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ABSTRACT: We describe the development and testing of ab
initio derived, AMBER ff03 compatible charge parameters for a
large library of 147 noncanonical amino acids including β- and
N-methylated amino acids for use in applications such as
protein structure prediction and de novo protein design. The
charge parameter derivation was performed using the RESP
fitting approach. Studies were performed assessing the
suitability of the derived charge parameters in discriminating
the activity/inactivity between 63 analogs of the complement
inhibitor Compstatin on the basis of previously published
experimental IC50 data and a screening procedure involving
short simulations and binding free energy calculations. We
found that both the approximate binding affinity (K*) and the
binding free energy calculated through MM-GBSA are capable of discriminating between active and inactive Compstatin analogs,
with MM-GBSA performing significantly better. Key interactions between the most potent Compstatin analog that contains a
noncanonical amino acid are presented and compared to the most potent analog containing only natural amino acids and native
Compstatin. We make the derived parameters and an associated web interface that is capable of performing modifications on
proteins using Forcefield_NCAA and outputting AMBER-ready topology and parameter files freely available for academic use at
http://selene.princeton.edu/FFNCAA. The forcefield allows one to incorporate these customized amino acids into design
applications with control over size, van der Waals, and electrostatic interactions.
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A timely goal in drug discovery is to have the ability to design
new analogs that will stimulate or inhibit a receptor involved in
a particular disease process. Several approaches spanning
different molecular-weight scales exist to do this. Namely the
discovery of small molecules, peptides, peptidomimetics, and
high molecular weight antibody therapeutics are all means to
create new drugs to address a variety of disease targets. The
discovery of such molecules is challenging, with pharmaceutical
companies spending billions of dollars each year on the
research, development, and optimization of the affinity and
bioavailability properties. Problems with pharmacokinetics and
bioavailability were estimated to be the cause of 40% of failures
in clinical trials,1 which is troublesome considering the cost of
getting a drug to market is approaching $1 billion.2

Protein design is increasingly becoming a means to address
some of the challenges faced by small molecules. Over 200
peptides, proteins, or antibodies have been marketed as of
2010,3 and it has been predicted that by 2020 we will see a
larger number of peptides as drugs.4 Protein/peptide design

faces its own difficulties though. These include passively
permeating the cell membrane, being soluble at biologically
relevant concentrations and pH values, and being subjected to
proteolytic cleavage, which quickly reduces the half-life. In fact,
unmodified peptides cannot circulate in the bloodstream for
longer than a few minutes due to proteolytic cleavage,5 which
hinders any potential therapeutic application of the most
specific and highest affinity binders that are designed against a
target.
Synthetic biology can potentially address several of the

limitations of traditional peptide design through the introduc-
tion of post-translational modifications (PTMs) and unnatural
amino acids. These noncanonical amino acids (NCAAs) are
chemical and biological derivatives of the 20 canonical amino
acids and upon their introduction can improve both
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pharmacokinetic and pharmacodynamic properties of a
peptide−drug candidate while maintaining some of the core
of the side-chain scaffold to preserve key interactions.
Additionally, backbone N-methylated and D-amino acids are a
viable approach to block proteolytic cleavage and improve
metabolic stability.6 From a protein design standpoint, they
offer the ability to diversify the sequence space remarkably. A
10 amino acid peptide has a sequence space of 2010 = 1.024 ×
1013. Considering the 20 amino acids and the over 400 PTMs
that exist7,8 in nature, the sequence space of that same 10-
amino acid peptide becomes 42010 = 1.71 × 1026, and that only
accounts for the L-amino acids. Thus, introduction of modified
amino acids as design choices substantially expands the
complexity of reaching the globally optimal design solution as
was pointed out in a recent review.9

It is not well understood how NCAAs affect protein
structure. Unnatural amino acids have been shown to have
utility in rational design applications, and thus, binding data
exists of peptide analogues containing unnatural amino acids
and corresponding performance metrics including KD and IC50/
EC50s. Modified amino acids can change the local electrostatic
and conformational environment of a protein and may cause a
variety of downstream biological responses.10 Although
incorporation of NCAAs has been shown to change the affinity
and inhibitory/stimulatory potency of a peptide, it is currently
difficult to pursue rationalizations into the key interactions
contributing to that increase due to lack of forcefields to model
them.
Experimentally, one can incorporate noncanonical amino

acids by peptide synthesis,11 through bio-orthogonal chem-
istry,12,13 or genetically.14−16 Evolution so far has been unable
to address NCAA design naturally, as the machinery to
incorporate NCAAs does not exist in most organisms. Even
though most organisms have not evolved to incorporate
NCAAs, this does not imply that they are not beneficial; it
means that there are reasons for why they were not
incorporated. These reasons include the toxicity of some of
the building blocks and precursors to the noncanonical amino
acid, the lack of a metabolic pathway in an organism to create
the building block, the inability of the NCAA to be
incorporated to permeate the cytoplasm,16 the lack of a
modified aminoacyl tRNA synthetase that can accept the
modified amino acid, the lack of an expanded genetic code in
the organism, or the lack of a tRNA to decode a modified
genetic code. There have been examples where each of these

reasons has been successfully engineered.16,17 Despite organ-
isms having limited ability to naturally incorporate NCAAs, we
have derived means to synthetically introduce them.
Complicating the matter is that it is prohibitively expensive

