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Abstract

Cannabinoid type 1 receptors (CB1Rs) orchestrate brain reward circuitry and are prevalent 

neurobiological targets for endocannabinoids and cannabis in the mammalian brain. Decades 

of histological and electrophysiological studies have established CB1R as presynaptic G-protein 

coupled receptors (GPCRs) that inhibit neurotransmitter release through retrograde signaling 

mechanisms. Recent seminal work demonstrates CB1R expression on astrocytes and the pivotal 

function of glial cells in endocannabinoid-mediated modulation of neuron-astrocyte signaling. 

Here, we review key facets of CB1R-mediated astroglia regulation of synaptic glutamate 

transmission in the nucleus accumbens with a specific emphasis on cocaine-directed behaviors.

Keywords

Astrocyte; Cannabinoid type I receptors; Glutamate homeostasis; Anandamide; Reinstatement; 
Cocaine

1. Introduction

Marijuana, derived from the plant Cannabis sativa, has surged in popularity due to its recent 

legalization for medical and recreational use [1–3], spurring significant investigative efforts 

to explore its potentially harmful effects. Clinical studies show that cannabis exposure, 

especially during critical developmental periods such as adolescence, induces behavioral 

and cognitive deficits [1,3] and the development of neurological and behavioral sequelae, 

including elevated hyperactivity, impulsivity, sensitivity to drugs of abuse, and risk for 
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psychosis. Δ9 - tetrahydrocannabinol (THC) is the principal psychoactive compound in 

cannabis that engages signaling at CB1R. The endocannabinoid (eCB) system is comprised 

of endogenous lipid ligands [4,5] and receptors such as the cannabinoid type 1 (CB1R) [6], 

cannabinoid type 2 (CB2R) [7], vanilloid type 1 receptor (TRPV1) [8,9], acylethanolamides-

GPR55 [10], and GPR119 [11]. While eCBs’ functions as retrograde messengers have been 

well-characterized [12–17], mounting work suggests that the eCB system exerts complex 

effects dependent on inter- or intra-cellular CB1R localization across different brain regions 

[9,18–22].

The CB1R is the most abundant G-protein coupled receptor (GPCR) in the central nervous 

system and is present in a wide variety of brain regions including the hippocampus, nucleus 

accumbens (NAc), prefrontal cortex (PFC), amygdala, and ventral tegmental area (VTA) 

[4,23]. The density of CB1R distribution exhibits cell-type selectivity. In the VTA, for 

example, CB1R are richly concentrated on the axon terminals of GABAergic interneurons, 

sparsely expressed on glutamatergic axons, and surprisingly, absent on dopamine neurons 

[24–26]. It is critical to note that diminished expression of CB1R does not necessarily 

indicate less impact on their ability to modulate cellular activity. Slice electro-physiological 

experiments revealed that CB1R agonists robustly inhibited pre-synaptic glutamate release 

in the NAc [9], although CB1R are predominately expressed in the fast-spiking interneurons 

[27]. In the hippocampus, more than half of CB1R are located in GABAergic neurons 

[28]. Surprisingly, genetic deletion of CB1R on glutamatergic neurons caused a more 

robust decrease in HU-210 (a highly potent synthetic cannabinoid agonist) induced CB1R-

G-protein binding compared to mice with GABAergic CB1R deletion in the hippocampus 

[28]. This study provides one possible explanation for the mismatch of expression level and 

functionality: every CB1R could bind with a larger quantity of G-proteins on glutamatergic 

neurons to compensate for its lower expression level [28].

Neuronal CB1R are mostly identified on axonal terminals and inhibit neurotransmitter 

release via intracellular Gi/o -signaling cascades [29]. Conversely, extensive studies 

show that astroglia CB1R promote gliotransmission through Gq -, Gs -protein-induced 

intracellular calcium mobilization [9,18,19,22,30,31] or with mitochondrial activation [32]. 

CB1R-mediated glutamatergic gliotransmission controls the induction of long-term synaptic 

plasticity in the hippocampus through N-methyl-D-aspartate (NMDAR) [18] and presynaptic 

type I metabotropic glutamate receptors [19,20]. Accumulating evidence indicates that 

astroglia CB1R are necessary for long-term memory formation [22], and when activated 

by tetrahydrocannabinol (THC), are implicated in short-term spatial memory impairment 

[33].

