 wk.

Animals had ad libitum access to drinking water and body weights

were measured three times per week. Following 3 wk of over-

feeding to induce obesity in the 220 kcal/kg3/4 ? d group, lean and

obese rats (N = 15/group) were allowed to mate for 1 wk. Each

female rat was housed with one lean breeder male and allowed ad

libitum access to AIN-93G diet during this period. After mating all

female rats (lean and obese) received diets at 220 kcal/kg3/4 ? d

(NRC recommended caloric intake for pregnancy in rats). All rats

were allowed to give birth naturally. Numbers and sex of pups,

birth weight, and crown-to-rump and anogenital distance were

measured for each pup on PND1 as previously described [9,10].

On PND2, four male and four female pups from each litter were

cross-fostered to lean dams that had been previously time-

impregnated to give birth on the same day as the obese dams

receiving infusion diets. Cross-fostered dams were not cannulated

and had ad libitum access to AIN-93G pelleted diets throughout

lactation. Using this experimental paradigm, we ensured that

offspring’s exposure to any effects of maternal obesity was limited

almost exclusively to the intrauterine environment [9]. Female

offspring of lean and obese dams were used for separate experi-

ments, and only data from male offspring are reported here. Male

offspring were euthanized under anesthesia at PND21 (N = 15/

group). In some experiments, animals were sacrificed following a

24 h (9:00 am – 9:00 am) fast. At sacrifice, liver was weighed,

formalin fixed, and immediately frozen in liquid nitrogen and

stored at 270uC for later analyses. Serum was obtained by

centrifugation of blood samples and stored at 220uC.

Indirect calorimetry
Offspring from lean and obese rat dams (N = 5/group from

separate litters) at PND21 were housed under conditions of

12:12 h light-dark cycle in metabolic chambers using the Com-

plete Lab Animal Monitoring system (CLAMS) to assess energy

expenditure (EE), respiratory exchange ratio (RER), physical

activity, and food intake (Columbus Instruments, Columbus, OH).

Offspring were housed in the CLAMS chambers from PND20 –

PND51. Rats were acclimated to the metabolic chambers for a

minimum of 7 days while having ad libitum access to the AIN-93G

diet. Rats had ad libitum access to the AIN-93G or high fat diet

(HFD, 45% kcals from fat) throughout the CLAMS measurement

period. Data from 3 consecutive 24-h cycles for both AIN-93G

(PND34 – PND 37) and high fat diet (PND48 – PND51) were

converted into percent relative cumulative frequency (PRCF)

values. Expressing indirect calorimetry data as PRCF has been

shown to discern small changes in EE and RER values that may

be missed by averaging values over 24-h periods [23]. EE was

calculated using a modified Weir equation [24,25]: EE = Calorific

value (CV) ? VO2subject, CV = 3.815 + 1.232 ? respiratory exchange

ratio (RER). Physical activity was measured as the total number of

infrared beam breaks in the X, Y, and Z axes during 20 min

intervals. Percent relative cumulative frequency (PRCF) was used to

analyze EE and RER values as previously described [23]. Briefly,

EC50 values were derived following nonlinear regression using 4-

parameter Hill plot.

RNA isolation and Real-time RT-PCR
Total RNA was isolated from liver of offspring at PND21

(N = 15/group) using RNeasy mini columns (QIAGEN, Valencia,

CA) including on-column DNase digestion. One microgram of

total RNA was reverse transcribed using IScript cDNA synthesis

kit (BioRad, Hercules, CA). Real-time PCR analysis was per-

formed using itaq SYBR Green Supermix (Biorad, Hercules, CA)

with each sample run in singlet as described previously using an

ABI Prism 7500 instrument [17,22]. Gene specific primers were

designed using Primer Express Software for sirtuins (SIRT) 1, 2, 3,

4, 5, 6, and 7 and peroxisome proliferator-activated receptor

gamma-coactivator (PGC)-1a (Table 1). Relative amounts of

mRNA were quantified using a standard curve run in duplicates

and normalized to the expression of SRP14.

Immunoblotting and Immunoprecipitation
Total lysates from liver tissue was prepared in RIPA buffer

(25 mM Tris-HCl, 150 mM NaCl, 1.0% NP-40, 1.0% deoxy-

cholic acid, 0.1% SDS, 2 mM EDTA) containing 1 mM PMSF

and protease inhibitors (Sigma, St. Louis, MO). Mitochondrial

protein extracts were prepared using a Mitochondrial Isolation Kit

for Tissue (Pierce, Rockford, IL). Quantification of proteins was

performed using BCA assay (Pierce, Rockford, IL). Immunoblot-

ting was performed for oxidative phosphorylation complexes I–V

(MitoSciences, Eugene, OR), PGC-1a (Calbiochem, La Jolla, CA),

SIRT3 (Cell Signaling Technology, Beverly, MA), long chain acyl-

CoA dehydrogenase (LCAD) (gift from Dr. Gerard Vockley,

University of Pittsburgh), and voltage-dependent anion channel-1

(VDAC1) (Abcam, Cambridge, MA) as previously described in

either total liver lysates or extracts from mitochondrial fractions

(N = 4–8/group) [26]. Immunoprecipitation was performed using

a commercially available kit (Catch and Release, Millipore,

Billerica, MA). Briefly, 100 mg of protein from pooled liver

Maternal Obesity and Offspring Mitochondrial SIRT3

PLoS ONE | www.plosone.org 2 August 2011 | Volume 6 | Issue 8 | e24068



mitochondrial fractions (each pool representing 2 separate

animals) were performed (N = 4/group). Following overnight

incubation with LCAD or nonspecific IgG (Santa Cruz Biotech-

nology, Santa Cruz, CA) immune complexes were solubilized in 1

X SDS buffer. Aliquots were resolved using SDS-PAGE and

immunoblotting was performed using acetylated-lysine antibody

(Cell Signaling Technology, Beverly, MA). Detection of immuno-

blots was carried out using HRP-linked secondary antibodies

(Santa Cruz Biotechnology, Santa Cruz, CA) followed by

chemiluminescence (West Pico, Pierce, Rockford, IL). Desito-

metric quantitation of immunoblots was performed using Quantity

One software (BioRad, Hercules, CA).