to screen a large library of noncanonical amino acid designs.
Even the cost of incorporating a few modified amino acids is
often an order of magnitude higher than the same scaffold
sequence with only natural amino acids. The extreme cost is
attributed to raw materials, synthesis, and purification costs,
which contribute their own unique difficulties and require
attention. These difficulties can be overcome with attention to
each modification’s characteristics but do not make the
screening of large libraries of modified amino acids on peptides
or proteins tractable. Nonetheless, there exist many examples
where noncanonical amino acids were experimentally incorpo-
rated into therapeutic peptides targeting different disease and
functional processes, as shown in Table 1. A novel approach
that can computationally screen potential analogues and has
agreement with experimental data would offer a competitive
advantage to its possessor.
Several groups have created methods to design proteins and

peptides containing natural amino acids computationally that
have been experimentally validated. RosettaDesign25 has been
applied to design a number of different peptides to bind to
targets,26−28 as well as design enzymes for diverse applica-
tions.29−33 Citizen-scientists have applied algorithms available
in the Rosetta suite of tools to design a new enzyme for higher
Diels-Alderase activity using an online multiplayer game.34 An
iterative optimization approach has been created and applied to
designing chimeric variants of dihidrofolate reductase35 and to
switch the cofactor preference of an enzyme.36 Until recently,
methods for computational design only addressed the natural
amino acids. Kuhlman and co-workers37 have recently extended
the Rosetta25 suite of tools to be able to handle several
noncanonical amino acids, constructed an extended rotamer
library, and used the parameters with Rosetta to perform design
to derivatize peptides based on calpastatin to calpain-1.
Zagrovic and co-workers have created parameters38 and
tools39 for a library of modified amino acids compatible with
the GROMACS simulation engine.
The Floudas group had notable success designing peptides

with natural amino acids that have been validated
experimentally on 6 protein targets, producing inhibitors and
agonists of proteins that are linked to different diseases.40−49,53

These designs include entry inhibitors of HIV gp41,42 agonists

Table 1. Examples of Non-canonical Amino Acids Incorporated into Therapeutic Peptide Agonists and Antagonists Targeting
Various Diseases

non-canonical amino acid therapeutic peptide diseases targeted source

biphenylalanine 2′-et-4′-ome-biphenylalanine
2-napthylalanine

truncated variant of
GLP1-peptide

diabetes Mapelli et al.18

D-amino acids Rosetta designed peptides Alzheimer’s Sievers et al.19

2-indanylglycine oxytocin variants inhibition of uterine motor activity Bakos et al.20

2-napthylalanine T140 variants CXCR4/HIV-1 Tamamura et al.21

O-methyltyrosine carbetocin prevention of uterine atony, induction, and control of postpartum
bleeding or hemorrhage

Vlieghe et al.3

O-ethyltyrosine atosiban delaying the birth in case of premature birth Vlieghe et al.3

1-napthylalanine angiotensin I variants hypertension Kokubu et al.22

1-methyltryptophan, 5-methyltryptophan Compstatin variants stroke, heart attack, Alzheimer’s, asthma, rheumatoid arthritis,
systemic lupus

Mallik et al.23

cyclohexylalanine
phosphotyrosine
aminoisobutyric acid
N-methylated amino acids Qu et al.24
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Table 2. Table of Modified Amino Acids for Which Charge Parameters Are Presented in This Work Grouped by Scaffold Amino
Acida

alanine phenylalanine asparagine aspartic acid cysteine

α-aminoisobutyric acid (AIB) (R)-α-methyl-phenylala-
nine (MPH)

N4-methyl-asparagine
(MEN)

N-methylaspartic acid
(NMD)

(R)-L-α-methylcysteine (MCY)

2-aminobutyric acid (ABA) 2-ethyl-4-O-methyl-bi-
phenylalanine (TEF)

(2s,4s)-2,5-diamino-4-hy-
droxy-5-oxopentanoic
acid (GHG)

2-amino-propanedioic
acid (FGL)

cysteine acetamide (YCM)

adamanthane (ADA) 3-methyl-biphenylalanine
(TMB)

glutamine hydroxamate
(HGA)

3-methyl-aspartic acid
(2AS)

N-methylcysteine (NMC)

2-aminoheptanoic acid (AHP) 3-O-methyl-biphenylala-
nine (TOM)

N-methyl-asparagine
(NMN)

2-amino-6-oxopimelic
acid (26P)

carboxymethylated cysteine (CCS)

3-cyclopentylalanine (CP3) 2-ethyl-biphenylalanine
(EBP)

β-asparagine (NBA) β-aspartic acid (DBA) benzylcysteine (BCS)

diethylalanine (DLE) 2-methyl-4-O-methyl-bi-
phenylalanine (MFO)

tryptophan glycine s-(2-hydroxyethyl)-cysteine (OCY)

R(+)-α-Allylalanine (AAL) 2-methyl-biphenylalanine
(MBP)

5-methyltryptophan
(MTR)

2-indanyl-glycine (IGL) s-acetonylcysteine (CSA)

(R)-α-ethyl alanine (REA) biphenylalanine (BFA) 1-methyltryptophan
(OMW)

vinylglycine (LVG) β-cysteine (CBA)

(S)-α-ethyl alanine (SEA) 2-methylphenylalanine
(MH2)

N-methyltryptophan
(NMW)

phenylglycine (004) methionine

cyclohexylalanine (ALC) 3-methylphenylalanine
(APD)

2-hydroxytryptophan
(TRO)

4-hydroxyphenylglycine
(D4P)

hydroxyl-methionine (ME0)

1-napthylalanine (ALN) 4-methylphenylalanine
(4PH)

4-amino-tryptophan
(4IN)

(2s)-amino(3,5-dihy-
droxyphenyl)-ethanoic
acid (3FG)

ethionine (ESC)

2-napthylalanine (NAL) 4-tert-butyl-phenylala-
nine (TP4)

6-methyltryptophan
(TR6)

N-methylglycine
(NMG)

N-methyl-methionine (MME)