Astroglia-mediated homeostatic regulation of extracellular glutamate is often disrupted 

in animal models of drug addiction [34–36]. Endogenous activation of CB1R promotes 

astrocytic exocytosis of glutamate in the NAc and curtails cocaine-seeking behavior in 

rats [9], suggesting that astroglia CB1R regulate reward-seeking behavior by fine-tuning 

glutamatergic signaling in the NAc. In this review, we discuss the recent advances in our 

understanding of astrocytic CB1R-mediated regulation of extracellular glutamate signaling 

and their change in function relevant to drug-seeking behaviors.
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2. G-protein binding properties of CB1R

CB1R activation elicits paradoxical effects on neurons and astroglia. While CB1R inhibit 

intracellular calcium activity in neurons and concomitant synaptic transmitter release [16], 

in astroglia, CB1R signaling increases the probability of vesicular gliotransmission in a 

calcium-dependent manner [18]. In this section, we discuss two possible explanations for 

these cell-type-specific effects by CB1R agonism.

Astroglia possess intracellular signaling pathways that are distinct from those of 

neurons. In neurons, GPCR or Designer Receptors Exclusively Activated by Designer 

Drugs (DREADD)-based activation of Gq- and Gi/o pathways induce depolarization and 

hyperpolarization, respectively, and elevate intracellular calcium following Gq , but not Gi/o, 

activation [37]. In astroglia, however, Gq - and Gi/o -binding DREADD or GPCR activation 

increases the probability of intracellular calcium transients through non-overlapping 

intracellular signaling mechanisms in the hippocampus [37] and the striatum [38]. These 

findings suggest that CB1R-mediated activation of the Gi/o -pathway diametrically increases 

intracellular calcium mobilization in astrocytes while decreasing that of neurons. In contrast, 

Gi/o -DREADD-induced astroglial calcium transients are smaller in amplitude than those 

elicited by Gq -DREADD activation in the hippocampus [38]. Specifically, astrocytic Gi/o 

-DREADD activation increases c-Fos expression and astroglia-mediated synaptic plasticity 

with little to no effect on intracellular calcium concentrations [38–40], suggesting that Gi/o 

-pathways may be transduced in a calcium-independent manner in astroglia. Studies to 

date consistently report that Gq -DREADD activation elicits sustained intracellular calcium 

elevation.

Another possible explanation for the differential effects of CB1R-activation on neurons and 

astrocytes may be due to the promiscuous nature of CB1R themselves. In cultured HEK293 

cells, the mixed CB1/2R agonist, WIN55,212-2, stimulates cyclic AMP (cAMP) synthesis 

via the Gs -protein pathway and simultaneously increases extracellular signal-regulated 

protein kinase 1/2 (ERK1/2) phosphorylation by Gi/o -proteins [41]. Additional evidence 

further supports the notion that CB1R promiscuously interact with Gi/o -, Gs - and Gq 

-proteins [18,31,41–43], whereas most GPCRs preferably bind with only one family of 

G-proteins, either Gi/o -, Gs -, or Gq -proteins. To understand the mechanism of CB1R-G-

protein binding properties, we must appreciate recent studies conducted on the biochemical 

composition of the CB1R. Most GPCRs have seven transmembrane domains and three 

intracellular loops (Fig. 1A). The second intracellular loop (ICL2) of CB1R is a hydrophobic 

residue accountable for the preference of Gs - or Gi/o -protein binding (Fig. 1A,B) [41,44]. 

If the leucine at site 222 (Leu-222) of ICL2 is mutated to proline (this CB1R mutation 

is called Leu-222P), CB1R inhibits cAMP production via Gi/o -protein activation [41]. 

Conversely, several CB1R mutations such as His-219A, Arg-220A, and Arg-226A enhance 

cAMP accumulation through activation of Gs -proteins [41]. In contrast, μ-opioid receptors 

(μOR) almost exclusively couple with Gi -proteins, thus making them suitable to study 

the promiscuity of CB1R [45]. Recent cryogenic electron microscopy (cryo-EM) studies 

compared the structural properties of CB1R and μOR and their G-protein binding domains. 

The Val-173 of ICL2 in μOR is enveloped by the β2-β3 loop, which is a hydrophobic 

pocket of the Gi -protein that couples with GPCRs [46]. In contrast, although CB1R agonists 
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induced CB1R-Gi -protein interaction, the bond between Leu-222 at ICL2 and the Gi 

-protein β2-β3 loop is relatively weaker than those involved in μOR-Gi -protein interaction 

[46,47], which enables CB1R to interact with more than one G-protein. The differences in 

the amino acid sequence at ICL2 could be one mechanism underlying the differential signal 

transduction properties of neuronal and astroglia CB1R in regulating intracellular activity 

[41,46,48].