Statistical Analysis
Data are expressed as means 6 SEM, significance was set at

p,0.05. Differences between offspring of lean and obese dams at

PND21 were determined using two-tailed Student’s t-test.

Differences between offspring of lean and obese dams at PND21

fed a AIN-93G or HFD were analyzed using two-way Analysis of

variance followed by all-pair wise comparisons by Fisher least

significant difference (LSD). Statistical analyses were performed

using SigmaPlot 11.0 software (Systat Software Inc., San Jose,

CA).

Results

Exposure to Maternal Obesity Decreases Energy
Expenditure (EE) and Respiratory Exchange Ratio (RER) in
the Offspring

Significant differences in both EE and RER between offspring

of obese and lean dams which were further exacerbated when

challenged with a high fat diet as shown by the EC50 values in

Figure 1A and 1B. As expected, increases in EE were observed

in both groups in response to the HF diet. However, EE was

reduced in offspring from obese dams on both control (p,0.001,

52.3660.07 vs. 50.9860.05 kcals/day), and high fat diet

(p,0.001, 61.2860.08 vs. 59.2060.12 kcals/day) as compared

to offspring from lean dams. 24-h averaged values showed

increased EE in both offspring groups in response to HF diet

(Figure 1C), but was not sensitive enough to detect the differences

due to maternal obesity as shown by PRCF in Figure 1A. PRCF

analysis also showed differences in RER between offspring groups

and by type of diet. As expected, the HF diet caused RER values

to decline in both the offspring of lean and obese rat dams. On the

AIN-93G diet, RER values of offspring were greater in obese

offspring as compared to lean offspring (0.9660.0004 vs. 0.986

0.0002, p,0.001). When challenged with a high fat diet the

decline in RER was blunted in the offspring from obese dams with

an RER value of 0.9160.0002 vs. 0.9460.0002 in offspring from

lean dams (p,0.001). No differences in average 24 h RER values

(Figure 1D) were observed in offspring of obese dams when fed a

control or HFD. Total activity measures of rats during indirect

calorimetry revealed no effect of maternal obesity in the offspring;

however, both offspring groups showed significantly reduced total

activity when fed a HF diet (Figure 1E). Food intake was also

measured every other day and there were no differences between

offspring due to maternal obesity on either diet (Figure 1F).

Hepatic Sirtuin (SIRT) mRNA Expression is Influenced by
Maternal Obesity

To investigate if changes in EE and RER in offspring of obese

dams were related to sirtuin expression, we examined hepatic

mRNA expression of the sirtuin family (SIRT1, 2, 3, 4, 5, 6, and

7). At PND21 offspring of obese dams showed reduced mRNA

expression of SIRT2 (27%, p = 0.052), SIRT3 (43%, p = 0.012),

SIRT6 (31%, p = 0.013), and SIRT7 (25%, p = 0.049) as

compared to lean dam offspring (Figure 2). Differences in

mRNA levels of SIRT1, SIRT4, and SIRT5 between lean and

obese groups did not reach statistical significance.

Mitochondrial Protein Content of SIRT3 and Electron
Transport Chain (ETC) Complexes

Since SIRT3 is primarily localized in the mitochondria and is

critical for fatty acid oxidation, we investigated the levels of SIRT3

protein in mitochondrial extracts. Consistent with gene expression

data, SIRT3 protein levels were also markedly reduced (,3-fold)

in offspring of obese dams (p = 0.002) as shown in Figure 3.

Several components of the ETC are highly regulated by

nutritional status (e.g. fasting) through acetylation of key residues

which are downstream targets of SIRT3. Representative blots of

the five electron transport chain complexes are shown in

Figure 4A. Apoprotein levels of complexes II (p = 0.001), III

(p = 0.012), and ATPase (p = 0.031) were reduced by 64%, 63%,

and 42% respectively in the offspring of obese dams as compared

to lean dam offspring (Figure 4B). Decreases in levels of complex

I nearly reached statistical significance (p = 0.063) in offspring of

obese dams. To indirectly estimate mitochondrial content we

assessed mRNA levels of mitochondrial transcription factor A

Table 1. Primers Sequences for Real-time RT-PCR Analyses.

Gene Name Forward primer (59- 39) Reverse primer (59- 39)

SIRT1 CTGTTTCCTGTGGGATACCTGACT ATCGAACATGGCTTGAGGATCT

SIRT2 TCCACTGGCCTCTATGCAAACT GCAAAGAAGGGTTCTGGATGTT

SIRT3 GGCACTACAGGCCCAATGTC TCTCTCAAGCCCGTCGATGT

SIRT4 TTACAGCGCTTCATTAGCCTTTC CCCACCTTTTCTGACCTGTAGTCT

SIRT5 AGAGCAAGATCTGCCTCACCAT AGCCCCCGAGATGATGACTAT

SIRT6 CCGTCTGGTCATTGTCAACCT GCTTCATGAGCTTGCACATCAC

SIRT7 GGGTCCAGCTTGAAGGTACTGA GTCCACTGCAGGTTCACAATGT

PGC-1a CTACAATGAATGCAGCGGTCTT TGCTCCATGAATTCTCGGTCTT

Gene specific primers were designed using Primer ExpressTM Software (Applied Biosystems, Foster city, CA). Real-time PCR reactions were carried out according to
manufacturer’s instructions for 2X SYBR green master mix and monitored on a ABI Prism 7500 sequence detection system (Applied Biosystems, Foster city, CA) as
described under methods. SIRT: sirtuin; PGC-1a: peroxisome proliferator activated receptor-c coactivator-1a.
doi:10.1371/journal.pone.0024068.t001
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(mtTFAM). No differences were observed in TFAM mRNA

between offspring of lean and obese groups (data not shown).