5-hydroxy-1-napthalene (NO1) 4-amino-phenylalanine
(HOX)

5-methoxytryptophan
(MT5)

2-allyl-glycine (2AG) β-methionine (MBA)

6-hydroxy-2-naphthalene (NO2) 4-methoxy-phenylalanine
(0A1)

β-hydroxy-tryptophane
(HTR)

β-glycine (GBA) leucine

3-(9-anthryl)-alanine (ANT) m-amidinophenyl-3-ala-
nine (APM)

5-hydroxytryptophan
(HRP)

valine t-butyl-leucine (BUG)

3-(2-pyridyl)-alanine (PY2) 4-carbamimidoyl-phenyl-
alanine (0BN)

β-tryptophan (WBA) (R)-(+)-α-methylvaline
(MVL)

norleucine (NLE)

3-(3-pyridyl)-alanine (PY3) 4-hydroxymethyl-phenyl-
alanine (4HP)

tyrosine norvaline (NVA) 5-oxo-norleucine (ONL)

3-(4-pyridyl)-alanine (PY4) 3-ethyl-phenylalanine
(DMP)

O-methyltyrosine (OMY) N-methyl-valine (MVA) N-methyl-leucine (MLE)

3-(2-quinolyl)-alanine (Q32) 3,4-dimethylphenylala-
nine (D34)

O-ethyltyrosine (OEY) β-valine (VBA) homoleucine (HLE)

3-(3-quinolyl)-alanine (Q33) phenylserine (BB8) O-allyltyrosine (OAY) threonine (R)-α-methylleucine (RML)

3-(4-quinolyl)-alanine (Q34) homophenylalanine
(HPE)

N-methyltyrosine (NMY) N-methylthreonine
(NMT)

β-hydroxyleucine (HLU)

3-(5-quinolyl)-alanine (Q35) 3,3-diphenylalanine
(DIF)

O-tyrosine (OTY) o-methyl-threonine
(OLT)

hydroxynorvaline (VAH)

3-(6-quinolyl)-alanine (Q36) kynurenine (KYN) 3-amino-tyrosine (TY2) β-threonine (TBA) β-leucine (LBA)

3-(8-hydroxyquinolin-3-yl)-alanine (HQA) N-methyl-phenylalanine
(MEA)

3-amino-6-hydroxy-tyro-
sine (TYQ)

lysine serine

N-methylalanine (NMA) β-phenylalanine (FBA) (β-R)-β-hydroxy-tyrosine
(OMX)

(R)-α-methylornithine
(RMO)

homoserine (HSE)

1-pyrenylalanine (PAL) isoleucine β-tyrosine (YBA) (S)-α-methylornithine
(SMO)

2-amino-5-hydroxypentanoic acid (LDO)

(R)-2-(2′-propenyl)-alanine (PRP) N-methylisoleucine
(NMI)

glutamic acid 2,3-diaminopropanoic
acid (DPP)

6-hydroxy-norleucine (AA4)

(R)-2-(4′-pentenyl)-alanine (PEN) allo-isoleucine (IIL) N-methylglutamic acid
(NME)

diaminobutyric acid
(DAB)

N-methyl-serine (NMS)

(R)-2-(7′-octenyl)-alanine (OCT) 3-methyl-alloisoleucine
(I2M)

(3r)-3-methyl-glutamic
acid (LME)

(2s)-2,8-diaminoocta-
noic acid (HHK)

β-serine (SBA)

β-alanine (AAB) β-isoleucine (IBA) (3s)-3-methyl-glutamic
acid (MEG)

N-methyl-lysine (NMK) histidine

glutamine arginine 2s,4r-4-methylglutamate
(SYM)

β-lysine (KBA) N-methylhistidine (NMH)

N-methylglutamine (NMQ) N-methylarginine
(NMR)

5-o-methyl-glutamic acid
(GME)

N5-methyl-glutamine (MEQ)

3-methyl glutamine (LMQ)

β-glutamine (QBA)

aCorresponding three-letter codes are listed in parentheses following each amino acid.
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Table 3. Data Set Used for Testing the Optimized Charges Introduced in Forcefield_NCAAa

analog source sequence SeqID IC50 (μM)