Dimerization refers to the reaction of two monomers combining to form a larger dimer 

molecule [49]. CB1R-CB1R homodimer molecules were first detected by Western blotting 

in the early 2000s [50]. Other GPCRs including adenosine A2A receptors (A2AR) [51], 

dopamine D2 receptors (D2R) [52], μ-Opioid receptors (μR) [53], orexin OX1 receptors 

[54], serotonin 5-HT 2A receptors [55] and CB2 receptors [56], can also form heterodimers 

with CB1R. Dimerization can potentially change the attributes of CB1R activation. Different 

types of GPCRs have a distinct impact on CB1R function during the dimerization processes 

(Table 1). Here we discuss two examples of how dimerization could influence CB1R-

G-protein binding. The A2AR-CB1R heterodimer induces ERK and protein kinase B 

(Akt) phosphorylation when the two monomers are activated separately in striatopallidal 

projection neurons. However, when agonists of A2AR and CB1R are co-administered, 

A2AR-CB1R-induced ERK and Akt phosphorylation is inhibited via cross-antagonism 

between A2AR and CB1R [51]. One explanation for the cross-antagonizing effect between 

A2AR and CB1R lies in the particular G-protein binding properties of a heterodimer 

receptor. As discrete monomers, A2AR and CB1R are exclusively Gs- and Gi -protein 

coupled, respectively, while the A2AR-CB1R dimer selectively interacts with Gq -proteins 

[51]. Dopamine D2R is a Gi -protein coupled receptor primarily located on presynaptic 

terminals and astrocytes [57,58]. Found in close proximity to CB1R, it is not surprising that 

D2R-CB1R heterodimers have been detected in the striatum. Bioluminescence resonance 

energy transfer (BRET) experiments show that antagonizing D2R inhibits CB1R-Gi 

mediated ERK phosphorylation and enhances CB1R-Gs binding in striatal medium spiny 

neurons (MSNs) [59]. However, slice electrophysiological studies show that D2R activation 

reverses CB1R-Gi induced synaptic depression in the globus pallidus [60], suggesting the 

functional diversity of D2R-CB1R heterodimer receptors across substructures of the basal 

ganglia. However, due to technical limitations, the functional impact of CB1R dimers has 

not been directly tested in vivo.

It is worth noting that a higher concentration of WIN55,212-2 is required to activate the 

Gi/o -ERK1/2 pathway (EC50 = 500nM) compared to the Gs -cAMP-PKA (EC50 = 50nM) 

pathway in vitro [41]. Activation by lower concentrations of WIN55,212-2 (higher affinity) 

suggests that the CB1R-Gs -cAMP-PKA pathway is more sensitive to eCB stimulation. 

Conversely, burst action potential firing induced eCB release could steer CB1R toward Gi/o 

-ERK1/2 signaling cascades to potently inhibit cellular activity.

In summary, amino acid sequence variations at the CB1R-ICL2 hydrophobic pocket, 

distinctive dimerization subunits, and even ambient eCB concentrations can differentially 

regulate G-protein binding with CB1R in the brain. Further studies are required to elucidate 

whether the expression level of CB1R-ICL2 subtypes and CB1R dimerization dynamics 

occur during different activity states, which would provide functional insight of the 
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promiscuity of CB1R binding with Gq -, Gi/o - and Gs -protein pathways as a form of 

switchboard in eCB signaling.

3. Dysregulated glutamate homeostasis at cortical-accumbens afferents 

underlies reinstatement of drug-seeking

Reinstatement of drug-seeking behavior is one of the diagnostic criteria for substance use 

disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-V), often 

appearing when exposed to the contextual environment, substance priming and stress. 

Vulnerability to relapse is attributed to drug-induced impairments in the cognitive control 

of motivated behavior [61], particularly when drug-seeking behaviors lead to aversive 

consequences [62,63]. Drug-related exteroceptive information is carried by glutamatergic 

afferents from the prefrontal cortex (PFC) to the NAc core [16,64]. Microdialysis 

measurements show that cocaine priming causes behavioral reinstatement and activates PFC 

to NAc core glutamatergic projections in rats that had prior cocaine self-administration 

experience [65]. Moreover, this transient glutamate input from the PFC is amplified in the 

local circuitry within the NAc core by a reduction in presynaptic autoreceptors and an 

increase in postsynaptic expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 

acid (AMPAR) receptors [9,66].