Fasting-Induced SIRT3 and PGC1a mRNA Expression and
Protein Is Blunted in Offspring of Obese Dams

SIRT3 and peroxisome proliferator activated receptor-c
coactivator (PGC)-1a are critical regulators of mitochondrial fatty

acid oxidation that are sensitive to nutritional changes and are

particularly induced by fasting. Since fasting robustly activates

pathways involved in fatty acid mobilization, we utilized this

challenge to discern differences between offspring of lean and

obese dams that may be evident during fasting. In the fed state, we

observed 25% lower SIRT3 mRNA expression in the offspring

from obese dams (p = 0.011) as compared to offspring from lean

dams (Figure 5A). As expected, fasting led to increased expression

of SIRT3 mRNA in offspring of lean dams (122%, p,0.001).

However, while still greater than fed controls (p,0.005), the

fasting induction of SIRT3 mRNA in offspring of obese dams was

blunted as compared to the induction that occurred in offspring of

lean dams (p,0.001) indicating a deficit in the key regulators of

fatty acid mobilization (Figure 5A). Protein content of SIRT3 in

the mitochondrial fraction under fed conditions mirrored mRNA

expression in Figure 5B. Trends towards a fasting-induced

increase in SIRT3 protein as compared to the fed state, in

offspring of lean dams, as well as towards reduced SIRT3 protein

in the offspring of obese dams were preserved, consistent with gene

expression data (Figure 5B). However, these differences did not

attain statistical significance. While PGC1a mRNA levels did not

differ between offspring of lean and obese dams under fed

conditions, fasting elevated PGC1a mRNA expression (3.7-fold,

p,0.001) in the offspring of lean dams (Figure 5C). However,

similar to SIRT3 mRNA expression, there was a blunted fasting-

associated increase of PGC1a mRNA expression (2-fold, p,0.001)

in the offspring of obese dams. These findings suggest that basic

transcriptional responses coordinating fasting-associated fatty acid

oxidation are impaired by exposure to maternal obesity, consistent

with the aforementioned phenotypic (fatty liver) and physiological

changes (EE and RER).

Long Chain Acyl-CoA Dehydrogenase (LCAD)
Mitochondrial Protein Content

LCAD is a key enzyme involved in b-oxidation that is highly

regulated by SIRT3. Mitochondrial protein content of LCAD was

Figure 1. Indirect calorimetry of offspring from lean and obese rat dams. (A) EC50 values for energy expenditure (kcal/day) and
(B) Respiratory exchange ratio (RER) as shown by PRCF analysis in the offspring of lean and obese rat dams (N = 5 per group) fed either an AIN-93G or
high fat diet (45% kcals from fat) ad libitum. EC50 values were also included as means6SE. Different letter superscripts indicate statistical significance
(p,0.05). (C) 24-hr averaged values of energy expenditure, (D) RER, (E) total activity counts, and (F) food intake are shown from offspring of lean and
obese rat dams (N = 5 per group) on either an AIN-93 diet or high fat diet (45% kcals from fat). Values are expressed as means6SE, different letter
superscripts indicate statistical significance (p,0.05).
doi:10.1371/journal.pone.0024068.g001

Figure 2. Hepatic mRNA expression of sirtuin 1-7 from
offspring of lean and obese dams at PND 21. Gene expression
was assessed via real-time RT-PCR (N = 7 per group). Values are
expressed as means6SE. Statistical differences were determined using
a Student’s t-test. * indicates p,0.05.
doi:10.1371/journal.pone.0024068.g002
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reduced in the offspring of obese dams (p,0.001) as shown in

Figure 6A. Further, we found that maternal obesity led to

hyperacetylation of LCAD indicating reduced deacetylase activity

of SIRT3 (Figure 6B).

Discussion

The precise mechanisms underlying increased susceptibility to

excessive weight gain and adiposity of offspring from obese women

remain unclear. In the present work, we investigated alterations in

hepatic and whole body energy metabolism in the offspring from

lean and obese rat dams at weaning, prior to differences in body

weight or adiposity. Our studies reveal several salient findings.

First, maternal obesity decreased offspring energy expenditure and

favored decreased efficiency to utilize fatty acids as fuel substrate

when offspring were fed either a control (AIN-93G) or high fat diet

(45% kcal from fat) based on heat and RER values. Second, our

results suggest hepatic mitochondrial dysfunction in both fed and

fasted states. This was associated with impaired SIRT3/PGC1a

induction in fasting levels and dysregulation of fatty acid oxidation

and electron transport chain complexes. Together, these findings

suggest impaired nutrient sensing and fuel switching in offspring

from obese dams.

Indirect calorimetric assessments revealed a modest decrease in

energy expenditure in the offspring of obese dams fed either a

control or HFD at weaning (Figure 1A). It has been previously

reported by others that minimal differences in energy balance can

lead to obesity over time [27–29]. The current studies focused

solely on young offspring to ascertain differences in metabolism

prior to divergence in body weight. We did not expect marked

differences in EE between offspring, but sought to determine if

there were subtle, but detectable differences in EE as early as

PND21. It is important to note there were no differences in body

weight or body composition at PND21 between lean and obese

dam offspring [9,10]. However, the decrease in EE seen in obese

dam offspring (Figure 1A) was accompanied by a trend towards

increased body weight gain (40.263.3 g vs. 44.261.7 g, p = 0.297,

N = 5 per group) on HFD (over 4 d) as compared to lean dam

offspring. Moreover, obvious divergence of body weight in the

offspring does not appear until PND60 [9]. Hence, it is likely that

the offspring have a significant energy imbalance during

adulthood. Together, these current and previous findings suggest

offspring from obese dams are less able to adapt their energy

expenditure in the face of increased caloric intake and are thus

susceptible to obesity. However, we plan to measure EE in adult

offspring of lean and obese dams during divergent weight gain

(PND60) to confirm if changes in EE persist and directly

contribute to the development of obesity. Our data is consistent

with a study by Rising and Lifshitz (2008) that showed decreased

Figure 3. Hepatic SIRT3 mitochondrial protein content of lean
and obese dam offspring. Representative blot and densitometric
quantitation of SIRT3 protein content in the mitochondrial fraction from
livers of offspring of lean and obese dams at PND21 by Western
blotting (N = 4 pools representing a total of 8 animals/group). Values
are expressed as means6SE. Statistical differences were determined
using a Student’s t-test. * indicates p,0.05.
doi:10.1371/journal.pone.0024068.g003