1 pharmacophore Ac-ICV(PTR)QDWGAHRCI-NH2 28 9.60
2 pharmacophore Ac-RCVVQDWGHHRCT-NH2 17 8.00
3 pharmacophore Ac-LCVVQDWGWHRCG-NH2 15 5.40
4 pharmacophore Ac-ICVWQDWGWHRCT-NH2 24 3.10
5 pharmacophore Ac-ICVVNDWGHHRCT-NH2 3 4.20
6 structurekinetic Ac-ICV(OMY)QDWGAHRCT-NH2 5 1.30
7 pharmacophore Ac-MCVHQDWGGHRCF-NH2 16 85.20
8 pharmacophore Ac-ICVWQDWGHHRCT-NH2 2 2.20
9 structurekinetic Ac-ICV(MTR)QDWGAHRCT-NH2 3 0.87
10 novel analogues Ac-ICVYQDWGAHRC(NMT)-NH2 12 1.90
11 pharmacophore Ac-ICV(OMW)QDWGAHRCT-NH2 1 0.21
12 pharmacophore Ac-ICVSQDWGHHRCT-NH2 20 50.90
13 pharmacophore Ac-ICVVQDWGHHSCT-NH2 10 25.00
14 pharmacophore Ac-ICVVQDWGHHRCI-NH2 13 3.20
15 structurekinetic Ac-ICVWQDWG(AIB)HRCT-NH2 12 1.50
16 pharmacophore Ac-ICVWQDWGAHRCT 25 2.00
17 pharmacophore Ac-ICVVNDWGHHACT-NH2 11 60.00
18 novel analogues Ac-ICVYQDWGAHR(NMC)T-NH2 11 154.00
19 structurekinetic Ac-ICV(PAL)QDWGAHRCT-NH2 9 1.20
20 pharmacophore Ac-ICV(ALC)QDWGAHRCT 27 53.60
21 pharmacophore Ac-ICVHQDWGHHRCT-NH2 21 10.50
22 pharmacophore Ac-ICVVQDWGAHACT-NH2 12 9.90
23 structurekinetic Ac-ICVWQDWGAHRCT-NH2 0 1.20
24 pharmacophore Ac-ICVWQD(OMW)GAHRCT-NH2 4 1000.00
25 pharmacophore Ac-ICLVQDWGHHRCT-NH2 8 10.00
26 pharmacophore Ac-ICVYQDWGAHRCT-NH2 23 3.80
27 structurekinetic Ac-ICVYQDWGAHRCT-NH2 4 2.40
28 pharmacophore Ac-ICVWQDWG(AIB)HRCT-NH2 29 1.50
29 structurekinetic Ac-ICVVQDWGHHRCT-NH2 15 4.50
30 pharmacophore Ac-ICVAQDWGAHRCI-NH2 7 12.00
31 pharmacophore Ac-ICLVNDWGHHRCT-NH2 9 8.30
32 novel analogues Ac-ICVYQD(NMW)GAHRCT-NH2 6 25.00
33 pharmacophore Ac-ICV(ALN)QDWGAHRCT 31 1.80
34 pharmacophore Ac-ICVTQDWGHHRCT-NH2 19 68.30
35 novel analogues Ac-ICVYQ(NMD)WGAHRCT-NH2 5 44.00
36 novel analogues Ac-ICVYQDW(NMG)AHRCT-NH2 7 584.47
37 novel analogues Ac-ICVY(NMQ)DWGAHRCT-NH2 4 33.00
38 novel analogues Ac-ICVYQDWGAHRCT-NH2 0 2.40
39 pharmacophore Ac-LCVWQDWGRHQCF-NH2 14 131.00
40 pharmacophore Ac-ICVFQDWGHHRCT-NH2 22 10.20
41 novel analogues Ac-ICVYQDWGAH(NMR)CT-NH2 10 32.00
42 novel analogues Ac-ICVYQDWGA(NMH)RCT-NH2 9 94.00
43 structurekinetic Ac-ICV(OMW)QDWGPHRCT-NH2 14 0.54
44 pharmacophore Ac-DCVVQDWGHHRCT-NH2 18 22.00
45 structurekinetic Ac-ICV(OEY)QDWGAHRCT-NH2 6 1.30
46 novel analogues Ac-ICVYQDWG(NMA)HRCT-NH2 8 1000.00
47 pharmacophore CVVQDWGHHRC-NH2 del1 33.00
48 pharmacophore CVVQDWGHC-NH2 del9 600.00
49 novel analogues Ac−I(NMC)VYQDWGAHRCT-NH2 1 7.50
50 novel analogues Ac-ICV(NMY)QDWGAHRCT-NH2 3 1000.00
51 pharmacophore Ac-ICVVGDWGHHRCT-NH2 6 567.00
52 pharmacophore CVVQDWGHHRCT-NH2 del0 25.00
53 pharmacophore ICVVQDWGHHRCT 0 12.00
54 pharmacophore IAVVQDWGHHRAT 5 (Linear) 600.00
55 pharmacophore CVVQDWC-NH2 del8 600.00
56 pharmacophore CAVQDWGHHRC del10 1200.00
57 pharmacophore CWGHHRCT-NH2 del4 600.00
58 pharmacophore CVVQDWAHHRC del11 1200.00
59 pharmacophore CVQDWGHHRCT-NH2 del7 600.00
60 pharmacophore CQDWGHHRCT-NH2 del6 600.00
61 pharmacophore CDWGHHRCT-NH2 del5 600.00
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and antagonists of the Complement component C3a
receptor,45 inhibitors of Complement component
C3c,40,41,43,47,49,53 and the redesign of human β-defensin-2.44

We recently developed Forcefield_PTM,50 a set of AMBER
parameters for 32 frequently occurring post-translational
modifications. Here, we present new forcefield charge
parameters and a web interface to allow for the introduction
of 147 noncanonical amino acids into peptides and proteins.
The optimized charge parameters are validated on their ability
to discriminate between active and inactive analogs of
Compstatin for the inhibition of complement component
C3c with approximate binding affinity and binding free energy
calculations. Subsequently, the new forcefield parameters are
used to understand the precise interactions in the most potent
Compstatin analog containing a noncanonical amino acid
compared with its unmodified counterpart and the original
native sequence. Thus, with this new parameter set, we can

understand how unnatural amino acids affect binding and other
structural properties through molecular simulations.