Group-II metabotropic glutamate receptors (mGluR2/3) are GPCRs on axonal terminals that 

inhibit presynaptic glutamate release through Gi/o -protein-mediated inhibitory pathways 

[9]. In the NAc core, presynaptic mGluR2/3 function is dramatically reduced after chronic 

cocaine administration [67] or when cocaine-related contexts are extinguished [9,68]. 

Diminished presynaptic inhibition amplifies cocaine-evoked excitatory signals transduced 

by PFC-NAc glutamatergic afferents [65], and consequentially increases neuronal activity in 

the NAc core [68]. Spontaneous excitatory postsynaptic currents (sEPSCs) are changes in 

the membrane potential of postsynaptic neurons that represent the probability of presynaptic 

glutamate release. LY341495, a selective antagonist of mGluR2/3, increases sEPSCs 

frequencies on MSNs in the NAc core but failed to do so after cocaine self-administration 

[9,68]. The finding that LY341495 gives rise to synaptic glutamate release suggests that 

mGluR2/3 assist in maintaining homeostatic synaptic glutamate release in the NAc core, 

which is lost after cocaine exposure. The mGluR2/3 function is thought to be occluded 

by a lack of stimulation from ambient glutamate which can be re-recruited by selective 

agonists or by replenishing extracellular glutamate [9,68]. Taken together, enhanced fidelity 

of PFC to NAc core glutamatergic signaling, reinforced by depleted extracellular glutamate 

concentrations, are pathogenic markers of vulnerability to relapse-related behavior [34].

Basal concentrations of extracellular glutamate generally range from 1 to 5 μmol/L in the 

rodent brain [69]. The critical balance between the release and clearance of extracellular 

glutamate hinges upon neuron-astrocyte interactions and is referred to as the ‘glutamate 

homeostasis’ [34]. Prolonged exposure to drugs of abuse, such as cocaine, is correlated 

with depleted extracellular glutamate and dysfunctional glutamate release mechanisms in 

the NAc [68,70]. Astrocytic processes exhibit morphological plasticity that induce changes 

to the perisynaptic extracellular environment that give rise to drug-induced glutamate 
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depletion. In the NAc, cystine-glutamate antiporters (xCT) on astrocytes are the primary 

source of the extracellular glutamate [71,72]. Impairment of cystine-glutamate exchange 

by the antiporter xCT due to chronic exposure to cocaine and withdrawal leads to 

the upregulation of cocaine-seeking behavior during reinstatement [68]. Restoring xCT-

mediated astrocytic glutamate release with N-Acetylcysteine provides enduring protection 

against relapse [68]. Brain slice electrophysiological data show that N-Acetylcysteine 

stimulates glutamate release by driving xCT [70]. Increased extracellular glutamate 

potentiates EPSCs in MSNs [70], activates mGluR2/3 to reverse cocaine-induced synaptic 

potentiation [68], and restores glutamate transporter-1 (GLT-1), an astroglial transporter 

responsible for glutamate elimination [73].

Elimination of extracellular glutamate relies on excitatory amino acid transporters (EAAT) 

in astrocytes, such as GLT-1 [69,74–76]. Similar to xCT, GLT-1 expression levels in the 

NAc decrease following sustained administration and prolonged withdrawal from cocaine 

or heroin [77,78]. Additionally, repeated N-Acetylcysteine exposure increases GLT-1 

expression in the NAc and inhibits reinstatement [73,77,78]. Similarly, pre-treating rats with 

systematic administration of ceftriaxone prevented cocaine or heroin relapse by elevating 

the GLT-1-mediated glutamate reuptake [77,79]. Although cocaine or heroin-induced loss of 

GLT-1 and xCT are rescued by ceftriaxone [77,79], polymerase chain reaction (PCR) and 

immunoprecipitation data indicate that their coregulation is not solely mediated by physical 

interaction between the two proteins [79]. Hence, GLT-1 expression is hypothesized to be 

rescued by xCT-mediated elevation of extracellular glutamate concentration. For detailed 

information about these maladaptive reductions to GLT-1 and xCT function implicated in 

drug relapse (Fig. 2C), we direct readers to this review [34]. Finally, we note that additional 

mechanisms contribute to astrocytic regulation of extracellular glutamate. For example, 

recent work has shown that stimulation of μOR in hippocampal astrocytes induces glutamate 

release and drives conditioned place preference [151].