Figure 4. Electron transport chain complexes from mitochondrial fractions of livers from offspring of lean and obese dams at PND
21. (A) Representative blots and (B) densitometric quantitation (N = 3–4 pools representing a total of 6–8 animals/group). Values are expressed as
means6SE. Statistical differences were determined using a Student’s t-test. * indicates p,0.05.
doi:10.1371/journal.pone.0024068.g004
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EE and increased adiposity in infants of obese mothers as

compared to infants born to lean mothers [30].

A hallmark of greater reliance on fatty acids as an energy source

(either during fasting or consumption of HF diets) is the lowering

of RER values [31–34]. Offspring from obese dams uniformly

showed small but consistently higher RER values on either control

or HF diets. Both greater de novo lipogenesis and impaired fatty

acid utilization could presumably account for higher RER values

in offspring of obese dams. In a recent report, we demonstrated

that obese dam offspring display hepatic steatosis and a lipogenic

transcriptomic signature associated with greater sterol regulatory

binding protein (SREBP)-1c and lower peroxisome proliferator

activated receptor (PPAR)-a/59-AMP-activated protein kinase

(AMPK) signaling at weaning. The present data from indirect

calorimetry are consistent with our previous report. The dif-

ferences in RER values between lean and obese dam offspring

were greater when challenged with HF diets, suggesting impaired

metabolic flexibility (i.e. to adapt substrate utilization with

substrate availability) [35] (Figure 1B). In the current report,

we focused on examining mechanisms regulating fatty acid

oxidation that may explain this inflexibility. A recent study

conducted in obese adolescents (11–18 yr old) with non-alcoholic

fatty liver disease (NAFLD) reported that hepatic fat accumula-

tion led to decreased reliance on fatty acid oxidation in the fasted

state. This was accompanied by an inability to suppress fatty

acid oxidation (FAO) during an oral glucose tolerance test as

determined by RER values. This impaired capacity to switch

substrate utilization to FAO during fasting and back to car-

bohydrate oxidation when glucose challenged indicates metabolic

inflexibility [36]. Most importantly, impaired FAO was deter-

mined by hepatic fat content and not abdominal adiposity. Hence,

it appears that there is an intricate relationship between hepatic

steatosis and fatty acid oxidation. Consistent with these findings,

offspring from obese dams develop increased liver weight and

hepatic fat accumulation without differences in body weight or

adiposity [10]. Therefore, it is plausible that exposure to maternal

Figure 5. Fasting-induced changes in SIRT3 and PGC-1a mRNA and protein expression of lean and obese dam offspring. (A) SIRT3
mRNA expression, (B) SIRT3 mitochondrial protein content, and (C) PGC-1a mRNA expression in liver from fed and fasted offspring of lean and obese
dams at PND 21 (N = 8–15 per group). Representative blot is also shown in FIG 5B for SIRT3 protein content (N = 4 per group). Values are expressed as
means6SE, different letter superscripts indicate statistical significance (p,0.05).
doi:10.1371/journal.pone.0024068.g005

Figure 6. Hepatic mitochondrial protein content and acetylation of LCAD of lean and obese dam offspring. (A) Representative blot and
densitometric quantitation of LCAD in the mitochondrial fraction from livers of offspring from lean and obese dams at PND21 by Western blotting
(N = 4 pools representing a total of 8 animals/group). (B) Representative blot and densitometric quantitation of acetylated LCAD in the mitochondrial
fraction from fasted livers of offspring at PND21 (N = 3 per group). Immunoprecipitation of LCAD was performed in total liver lysates and
immunoblotting was performed using anti-acetylated lysine antibody. Values are expressed as means6SE. Statistical differences were determined
using a Student’s t-test. * indicates p,0.05.
doi:10.1371/journal.pone.0024068.g006
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obesity alters metabolic sensors leading to an impaired ability to

oxidize fat.

Mitochondria are typically the primary site for FAO, and since

mitochondria are maternally inherited, several models of gesta-

tional programming have focused on changes in this organelle

[13,14,37–41]. Since our model exclusively examines the contri-

bution of maternal obesity, mitochondrial changes may be an

important conduit on how maternal obesity mediates program-

ming of offspring metabolism. Mitochondrial dysfunction is highly

associated with reduced FAO [11,12,14,15]. While we found no

differences in mRNA expression of mitochondrial transcription

factor A (mtTFAM) between offspring of lean and obese dams,

suggesting that mitochondrial numbers may not be affected, our

studies identified several indications of mitochondrial dysfunction,

including lower abundance of oxidative phosphorylation (OX-

PHOS) complexes (Figure 4). In addition to lower amounts of

OXPHOS proteins, the function of the electron transport chain

complexes and other mitochondrial proteins are highly regulated

post-translationally via lysine acetylation [42]. Recent studies have

shown SIRT3, a member of the class III NAD+ dependent

deacetylase family, to be located in the mitochondria and known

to critically regulate OXPHOS in the liver [43,44].