■ RESULTS AND DISCUSSION

New Forcefield Charge Parameters for 147 Non-
Canonical Amino Acids. Partial charges were calculated for
every atom in the library of 147 noncanonical amino acids listed
in Table 2 in accordance with the ff03 methodology.51 The new
parameters for each NCAA are presented in the Supporting
Information section “Forcefield Parameters for Each Non-
canonical Amino Acid Modification Grouped by Scaffold
Residue” and are freely available for download and direct
import into AMBER at http://selene.princeton.edu/FFNCAA.
Conventions for atom and three-letter code naming were done
mainly in line with corresponding CIF files contained in the
PDB when contained there so the parameters can be used
directly with corresponding input PDB files. Images of each

Table 3. continued

analog source sequence SeqID IC50 (μM)

62 pharmacophore CHHRCT-NH2 del2 600.00
63 pharmacophore CGHHRCT-NH2 del3 600.00

aThe noncanonical amino acids studied are phosphotyrosine (PTR), O-methyltyrosine (OMY), N-methylthreonine (NMT), 5-methyltryptophan
(MTR), 1-methyltryptophan (OMW), α-aminoisobutyric acid (AIB), N-methylcysteine (NMC), 1-pyrenylalanine (PAL), cyclohexylalanine (ALC),
N-methyltryptophan (NMW), 1-naphthylalanine (ALN), N-methylaspartic acid (NMD), N-methylglycine (NMG), N-methylglutamine (NMQ), N-
methyl-arginine (NMR), N-methylhistidine (NMH), O-ethyltyrosine (OMY), N-methylalanine (NMA), N-methyltyrosine (NMY). Several of these
non-canonical amino acids were substituted in different positions on the Compstatin sequence. ACE and NH2 correspond to the N-terminal and C-
terminal blocking groups acetyl and amide to keep the termini neutrally charged.

Figure 1. Receiver operating characteristic (ROC) curves constructed from rank-ordered lists of Compstatin variants’ binding metrics. ROC curve
for rank ordered list by K* corresponding to an active IC50 cutoff of <20 μM (A) and 200 μM (B). ROC curve for rank ordered list by ΔGBind,Solv°GBSA to
an active IC50 cutoff of <20 M (C) and 200 μM (D).
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NCAA are also provided in the Supporting Information with all
atoms explicitly labeled.
With the determination of these parameters, we next present

the results of our efforts to test the parameters on experimental
binding data and subsequently to understand the key
interactions involved in the most potent Compstatin analog
in Table 3 containing the unnatural amino acid 1-
methyltryptophan relative to its scaffold sequence.
Predictive Ability of Approximate Binding Affinity in

Discriminating Active and Inactive Analogs of Comp-
statin. Independent molecular dynamics simulations for all 63
Compstatin variants reported in Table 3 were carried out in
complex with C3c and in isolation. An independent simulation
of the protein C3c without the peptide bound was also carried
out. The approximate binding affinity was calculated as in eq 7
(see Methods). The analogs were rank ordered by K* from
highest to lowest. Then, an ROC curve was constructed to
assess the predictive ability of the approximate binding affinity
metric to discriminate between active and inactive analogs. Two
cutoffs were chosen for defining whether an analog was active
or inactive: 20 μM and 200 μM.
Parts A and B of Figure 1 present the results of the predictive

ability of this metric for this system using the forcefield
parameters derived. The approximate binding affinity metric
can reasonably discriminate between active and inactive analogs
with areas under the ROC curve of 0.691 and 0.721
corresponding to a cutoff for active analogs with IC50 < 20
μM and <200 μM, respectively. Only 1 false positive was
observed in the top 10 ranked analogs by K*, and 6 false
positives by the 20 μM IC50 cutoff were observed in the top 20.
This result is encouraging, since K* has previously been used as
the final discriminating metric in our de novo protein design
framework42,43,46 using only natural amino acids. This suggests
that K* can be used to reasonably discriminate between active/
inactive analogs for new designs of Compstatin with the
AMBER energy function and molecular dynamics simulations.
Predictive Ability of Binding Free Energy Calculations

in Discriminating Active and Inactive Analogs of
Compstatin. An independent molecular dynamics simulation
of the complex with each of the 63 variants of Compstatin and
C3c was carried out. Snapshots from the simulations were used
to perform MM-GBSA calculations to evaluate the binding free
energies of each analog. Parts C and D of Figure 1 present the
results of the ability for MM-GBSA to discriminate between
active and inactive analogs. Binding free energy calculations
performed using the forcefield parameters and MM-GBSA
yielded the greatest discriminatory ability with areas under the
ROC curve of 0.808 and 0.936 corresponding to a cutoff for
active analogs with IC50 < 20 μM and <200 μM, respectively.
This suggests that using the forcefield parameters with MM-
GBSA can accurately discriminate between active and inactive
analogs of Compstatin. In fact, in the top 10 sequences’
calculated ΔGBind,Solv°GBSA , there was only 1 false positive for either
of the IC50 cutoffs (in the seventh position), and 6 false
positives in the top 20 sequences. Removing the sequences
corresponding to deletions of Compstatin in order to compare
only equal sequence-length analogs yields an area under the
curve of 0.702 and 0.869 for a cutoff IC50 of <20 μM and <200
μM, respectively.
We next asked whether there exists a correlation observed

between experimental IC50 and calculated binding free energy
as IC50 values were found to be strongly correlated (R

2 = 0.887)
with KD values in the work of Magotti and co-workers.52 IC50

data was used over KD due to the much larger number of
experimental data points available for this system, important for
achieving statistical significance in the results. Ideally, a larger
number of KD values would be available to perform similar
assessments. We observed a weak correlation between IC50 and
binding free energy in Figure 2. The existence of a correlation is
in agreement with data presented by Magotti.52

It is interesting that the binding free energy metric performed
better than the approximate binding affinity (K*), since the
approximate binding affinity of each analog compared to the
template sequence has been used as the final discriminator of
which analogs to send for experimental testing in our de novo
design framework,46 and has been successfully applied to
designing inhibitors of HIV entry42 and inhibitors of Comple-
ment activation43 previously. This suggests that we should use
the calculated binding free energy if possible instead of the
approximate binding affinity when designing new Compstatin
variants. Despite these results, the approximate binding affinity
calculation will still be useful to assess the docking of complexes
when the binding mode is unknown. Additional testing with
different sets of protein/peptide complexes beyond C3c/
Compstatin should be evaluated in the future to provide further
evidence supporting the use of these binding evaluation
metrics. Similarly, future testing with different systems having
more experimental KD data can be performed.