GLT-1 and xCT are enriched in astroglia processes, and their functional changes during 

withdrawal from drugs of abuse are generally coupled with morphometric changes 

in astrocytes. In the NAc core of rats experiencing heroin self-administration and 

extinction training, astrocytic processes are disassociated from Synapsin I, a biological 

marker for axonal terminals [80]. In tissue harvested during cue-induced reinstatement 

to heroin, colocalization of astrocytic processes and axons was recovered by rapid and 

transient volumetric expansion of these processes [80]. Similarly, extinction of cocaine 

and methamphetamine self-administration reduces astrocytic volume and lowers neuron-

astrocyte colocalization [81–83]. Additional work shows that this atrophy of astrocytic 

processes following cocaine self-administration occurs in the NAc, but not in the PFC or 

basolateral amygdala [82]. The atrophy was not observed during cocaine self-administration 

but was pronounced after extinction [82]. As previously mentioned, extracellular glutamate 

concentration in the NAc decreases during extinction of drug self-administration. This is in 

accordance with the understanding that astrocytic presence near accumbal MSNs is reduced 

due to morphometric reduction that in turn impairs homeostatic regulation of glutamate 

concentration in the NAc.
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Changes in astrocytic morphology and their effect on glutamate regulation impacts neuronal 

activity through functional interactions between neurons and astrocytes. In the central 

nervous system, astrocytic processes enwrap chemical synapses, forming a semi-isolated 

micro-environment termed the ‘tripartite synapse’ [84–86]. The sheathing formed by 

astrocytic processes physically insulates adjacent synapses to bolster the signal-to-noise 

ratio of synaptic transmission from other synapses [87–89]. A typical tripartite synapse 

consists of three principal components: presynaptic axon terminals, postsynaptic dendrites, 

and astroglia processes. The connecting space between the presynaptic terminal and the 

dendritic spine is the synaptic cleft (Fig. 2B). Action potential-induced synaptic activity 

raises the glutamate concentration from 20 nmol/L to 1 mmol/L in the synaptic cleft [90]. 

Almost instantaneously, glutamate in the synaptic cleft diffuses into the extrasynaptic space, 

which is referred to as glutamate spillover [69,74–76]. Spillover of glutamate is tightly 

regulated by EAAT expressed on astrocytes [69,91–95]. GLT-1 is the most prevalent type 

of EAAT and is responsible for ninety percent of the extracellular glutamate clearance 

[96]. Quantitative electron microscopy demonstrates that astrocytic processes interface 

with neurons asymmetrically, with three- to four-fold higher density in the postsynaptic 

than presynaptic regions [97]. As GLT-1 expression is closer in proximity to postsynaptic 

elements, quantitative models estimate the elimination rate of glutamate by GLT-1 to be 

two to four times faster around postsynaptic dendrites [97]. Spillover is thus more likely 

to stimulate glutamate receptors on presynaptic neurons (Fig. 2 A, B). Spillover glutamate 

binding with mGluR2/3 on axon terminals [97–99] prevents overaccumulation of glutamate 

in synaptic clefts.

Yet, considering the data presented above, several questions remain to be addressed in 

future studies. First, MSN projections from the dorsal striatum constitute the direct and 

indirect pathways of the reward circuits which promote and inhibit motivated behavior, 

respectively [100]. In comparison, the MSN projections from the NAc core are less 

distinctive [100–102]. However, whether the presynaptic internalization of mGluR2/3 

differentially influences the targeted brain regions remains unknown. Secondly, MSNs 

are not the only PFC targets in the NAc core. Pyramidal neurons in the PFC directly 

project to and modulate the activity of fast-spiking interneurons [103] and dopamine neuron 

axons in the NAc core [16]. Less is known about the drug-induced changes of mGluR2/3 

function in those projections. Finally, other brain regions like the basolateral amygdala 

[104] and hippocampus [105,106] send glutamatergic afferents onto MSNs in the NAc 

core, and whether mGluR2/3 potency is dynamically altered on those axons during drug-

seeking behaviors remains to be investigated. As presynaptic mGluR2/3 expression and 

extracellular glutamate depletion in the NAc core promotes vulnerability to reinstatement 

of drug-seeking behavior, the cellular mechanisms involved in the regulation of glutamate 

homeostasis in this region serve as critical targets for treating substance use disorders (Fig. 