Sirtuins act as energy sensors and regulate metabolic processes

via their deacetylation activity. The sirtuin family consists of seven

isoforms (SIRT1-7) that regulate distinct metabolic pathways in

various cellular locations [45]. SIRT1, 6, and 7 are located in the

nucleus, SIRT2 in the cytosol, and SIRT3, 4, and 5 in the

mitochondria [45]. Our data suggest that maternal obesity affects

the levels of several SIRT isoforms (SIRT2, 3, 6, and 7) in the

offspring liver (Figure 2), suggesting that the SIRT family may

play a role in fetal metabolic programming. We chose to examine

SIRT3 due to its mitochondrial location and lack of change in

mRNA expression in the other mitochondrial located isoforms

(SIRT 4, 5). Further, Lombard et al. found that SIRT4- and

SIRT5-deficient mice did not increase global lysine acetylation in

contrast to SIRT3-deficient mice [46]. Elegant studies in early

mouse embryos and blastocyst also reveal that SIRT3 is

maternally inherited and critical for protection from reactive

oxygen species [47]. Moreover, SIRT3 has been associated with

increasing energy utilization in liver [48], skeletal muscle [49], and

brown fat [50] suggesting a role in increased whole body energy

expenditure and is highly responsive to dietary challenges such as

high fat diet or fasting. Studies also show that SIRT3 mRNA

expression and protein content in the liver are decreased in

response to nutrient excess [44] and increased in response to

fasting [48]. Hence, given the critical roles for SIRT3 in multiple

aspects of fat and energy expenditure, programming of SIRT3

may have important consequences for offspring metabolism.

Utilizing SIRT3-knockout (KO) mice, Hirschey et al. performed

a meticulous study demonstrating the role of SIRT3 in regulating

mitochondrial fatty acid oxidation (FAO) [48]. Increased SIRT3

expression, in response to fasting, induced LCAD via deacetylation

leading to increased FAO in the liver, heart, and brown fat.

Moreover, overexpression of SIRT3 rescued hepatic FAO in the

SIRT3 KO mice. Our results from offspring of obese dams are

analogous to the phenotypic changes observed in the SIRT3 KO

mice (elevated RER, reduced SIRT3 mRNA and protein, and

hyperacetylation of LCAD) would strongly suggest that hepatic

FAO may be reduced in the offspring of obese dams. Further, a

recent study by Kendrick et al. showed that fatty liver is associated

with decreased SIRT3 activity, hyperacetylation of key mitochon-

drial proteins, and impairment of the ETC [44]. These data are

again consistent with previously reported hepatic steatosis and

lipid accumulation in offspring of obese dams at weaning [10].

Deficits in FAO in offspring of obese dams are certainly not

limited to lower SIRT3 and mitochondrial OXPHOS. We

previously reported that carnitine palmitoyl-CoA transferase

(CPT)-1, the rate-limiting enzyme for fatty acid entry into the

mitochondria, is reduced in the offspring of obese dams [10]. This

was associated with a coordinated down-regulation of PPAR-a
regulated genes and reduced phosphorylation of AMPKThr172 in

the offspring of obese dams. Phosphorylation of AMPK induces

activation of catabolic processes such as glucose uptake and fatty

acid oxidation [10] and has been shown to be affected in other

models of maternal overnutrition [51–53]. Moreover, SIRT3

appears to regulate AMPK activation as shown in skeletal muscle

[49] and human hepatic cells [54]. Further, Pillai et al. have

recently reported that the regulatory mechanism is via SIRT3

deacetylation and activation of LKB1, an upstream kinase known

to activate AMPK in mice hearts [55]. It is likely that a reduction

in hepatic fatty acid oxidation not only further reinforces

mitochondrial dysfunction, but may also be contributing to the

development of hepatic steatosis observed in the offspring of obese

dams at weaning [10].

Adaptation to fasting requires activation of numerous pathways

that coordinate the mobilization of fatty acids. Upregulation of

PPAR-a is one of the primary drivers in the liver. It has been

previously reported that mice deficient in PPAR-a develop

dramatic hepatic steatosis upon fasting [56–58]. Increases in

pyruvate and nicotinamide adenine dinucleotide (NAD)+ levels

during fasting result in greater enzymatic activity and protein

content of SIRT1 in the nucleus [59,60]. Among its many actions,

SIRT1 activates PGC-1a via deacetylation leading to transcrip-

tional activation of a complement of genes associated with mito-

chondrial biogenesis [61,62], OXPHOS and fatty acid oxidation

[63–65]. Interestingly, it appears that PPAR-a acts upstream

of SIRT1, although the precise mechanisms remain unknown

[60]. SIRT1 also antagonizes lipogenic gene expression, mainly

via SREBP-1. Andenovirus-mediated hepatic overexpression of

SIRT1 in mice during fasting significantly downregulated SREBP-

1c, fatty acid synthase (FASN), and elongation of very long chain

fatty acids (ELOVL)-6 [66]. Offspring of obese dams have greater

lipogenic gene expression via SREBP-1c [10] and while SIRT1

mRNA was not significantly altered in offspring of obese dams, a

more detailed analysis of SIRT1-mediated regulation of lipogen-

esis is certainly warranted. Consistent with our earlier findings on

PPAR-a [10], the current data show that maternal obesity led to

blunted fasting-mediated induction in both SIRT3 and PGC-1a
mRNA expression in the offspring. While the precise crosstalk

between SIRT3 and PGC-1a is still being actively investigated,

SIRT3 promotes the expression of PGC-1a in brown fat [50] and

SIRT3 deficient mice express decreased mRNA levels of PGC-1a
in skeletal muscle [49]. Furthermore, a recent study also showed

that PGC-1a positively regulated SIRT3 gene expression in

myocytes and hepatocytes, via direct recruitment to the SIRT3

promoter via an estrogen receptor-related-a binding site [67].

In conclusion, we have shown that maternal obesity contributes

to early perturbations in whole body and liver energy metabolism

in the offspring at weaning. Decreased expression of SIRT3 and

other key mitochondrial proteins involved in fatty acid oxidation

and OXPHOS suggest mitochondrial dysfunction may precede

more detrimental obesity associated co-morbidities such as insulin

resistance and NAFLD.
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Crystal Combs and Michèle Perry for their technical assistance. We

Maternal Obesity and Offspring Mitochondrial SIRT3

PLoS ONE | www.plosone.org 7 August 2011 | Volume 6 | Issue 8 | e24068



gratefully acknowledge Dr. Gerard Vockley (University of Pittsburgh,

Children’s Hospital of Pittsburgh, Pittsburgh, PA) for providing the anti-

LCAD antibody.