Discriminating Differences in Interactions in Comp-
statin Analogs with Natural and Modified Amino Acids.
Due to the new forcefield parameters derived in this work, we
have the capability to discriminate interfacial interactions
involving noncanonical amino acids at atomistic detail. The
most potent analog of Compstatin in Table 3 contains the
noncanonical amino acid 1-methyltryptophan in position 4. We
aimed to gain insight as to why this substitution is more potent
than the analog W4A9 and native Compstatin based on
strengths of residue−residue interactions. Therefore, for
multiple independent simulation trajectories of analogs W4-
(OMW)A9, W4A9, and native Compstatin (Sequence 11: Ac-
ICV(OMW)QDWGAHRCT-NH2, Sequence 23: Ac-
ICVWQDWGAHRCT-NH2 , a nd Sequen c e 5 3 :
ICVVQDWGHHRCT in Table 3), we decomposed the polar
and nonpolar interaction free energy contributions and present

Figure 2. Correlation between IC50 and calculated binding free
energies using MM-GBSA for 63 Compstatin analogs. The blue bands
correspond to the 95% confidence interval for the regression line. The
red bands correspond to the 95% confidence interval for a new value
to lie in the prediction band. Error bars are ±1 standard deviation from
the mean binding free energy calculated.
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the results of the average interaction free energies as two-
dimensional density maps in Figure 3. Here, we focus on
differences in interactions due to 1-methyltryptophan relative
to tryptophan or valine present in other Compstatin sequences.
A full detailed analysis of all pairwise interactions is presented
in Supporting Information section “Use of FF_NCAA to
Discriminate Specific Contributing Interactions to Antagonistic
Activity for Unnaturally Modified Analog Compared to Native
and Variant E1 Compstatin.”
The substitutions of Val4 to Trp4 and from Trp4 to

W4(OMW) result in an increase of the overall nonpolar
interactions between residue 4 and C3c residues Gly345,
Met346, Asn390, Thr391, His392, Pro393, and Arg456; the
increase is more pronounced in the 390−393 C3c residue
moiety, as was previously proposed through molecular
modeling by Magotti and co-workers.52 During the simulations
of analog W4(OMW)A9, the methyl group of Trp4 is
frequently found to lay upon the Cys2-Cys12 disulfide bridge,
and this leads to increased intramolecular nonpolar interactions
between Trp4 and Cys2-Cys12. Similar behavior was observed
in recently published MD computational studies53 investigating
two novel analogs, R1W4(OMW)A9 and R-1S0W4(OMW)A9,
which also contain 1-methyltryptophan in position 4 and using
the CHARMM forcefield.54 W4(OMW) forms increased intra-
and intermolecular interactions compared with the less potent
analogs containing Trp4 and Val4. In all systems, the backbone
N in Val/Trp4 is hydrogen bonded to C3c Gly345 O, and the

backbone O in Val/Trp4 is hydrogen bonded to the charged
amide group of C3c Arg456; the former hydrogen bond-related
polar interaction is stronger in the parent Compstatin, whereas
the latter is stronger in W4(OMW)A9. The full set of
intermolecular interactions formed between the Compstatin
analogs and C3c residues in Figure 3 are in agreement with the
X-ray structure of W4A9 in complex with C3c55 and with all
previous MD simulation studies in explicit water solvent49,56,57

using the CHARMM forcefield. Despite the specific differences
between the analogs, overall, the strengths of the residue
pairwise interaction free energies of the three systems were
similar.

FF_NCAA Web Interface. To disseminate the ability to use
FF_NCAA to the broader academic community, we have also
created a web interface http://selene.princeton.edu/FFNCAA,
as shown in Figure 4. The interface allows one to upload a PDB
structure to be modified by single or multiple noncanonical
amino acids and/or simultaneously mutated. Additionally, the
interface allows a user to download the forcefield parameters
calculated and derived for FF_NCAA, as well as read
instructions for use with AMBER directly.
After user submission, the interface performs the requested

modifications and minimizes the structure to remove any
clashes that have been formed by introducing the noncanonical
amino acid to the nearest local minimum. This step utilizes the
parameters from FF_NCAA for the noncanonical amino acids
coupled with the parameters in ff03.51 After completion, the

Figure 3. (A) Nonpolar and (B) polar interaction maps for analog W4(OMW)A9. (C) Nonpolar and (D) polar interaction maps for analog W4A9.
(E) Nonpolar and (F) polar interaction maps for native Compstatin. The color bar represents the interaction free energy between the corresponding
residue−residue pairs in kcal/mol. The color bar was scaled to be the same for the nonpolar and polar interaction free energy contributions so that
the different analogues’ energetic contributions can be directly compared.
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user will receive an e-mail indicating the structure’s successful
modification with a unique link to download their results. The
user can visualize the modified and input structure using a Jmol
applet integrated into the web interface. Additionally, the
interface provides links to relevant information tabulated about
the structures including the TMScore and58 and RMSD
between the structures, and the molecular-mechanics calculated
energy of the structure. In addition, the topology and parameter
files are generated for AMBER and are provided so that one can
directly use them as input for further molecular dynamics
simulation on the user’s local computing systems. Disulfide
bridges in the input structure are automatically detected and
introduced by the web interface. The web interface will be
useful to researchers aiming to interactively make site-specific
noncanonical amino acid substitutions on a protein structure/
complex and to perform subsequent binding calculations in
AMBER locally.