2C) [9,34,35,68,77,107].
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4. Astrocytic glutamate exocytosis is suppressed following prolonged 

drug exposure

Astrocytic glutamate exocytosis is another prominent contributor to ambient glutamate 

concentrations. Vesicular glutamate release from astrocytes occurs in the NAc [108], 

cortex [109], thalamus [110], and the hippocampus [111]. Astrocytes propagate cell-

to-cell signaling by the release of glutamate from vesicular organelles approximately 

thirty nanometers in diameter that resemble synaptic vesicles of glutamatergic terminals 

[112,113]. Vesicular glutamate transporters (VGLUT), glutamate-proton exchanger proteins 

that package intracellular vesicles with glutamate [112–115], and the SNARE protein 

complex, which facilitates vesicular docking and membrane fusion [116–118], constitute 

the exocytotic machinery recruited in astroglia glutamate release.

Once triggered by increases in intracellular calcium signaling, astrocytic vesicular 

glutamate is exocytotically released into the extrasynaptic space. Considering the glutamate 

concentration in the synaptic cleft is similar or higher than that of the extrasynaptic 

space, astrocytic vesicular glutamate preferentially stimulates extrasynaptic glutamate 

receptors instead of AMPARs, which are primarily located within synapses (Fig. 2B) 

[108,119,120]. Neuronal activity to astrocytic glutamate exocytosis can be measured 

by whole-cell patch-clamp recording in hippocampal slices. Specifically, astrocytic 

activation by UV light-induced intracellular calcium uncaging enhances the potency of 

synaptic inputs to nearby neurons (within 200 μm) in a SNARE-dependent manner 

[121,122]. These findings demonstrate that astrocytic glutamate exocytosis potentiates 

presynaptic transmission. Concomitantly, astrocytic glutamate exocytosis elicits postsynaptic 

potentiation by stimulating GluN2B-containing NMDAR receptors on neuronal cell 

bodies [120,123]. Due to the slow activation kinetics of NMDAR, the rise time of 

astrocytic glutamate-induced postsynaptic depolarization currents is approximately 10 to 

200 milliseconds, which is significantly longer than AMPAR-mediated EPSCs [9,108]. Due 

to this kinetic feature, neuronal depolarization currents induced by astrocytic glutamate 

exocytosis are conventionally referred to as slow inward currents (SICs; inward refers to 

positive charge that flows into the neuronal membrane) [111,124–126].

SIC frequency represents the probability of astrocytic glutamate exocytosis. In acute 

cultured brain slices, SICs are evoked mainly by GPCR-mediated intracellular calcium 

signals. (RS)-3,5-dihydroxyphenylglycine (DHPG), an agonist of mGluR1/5, significantly 

elevates the frequency of SIC events [108,120]. This effect of DHPG was absent in the NAc 

core after cocaine self-administration [9], which exacerbates glutamate depletion (Fig. 2C).

Potentiating astrocytic glutamate exocytosis alone is sufficient to reverse behavioral 

phenotypes caused by glutamate depletion. Gq - DREADD activation of NAc astrocytes 

reduces cue-induced reinstatement of ethanol- [127], cocaine- [128], and methamphetamine-

seeking [83]. At the cellular level, augmenting astrocytic glutamate exocytosis rescues the 

functionality of presynaptic mGluR2/3, a hallmark for vulnerability to reinstatement [9,128].

Like Gq -DREADD activation, CB1R agonism potentiates astrocytic glutamate exocytosis 

[9]. In neurons, presynaptic CB1R inhibit neurotransmitter release through Gi/o -pathways 

Zhang et al. Page 8

Addict Neurosci. Author manuscript; available in PMC 2022 November 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when bound to eCB ligands released from postsynaptic terminals in a retrograde fashion 

[9,16]. Yet, in astrocytes, CB1R activation increases the probability of glutamate exocytosis 

[9,18]. In the NAc core, endogenous activation of synaptic and astrocytic CB1R are both 

dampened after cocaine exposure [9,27]. Thus, restoring CB1R-mediated synaptic and 

astrocytic glutamate release may be a promising strategy for mitigating reinstatement of 

drug-seeking behavior.

In this review, we emphasized calcium-dependent astrocytic vesicular release mechanisms. 

However, it is worth mentioning that non-vesicular, calcium-mediated release of glutamate is 

also crucial for regulating neuronal function and motivated behaviors [129].