Author Contributions

Conceived and designed the experiments: SJB KS MJR TMB. Performed

the experiments: SJB FL PK. Analyzed the data: SJB FL KS MJR TMB.

Contributed reagents/materials/analysis tools: SJB MLB PK FL. Wrote

the paper: SJB MLB KS MJR TMB.

References

1. de OM, Blossner M, Borghi E (2010) Global prevalence and trends of

overweight and obesity among preschool children. Am J Clin Nutr 92:
1257–1264. ajcn.2010.29786 [pii];10.3945/ajcn.2010.29786 [doi].

2. Mei Z, Grummer-Strawn LM, Scanlon KS (2003) Does overweight in infancy
persist through the preschool years? An analysis of CDC Pediatric Nutrition

Surveillance System data. Soz Praventivmed 48: 161–167.

3. Ritchie LD, Ivey SL, Woodward-Lopez G, Crawford PB (2003) Alarming trends

in pediatric overweight in the United States. Soz Praventivmed 48: 168–177.

4. Singhal A, Lucas A (2004) Early origins of cardiovascular disease: is there a
unifying hypothesis? Lancet 363: 1642–1645. 10.1016/S0140-6736(04)16210-7

[doi];S0140-6736(04)16210-7 [pii].

5. Catalano PM (2003) Obesity and pregnancy--the propagation of a viscous cycle?

J Clin Endocrinol Metab 88: 3505–3506.

6. Nathanielsz PW, Poston L, Taylor PD (2007) In utero exposure to maternal

obesity and diabetes: animal models that identify and characterize implications

for future health. Clin Perinatol 34: 515–26, v. S0095-5108(07)00073-5
[pii];10.1016/j.clp.2007.09.005 [doi].

7. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE (2010) Maternal obesity
and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul

Integr Comp Physiol 299: R711–R722. ajpregu.00310.2010 [pii];10.1152/

ajpregu.00310.2010 [doi].

8. Jarvie E, Hauguel-de-Mouzon S, Nelson SM, Sattar N, Catalano PM, et al.

(2010) Lipotoxicity in obese pregnancy and its potential role in adverse
pregnancy outcome and obesity in the offspring. Clin Sci (Lond) 119: 123–129.

CS20090640 [pii];10.1042/CS20090640 [doi].

9. Shankar K, Harrell A, Liu X, Gilchrist JM, Ronis MJ, et al. (2008) Maternal

obesity at conception programs obesity in the offspring. Am J Physiol Regul

Integr Comp Physiol 294: R528–R538. 00316.2007 [pii];10.1152/ajpregu.
00316.2007 [doi].

10. Shankar K, Kang P, Harrell A, Zhong Y, Marecki JC, et al. (2010) Maternal
overweight programs insulin and adiponectin signaling in the offspring.

Endocrinology 151: 2577–2589.

11. Rector RS, Thyfault JP, Uptergrove GM, Morris EM, Naples SP, et al. (2010)
Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and

contributes to the natural history of non-alcoholic fatty liver disease in an obese
rodent model. J Hepatol 52: 727–736. S0168-8278(10)00091-7 [pii];10.1016/

j.jhep.2009.11.030 [doi].

12. Thyfault JP, Rector RS, Uptergrove GM, Borengasser SJ, Morris EM, et al.

(2009) Rats selectively bred for low aerobic capacity have reduced hepatic

mitochondrial oxidative capacity and susceptibility to hepatic steatosis and
injury. J Physiol 587: 1805–1816. jphysiol.2009.169060 [pii];10.1113/jphysiol.

2009.169060 [doi].

13. Taylor PD, McConnell J, Khan IY, Holemans K, Lawrence KM, et al. (2005)

Impaired glucose homeostasis and mitochondrial abnormalities in offspring of

rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol
288: R134–R139. 10.1152/ajpregu.00355.2004 [doi];00355.2004 [pii].

14. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, et al. (2009)
Maternal high-fat feeding primes steatohepatitis in adult mice offspring,

involving mitochondrial dysfunction and altered lipogenesis gene expression.
Hepatology 50: 1796–1808. 10.1002/hep.23205 [doi].

15. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial

dysfunction in NASH: causes, consequences and possible means to prevent it.
Mitochondrion 6: 1–28. S1567-7249(05)00136-4 [pi i] ;10.1016/

j.mito.2005.10.004 [doi].

16. Baumgardner JN, Shankar K, Hennings L, Badger TM, Ronis MJ (2008) A new

model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition

to overfeed a high-polyunsaturated fat diet. Am J Physiol Gastrointest Liver
Physiol 294: G27–G38. 00296.2007 [pii];10.1152/ajpgi.00296.2007 [doi].

17. Shankar K, Harrell A, Kang P, Singhal R, Ronis MJ, et al. (2010)
Carbohydrate-responsive gene expression in the adipose tissue of rats.

Endocrinology 151: 153–164.

18. Badger TM, Crouch J, Irby D, Hakkak R, Shahare M (1993) Episodic excretion

of ethanol during chronic intragastric ethanol infusion in the male rat:

continuous vs. cyclic ethanol and nutrient infusions. J Pharmacol Exp Ther
264: 938–943.

19. Badger TM, Ronis MJ, Lumpkin CK, Valentine CR, Shahare M, et al. (1993)
Effects of chronic ethanol on growth hormone secretion and hepatic cytochrome

P450 isozymes of the rat. J Pharmacol Exp Ther 264: 438–447.

20. Korourian S, Hakkak R, Ronis MJ, Shelnutt SR, Waldron J, et al. (1999) Diet
and risk of ethanol-induced hepatotoxicity: carbohydrate-fat relationships in rats.