■ METHODS

Procedure for Calculation and Derivation of Force-
field Parameters in Forcefield_NCAA. Quantum calcula-
tions to derive partial charges compatible with AMBER ff03
were performed consistent with the procedure of Duan and co-

workers51 for the 20 natural amino acids. The ff03 method-
ology was chosen due to the noncanonical amino acids having
multiple R-groups attached to the Cα or substitutions such as
methylation on the backbone nitrogen. Therefore, the
consensus fixed-backbone charges in other AMBER fixed-
charge forcefields would not be applicable.50 The choices for
NCAAs chosen to be parametrized were based on those found
in the literature to enhance the binding affinity of a peptide to a
receptor protein, α,α-disubstituted modified amino acids, N-
methylated amino acids, and β-amino acids. The procedure
used is shown in Figure 5 and is adapted from the procedure we
developed to derive parameters in Forcefield_PTM50 for
parametrizing frequently occurring post-translational modifica-
tions.
In the first step, structures of each unnatural amino acid

dipeptide were built using the MarvinSketch program.59

Dipeptides are constructed to mimic the peptide backbone
with a core amino acid with a preceding and subsequent amino
acid. An acetyl group precedes the amino acid to be
parametrized, with an N-methyl group following it in the
form ACE-X-NME, where X is the amino acid to be
parametrized. L-Amino acids were constructed, unless otherwise
noted by designations of (R) or (S) for the disubstituted amino
acids. In the second step, the distance geometry (distgeom)

Figure 4. Web interface for the dissemination of Forcefield_NCAA. The web interface has static links to download and use Forcefield_NCAA in
AMBER locally, as well as an interactive interface to make noncanonical amino acid substitutions and mutations to an input PDB structure.
Screenshot taken April 25, 2013.
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module in TINKER 5.160 is used to construct α-helix (ϕ =
−60, ψ = −40) and β-strand (ϕ = −120, ψ = −140)
conformers. In Step 3, through TINKER, utilizing the AMBER
ff9461 parameter set, and using restraints on the main-chain
torsion angles, each conformer was subjected to 25 simulated
annealing calculations (using the anneal routine with default
parameters). Ti and Tf were 1000 K and 0 K in the annealing.
2000 steps of cooling are done in each simulation, employing a
linear cooling protocol and a 1 fs time step. This procedure was
performed to find suitable feasible points for subsequent
detailed optimization at the quantum mechanical level. For
both the helix and strand conformer, the lowest energy
structure for each was minimized to the nearest local minima
using the optimize routine, with a RMS gradient cutoff of 0.01.
Gaussian0962 was used to optimize (Step 5) each conformer at
the HF/6-31G** level of theory, with restraints on the ϕ and ψ
angles to preserve the backbone secondary structure. Single
point energy calculations are next performed on the dipeptide
structures using the density functional theory method and the
B3LYP exchange and correlation functionals63−65 and the cc-
pVTZ66 basis set. An ether-like organic solvent environment (ε
= 4) was mimicked by applying the IEFPCM implicit solvent
model,67,68 as suggested by Duan.51 The electrostatic potential
(ESP) was calculated at a set of gridpoints defining the
molecular surface in the solvent-accessible region around each
optimized conformation at 1.4, 1.6, 1.8, and 2.0 times the vdw
radii using the program DMS at a density of 0.5, yielding 2.5−
2.8 points/Å2.69 The ESP values calculated from each
conformation were next used as input to a two-stage RESP
fit of the partial atomic charges using Antechamber in

AmberTools 1.4.70 In the RESP model, atoms are reasonably
approximated as spherical points having fixed charges rather
than as nuclei with shared electrons. Bond, angle, and dihedral
force constants were perceived by matching atom types
contained in the General Amber Forcefield (GAFF)71 using
Antechamber.70 GAFF torsion parameters, when applied to
post-translational modifications, were shown previously to be
highly correlated with and reproduce the locations of local
maxima/minima on the quantum mechanically calculated
potential energy surface of key torsion angles, although their
amplitudes needed refinement.50 Subsequent refinement of key
bonded parameters may be warranted but are not developed in
this work due to the extreme computational cost involved and
since the parameters developed herein are intended to be used
mainly in a design context. This procedure was completed for a
total of 147 diverse noncanonical amino acids spanning all
amino acids except Proline. No new atom types were needed in
the matching of force constants and equilibrium values. Further,
in 99 of the 147 molecules parametrized, no parameters were
utilized from GAFF since AMBER already had defined the
parameters for all of the atom types for those noncanonical
amino acids. The method described is similar to that described
by Khoury et al.50 with the changes being able to handle α,α-
disubstituted and backbone modified amino acids. The
parameters for noncanonical amino acids were next tested
using binding calculations.

Testing the Parameters Using Approximate Binding
Affinity and Binding Free Energy Calculations of 63
Compstatin Analogs. Selection of System for Testing and
Extraction of Data from the Literature. We aimed to create

Figure 5. Automated framework for AMBER partial charge parametrization for noncanonical, α,α-disubstituted, β- and N-methylated amino acids.
Adapted with permission from ref 50. Copyright 2013, American Chemical Society.
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charge parameters for noncanonical amino acids that would be
compatible with the existing AMBER ff03 forcefield parameters
for natural amino acids. We focused on assessing whether the
derived parameters can discriminate between active/inactive
analogs of an inhibitor, since we expect the charge parameters
derived to be used mainly in a protein design context. This
approach is viable since there are sets of binding data available
in the literature where others have experimentally incorporated
noncanonical amino acids for various therapeutic applications.
The availability of (i) an experimentally solved structure for