5. Anandamide is a chief regulator of glutamate homeostasis in the NAc 

core

As stated previously, CB1R has unique hydrophobic pockets that can bind with either Gi/o 

-, G q -, and Gs -proteins depending on the amino acid sequence at ILC2. CB1R agonists 

inhibit synaptic neurotransmitter release by activating Gi/o -proteins in presynaptic terminals 

[130]. On the contrary, CB1R on astrocytes potentiate Gq -proteins and intracellular 

calcium concentrations which promotes glutamatergic gliotransmission in multiple brain 

regions [9,18,31,33,43,131]. Pertussis toxin is a bacterial toxin that selectively catalyzes 

ADP-ribosylation of Gi/o -proteins and is used as an inhibitor of intracellular Gi/o -protein 

cascades. Elevation of extracellular eCB concentrations increases astrocytic calcium activity 

that is insensitive to pertussis toxin [18,19,31]. These findings suggest that CB1R do not 

activate Gi/o -proteins in astrocytes. Thus, CB1R-mediated astrocytic calcium activity relies 

on intracellular Gq - or Gs -, and not, Gi/o -protein signaling (Fig. 2B).

Data from whole-cell patch-clamp recordings show that synthetic cannabinoids enhance 

SICs event frequency in a CB1R-dependent manner in the NAc core after cocaine 

self-administration [9], implying that astrocytic CB1R-mediated glutamate exocytosis is 

resistant to cocaine exposure. Hypothetically, Gq - or Gs -proteins recruited by CB1R 

activation might compensate for reduced astrocytic mGluR1/5 function to potentially rescue 

diminished astrocytic glutamate exocytosis in the NAc core after cocaine exposure. Hence, 

administration of CB1R agonists or positive allosteric modulators could possibly utilize this 

pathway to stimulate astrocytic glutamate exocytosis and replenish extracellular glutamate 

concentrations [9].

N-arachidonoylethanolamine (anandamide or AEA) and 2-arachidonoylglycerol (2-AG) are 

the two most studied eCBs. Anandamide is synthesized from N-arachidonoyl phosphatidyl 

ethanol (NAPE) and eliminated by the hydrolytic enzyme, fatty acid amido-hydrolase 

(FAAH). 2-AG is generated from 2-arachidonoyl-containing phospholipid diacylglycerol 

lipase alpha (DAGL) and hydrolyzed by monoaclyglycerol lipase (MAGL; Fig. 2B) 

[130,132]. In general, eCB-mediated synaptic plasticity is elevated by administration of 

drugs of abuse and diminished following repeated exposure. We direct readers to these 

two outstanding reviews on the effects drug-induced adaptations on eCB signaling [4,133]. 

In the NAc core, URB597, a selective inhibitor for FAAH [16], elevates SICs frequency 

in saline-yoked rats but does not induce any changes in SICs in rats that experienced 
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12 days of extinction after cocaine self-administration [9]. The specific reduction of 

anandamide signaling in the NAc core emerges even after a single exposure to cocaine 

[134], as indicated by anandamide-mediated eCB-dependent long-term depression in the 

glutamatergic synapses (eCB-LTDe) in the NAc core [135]. Indeed, cocaine-induced 

downregulation of anandamide-mediated astrocytic glutamate exocytosis [9] and synaptic 

eCB-LTDe [135] interferes with the regulation of homeostatic glutamate in the NAc core.

Therefore, augmented anandamide signaling participates in restoring glutamate homeostasis 

in the NAc core to prevent reinstatement to drug-seeking. Consistent with this assumption, 

several research groups have reported that enhancing anandamide tone can prevent drug-

seeking. Agonizing CB1R, one of the main targets for anandamide, with WIN55,212-2 

elicits significant suppression of cocaine self-administration behavior [136]. Intra-NAc core 

infusion of methanandamide, a metabolically stable analog of anandamide [137], similarly 

diminishes cocaine reinstatement and rescues mGluR1/5-mediated astrocytic glutamate 

exocytosis and mGluR2/3-mediated synaptic inhibition [9]. Moreover, FAAH inhibitors 

prevent reinstatement to nicotine seeking and nicotine-induced dopamine release in the NAc 

shell [138,139].

Taken together, the above data suggest that drug-induced reductions in anandamide signaling 

are pathological markers associated with the reduction of astrocytic CB1R-mediated 

glutamate exocytosis in the NAc core. Therefore, anandamide analogs and indirect agonists 

may prevent reinstatement of drug-seeking by the augmentation of astrocytic glutamate 

exocytosis to rectify maladaptive encoding of environmental contingencies in cortical-

accumbal afferents.