Toxicol Sci 47: 110–117.

21. Shankar K, Liu X, Singhal R, Chen JR, Nagarajan S, et al. (2008) Chronic

ethanol consumption leads to disruption of vitamin D3 homeostasis associated
with induction of renal 1,25 dihydroxyvitamin D3-24-hydroxylase (CYP24A1).

Endocrinology 149: 1748–1756. en.2007-0903 [pii];10.1210/en.2007-0903

[doi].

22. Shankar K, Hidestrand M, Liu X, Xiao R, Skinner CM, et al. (2006) Physiologic

and genomic analyses of nutrition-ethanol interactions during gestation:

Implications for fetal ethanol toxicity. Exp Biol Med (Maywood) 231:

1379–1397. 231/8/1379 [pii].

23. Riachi M, Himms-Hagen J, Harper ME (2004) Percent relative cumulative

frequency analysis in indirect calorimetry: application to studies of transgenic

mice. Can J Physiol Pharmacol 82: 1075–1083. y04-117 [pii];10.1139/y04-117

[doi].

24. WEIR JB (1949) New methods for calculating metabolic rate with special

reference to protein metabolism. J Physiol 109: 1–9.

25. Jackman MR, MacLean PS, Bessesen DH (2010) Energy expenditure in obesity-

prone and obesity-resistant rats before and after the introduction of a high-fat

diet. Am J Physiol Regul Integr Comp Physiol 299: R1097–R1105.

ajpregu.00549.2009 [pii];10.1152/ajpregu.00549.2009 [doi].

26. Shankar K, Harrell A, Kang P, Singhal R, Ronis MJ, et al. (2010)

Carbohydrate-responsive gene expression in the adipose tissue of rats.

Endocrinology 151: 153–164. en.2009-0840 [pii];10.1210/en.2009-0840 [doi].

27. Racette SB, Weiss EP, Schechtman KB, Steger-May K, Villareal DT, et al.

(2008) Influence of weekend lifestyle patterns on body weight. Obesity (Silver

Spring) 16: 1826–1830. oby2008320 [pii];10.1038/oby.2008.320 [doi].

28. Stroebele N, Hill JO, Willich SN (2011) Identifying the energy gap in the

German population using results from representative national health surveys

(1985-2002). Public Health Nutr 14: 44–48. S1368980010000686 [pii];10.1017/

S1368980010000686 [doi].

29. Dolan MS, Weiss LA, Lewis RA, Pietrobelli A, Heo M, et al. (2006) ‘Take the

stairs instead of the escalator’: effect of environmental prompts on community

stair use and implications for a national ‘Small Steps’ campaign. Obes Rev 7:

25–32. OBR219 [pii];10.1111/j.1467-789X.2006.00219.x [doi].

30. Rising R, Lifshitz F (2008) Lower energy expenditures in infants from obese

biological mothers. Nutr J 7: 15. 1475–2891-7-15. [pii];10.1186/1475-2891-7-

15 [doi].

31. Knapik JJ, Meredith CN, Jones BH, Suek L, Young VR, et al. (1988) Influence

of fasting on carbohydrate and fat metabolism during rest and exercise in men.

J Appl Physiol 64: 1923–1929.

32. Zinker BA, Britz K, Brooks GA (1990) Effects of a 36-hour fast on human

endurance and substrate utilization. J Appl Physiol 69: 1849–1855.

33. Schiffelers SL, Saris WH, van Baak MA (2001) The effect of an increased free

fatty acid concentration on thermogenesis and substrate oxidation in obese and

lean men. Int J Obes Relat Metab Disord 25: 33–38.

34. Araujo RL, Andrade BM, Padron AS, Gaidhu MP, Perry RL, et al. (2010) High-

fat diet increases thyrotropin and oxygen consumption without altering

circulating 3,5,39-triiodothyronine (T3) and thyroxine in rats: the role of

iodothyronine deiodinases, reverse T3 production, and whole-body fat

oxidation. Endocrinology 151: 3460–3469. en.2010-0026 [pii];10.1210/

en.2010-0026 [doi].

35. Aucouturier J, Duche P, Timmons BW (2010) Metabolic flexibility and obesity

in children and youth. Obes Rev, 10.1111/j.1467-789X.2010.00812.x [doi].

36. Perseghin G, Bonfanti R, Magni S, Lattuada G, De CF, et al. (2006) Insulin

resistance and whole body energy homeostasis in obese adolescents with fatty

liver disease. Am J Physiol Endocrinol Metab 291: E697–E703. 00017.2006

[pii];10.1152/ajpendo.00017.2006 [doi].

37. Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, et al. (2010)

Maternal diet-induced obesity alters mitochondrial activity and redox status in

mouse oocytes and zygotes. PLoS One 5: e10074. 10.1371/journal.pone.

0010074 [doi].

38. Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B (2009) Maternal

low-protein diet alters pancreatic islet mitochondrial function in a sex-specific

manner in the adult rat. Am J Physiol Regul Integr Comp Physiol 297:

R1516–R1525. 00280.2009 [pii];10.1152/ajpregu.00280.2009 [doi].

39. Divi RL, Einem TL, Fletcher SL, Shockley ME, Kuo MM, et al. (2010)

Progressive mitochondrial compromise in brains and livers of primates exposed

in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicol Sci 118:

191–201. kfq235 [pii];10.1093/toxsci/kfq235 [doi].

40. Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, et al. (2010) A

maternal low protein diet has pronounced effects on mitochondrial gene

expression in offspring liver and skeletal muscle; protective effect of taurine.

J Biomed Sci 17(Suppl 1): S38. 1423–0127-17-S1-S38. 10.1186/1423-0127-17-

S1-S38 [doi].

41. Wilms L, Larsen J, Pedersen PL, Kvetny J (2010) Evidence of mitochondrial

dysfunction in obese adolescents. Acta Paediatr 99: 906–911. APA1635

[pii];10.1111/j.1651-2227.2009.01635.x [doi].

Maternal Obesity and Offspring Mitochondrial SIRT3

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e24068



42. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, et al. (2006) Substrate and functional

diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:
607–618. S1097-2765(06)00454-0 [pii];10.1016/j.molcel.2006.06.026 [doi].

43. Bao J, Scott I, Lu Z, Pang L, Dimond CC, et al. (2010) SIRT3 is regulated by

nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic
Biol Med 49: 1230–1237. S0891-5849(10)00435-1 [pii];10.1016/j.freeradbiomed.

2010.07.009 [doi].
44. Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, et al.

(2010) Fatty liver is associated with reduced SIRT3 activity and mitochondrial

protein hyperacetylation. Biochem J.
45. Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and

disease. Mol Endocrinol 21: 1745–1755.
46. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, et al. (2007)

Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine
acetylation. Mol Cell Biol 27: 8807–8814. MCB.01636-07 [pii];10.1128/

MCB.01636-07 [doi].

47. Kawamura Y, Uchijima Y, Horike N, Tonami K, Nishiyama K, et al. (2010)
Sirt3 protects in vitro-fertilized mouse preimplantation embryos against

oxidative stress-induced p53-mediated developmental arrest. J Clin Invest 120:
2817–2828. 42020 [pii];10.1172/JCI42020 [doi].

48. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, et al. (2010) SIRT3

regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
Nature 464: 121–125.

49. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, et al. (2009) Diet
and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in

skeletal muscle. Aging (Albany NY) 1: 771–783.
50. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin

deacetylase, regulates mitochondrial function and thermogenesis in brown

adipocytes. J Biol Chem 280: 13560–13567. M414670200 [pii];10.1074/
jbc.M414670200 [doi].

51. Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, et al. (2008) AMP-activated protein
kinase signalling pathways are down regulated and skeletal muscle development

impaired in fetuses of obese, over-nourished sheep. J Physiol 586: 2651–2664.

jphysiol.2007.149633 [pii];10.1113/jphysiol.2007.149633 [doi].
52. Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, et al. (2008) AMP-

activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-
L1 cells. J Anim Sci 86: 1296–1305. jas.2007-0794 [pii];10.2527/jas.2007-0794

[doi].
53. Philp LK, Muhlhausler BS, Janovska A, Wittert GA, Duffield JA, et al. (2008)

Maternal overnutrition suppresses the phosphorylation of 59-AMP-activated

protein kinase in liver, but not skeletal muscle, in the fetal and neonatal sheep.
Am J Physiol Regul Integr Comp Physiol 295: R1982–R1990. 90492.2008

[pii];10.1152/ajpregu.90492.2008 [doi].
54. Shi T, Fan GQ, Xiao SD (2010) SIRT3 reduces lipid accumulation via AMPK

activation in human hepatic cells. J Dig Dis 11: 55–62. CDD416 [pii];10.1111/

j.1751-2980.2009.00416.x [doi].
55. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, et al. (2010)

Exogenous NAD blocks cardiac hypertrophic response via activation of the

SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285: 3133–3144.

M109.077271 [pii];10.1074/jbc.M109.077271 [doi].

56. Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, et al. (2000) Defect in

peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation

determines the severity of hepatic steatosis in response to fasting. J Biol Chem

275: 28918–28928. 10.1074/jbc.M910350199 [doi];M910350199 [pii].

57. Rao MS, Reddy JK (2001) Peroxisomal beta-oxidation and steatohepatitis.

Semin Liver Dis 21: 43–55.

58. Yu S, Matsusue K, Kashireddy P, Cao WQ, Yeldandi V, et al. (2003) Adipocyte-

specific gene expression and adipogenic steatosis in the mouse liver due to

peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overex-

pression. J Biol Chem 278: 498–505. 10.1074/jbc.M210062200

[doi];M210062200 [pii].

59. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, et al. (2005) Nutrient

control of glucose homeostasis through a complex of PGC-1alpha and SIRT1.

Nature 434: 113–118. nature03354 [pii];10.1038/nature03354 [doi].

60. Hayashida S, Arimoto A, Kuramoto Y, Kozako T, Honda S, et al. (2010)

Fasting promotes the expression of SIRT1, an NAD+ -dependent protein

deacetylase, via activation of PPARalpha in mice. Mol Cell Biochem 339:

285–292. 10.1007/s11010-010-0391-z [doi].

61. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with

the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol

Chem 280: 16456–16460. M501485200 [pii];10.1074/jbc.M501485200 [doi].

62. Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, et al. (2010)

Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-

1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in

mitochondrial biogenesis. J Biol Chem 285: 21590–21599. M109.070169

[pii];10.1074/jbc.M109.070169 [doi].

63. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, et al. (2007) Metabolic

control of muscle mitochondrial function and fatty acid oxidation through

SIRT1/PGC-1alpha. EMBO J 26: 1913–1923. 7601633 [pii];10.1038/sj.emboj.

7601633 [doi].

64. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic

adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:

46–53. S0014-5793(07)01178-7 [pii];10.1016/j.febslet.2007.11.034 [doi].

65. Rodgers JT, Puigserver P (2007) Fasting-dependent glucose and lipid metabolic

response through hepatic sirtuin 1. Proc Natl Acad Sci U S A 104:

12861–12866. 0702509104 [pii];10.1073/pnas.0702509104 [doi].

66. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, et al. (2010) Conserved role of

SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol

regulator SREBP. Genes Dev 24: 1403–1417. 24/13/1403 [pii];10.1101/

gad.1901210 [doi].

67. Kong X, Wang R, Xue Y, Liu X, Zhang H, et al. (2010) Sirtuin 3, a new target

of PGC-1alpha, plays an important role in the suppression of ROS and

mitochondrial biogenesis. PLoS One 5: e11707. 10.1371/journal.pone.0011707

[doi].

Maternal Obesity and Offspring Mitochondrial SIRT3

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e24068