6. Outlook

Astrocytic CB1R are critical for maintaining extracellular glutamate homeostasis in the 

NAc core and serve as important therapeutic targets for preventing relapse to drug-

seeking behavior. Here, we propose three major areas of exploration that require further 

investigation.

CB1R bind with Gq - , Gs - , and Gi/o -proteins. Presynaptic CB1R binds to Gi/o -proteins 

to inhibit synaptic neurotransmitter release, while astroglia CB1R preferentially target the 

Gq -protein pathways to increase gliotransmitter release. Whether CB1R G-protein binding 

selectivity can dynamically change in vivo and if so, its underpinning molecular mechanisms 

remain to be elucidated.

Measuring the relative changes in eCB concentration has been problematic in the past 

[140], since these molecules last on the order of seconds and are present over distances on 

the order of tens of micrometers. This gap in knowledge has been dramatically improved 

by very recent advances in genetically encoded tools for sensing neurotransmitters such 

as the GPCR activation-based eCB sensor (GRABeCB2.0) [141]. In brief, this sensor is a 

genetically encoded protein (derived from the human CB1R) that selectively binds and 

emits fluorescence response to 2-AG and anandamide, allowing for in vivo measurement 

of evoked and spontaneous changes in eCB dynamics within seconds [140,141]. Recent 
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studies leveraging this approach have demonstrated that 2-AG is dynamically coupled 

to physiological and pathological neural activity (i.e. seizure) in the hippocampus [142], 

confirming that neuronal 2-AG synthesis and release are driven by neuronal depolarization-

induced increases in intracellular calcium levels. It is important to note that currently 

available eCB sensors cannot differentiate between anandamide and 2-AG. An AAV 

vector under the control of astrocyte-specific promoter (GfaABC1D) is available on the 

Addgene Repository, however data have yet to be reported demonstrating the efficacy of 

the GRABeCB2.0 in tracking eCB signaling on astrocytes. The efficiency of GRABeCB2.0 

transduction in astrocytes also needs to be addressed in future studies.

A single astrocyte can interface with numerous synapses, modulate synaptic plasticity, and 

synchronize firing activity on multiple neurons [111,125,143–146]. For example, cortical 

astrocytic activity shifts neural circuits to a slow-oscillatory state, which is critical for 

memory consolidation [147]. Astrocytes may also be required to generate synchronized 

activity in neurons with similar genetic signatures. In the dorsal striatum, D1R-MSN 

activation-induced astrocytic glutamate signals may specifically potentiate other D1R-MSNs 

via eCB signaling but not influence D2R-MSN activity, and vice versa [43]. D1R-MSNs 

and D2R-MSNs in the dorsal striatum are segregated to direct pathway MSNs (dMSNs) 

and indirect pathway MSNs (iMSNs) according to their innervation target and impact on 

motivated behaviors [148–150]. This distinction has been called into question for MSNs in 

the NAc, since both D1R-MSNs and D2R-MSNs contribute to the indirect pathway [101]. 

Thus, the astrocyte-mediated synchronized activity of either D1R-MSNs or D2R-MSNs is 

anticipated to impact the activity states of both direct and indirect pathways of the basal 

ganglia circuitry. Yet, how eCB signaling modulates astrocyte-neuron ensembles operating 

the direct and indirect pathways with systemic insult from drugs of abuse remains to be 

studied.
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Fig. 1. 
G-protein binding properties of CB1R in the brain. (A), Schematic diagram of the 

transmembrane structure of the CB1R. The second intracellular loop (ICL2) is critical for 

G-protein recognition. (B), The amino acid sequence of the CB1R-ICL2 determines its 

binding preference to Gs - or Gi/o -proteins. Mutations of the ICL2 sequence steers the 

CB1R toward Gi/o -protein coupling. (C), The CB1R selectively couples to Gi/o -proteins 

in presynaptic axon terminals to inhibit neurotransmitter release. In astrocytes, the CB1R 

activates Gs - or Gq -proteins to increase astrocytic activity.
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Fig. 2. 
Dysregulation of glutamate homeostasis and eCB signaling in the NAc of cocaine-addicted 

animals. (A), The prefrontal cortex innervates the NAc with glutamatergic axons that 

express mGluR2/3 autoreceptors. (B), Schematic of the glutamatergic tripartite synapse in 

the NAc. (C), Summary of cocaine-induced changes in extracellular glutamate and eCBs’ 

actions in the NAc.
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