Compstatin variant E1 (the ligand) bound to human
Complement component C3c55 (the receptor) and (ii) an
abundance of experimental binding and IC50 data available, and
the observation that (iii) the ligand peptide is relatively rigid
because of a disulfide bond that cyclizes it which limits the
entropic contribution to the binding free energy, led us to focus
our testing efforts on the Complement/Compstatin system.
There are three pathways in the Complement system: the
classical pathway, the lectin pathway, and the alternative
pathway.72 All three pathways converge on a single step where
the key protein, C3 binds to C3 convertase and causes it to
become cleaved into C3a and C3b (which contains C3c), which
allows downstream events to occur leading to the membrane
attack complex that can cleave cells. Compstatin binds to C3
and the C3 convertase, which blocks them from coming
together and becoming cleaved.73 Inhibiting their ability to bind
together and cleave inhibits the activation of C3 and disrupts
the formation of the membrane attack complex downstream.
This is important as its improper activation has been linked to
over 10 autoimmune, inflammation, and neurological disor-
ders.24,74−77

Figure 6 shows a schematic diagram of Complement
component C3c with the coordinates of the ligand peptide
Compstatin variant E1 (Ac-ICVWQDWGAHRCT-NH2)
bound. Since the region that Compstatin binds to C3c is
confined and localized in one site, utilizing the entire
C3c:Compstatin complex is not necessary. In addition, because
of unresolved/missing residues in the crystal structure, and
because of its large size (643 amino acids in the solved PDB
structure), using the full structure of C3c only serves to
complicate subsequent calculation complexities, extend simu-
lation times, and potentially add unnecessary noise.49,56,57

Therefore, residues F335 (macroglobulin domain 4,MG4) to
D535 (MG5) were extracted from PDB: 2QKI and used in all
subsequent calculations. Previous simulations to study this
complex have shown that using these regions were sufficient for
modeling the binding interface.49,57

All experimental binding data (IC50’s) on Compstatin
variants were tabulated from Magotti et al.,52 Chiu et al.,79

and Qu et al.24 These data sets are denoted by structurekinetic,
pharmacophore, and novel analogues, respectively, and are
shown in Table 3. The data set included 47 analogues with IC50
< 200 μM, and 16 analogs with IC50 > 200 μM, as well as 31
analogues with IC50 < 20 μM and 32 analogs with IC50 > 20
μM. In terms of diversity, the data set included 23 noncanonical
amino acid modifications, of which 11 were backbone N-
methylations, 28 were natural amino acid substitutions, and 12
were deletions. There was no training done specific to this
system in the derivation of the parameters for the NCAAs used.
All subsequent results are based only on physical interactions
derived from the physics governing the AMBER forcefield.
Screening Compstatin Analogs with Short Molecular

Dynamics Simulations and Binding Calculations. The

starting coordinates of variant E1 of Compstatin bound to
Complement component C3c were taken from PDB: 2QKI.
Each variant was constructed using the program tleap by
stripping off the side-chains and substituting them with the new
amino acid, natural or modified. Deletions were constructed by
deleting the amino acids on the peptide chain. During the initial
minimization the atoms moved to adjust for the deletions. The
cysteine residues in the Compstatin variants were connected to
form disulfide bridges in all simulations using the bond
command in tleap. Acetyl and N-methyl blocking groups were
added if they were present in the experimental analog.
The molecular dynamics and screening procedure used was

done identically for each variant with AMBER11.80 Partial
charges compatible with AMBER ff0351 derived in this work
were used for all noncanonical amino acids. All simulations
were performed with the generalized Born implicit solvent
model of Onufriev81,82 with a 16 Å nonbonded interaction
cutoff. The surface energy term was activated and a salt
concentration of 0.1 mol/L was used to account for charge
screening. Structures were minimized with 600 steps of steepest
descent followed by 400 steps of conjugate gradient
minimization. The structures were next heated by rescaling
the velocities in 6 stages with increments of 50 K from 0 K to
300 K over 30 ps and a 0.5 fs time step to heat the structures.
The collision frequency γ was 5 ps−1. Shake constraints were
used to constrain all bonds between heavy atoms and
hydrogens and reduce the number of degrees of freedom.
Next, each C3c/Compstatin variant underwent a short 0.5 ns
production simulation using a 1 fs time step at 300 K. Short
(<1 ns) MD simulations with the ff03 charge model have
previously been shown to give better performance in ranking

Figure 6. (A) Crystal structure of Compstatin Variant E1 bound to
Complement component C3c (PDB: 2QKI). Each macroglobulin
domain (MG) is denoted by color. (B) The region where modified
amino acids are to be substituted in is shown in the inset. This is the
interface that is being designed when making natural or noncanonical
amino acid substitutions. A disulfide bridge cyclizes Compstatin
between residues 2 and 12. (C) This is the full region all calculations
will be performed on, beginning with F335 from MG4 to D535 on
MG5 as labeled. The images are visualized in PyMOL.78
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binding energies than longer simulations83 and gave the best
overall ranking results in an assessment of 5 AMBER forcefields
(ff99, ff99SB, ff99SB-ILDN, ff03, and ff12SB) and 46 small
molecules targeting 5 protein receptors.84 No restraints were
employed in any step of any simulation to strictly assess the
suitability of the parameters to discriminate between active/
inactive analogs of Compstatin.
Approximate Binding Affinity Calculations. Three inde-

pendent simulations as described above were performed for the
complex, the protein, and the peptide, respectively. One
simulation of the protein was utilized to assess the
contributions of the protein and to remove any variability
from its contribution. Sixty three independent simulations of
each complex and 63 independent simulations of each peptide
were performed in isolation using the procedure described
above. The derivation of the Approximate Binding Affinity
(K*) from statistical mechanics is described in the following.
The equilibrium of complex formation PL from a protein P

and ligand L is defined as

+ ⇌P L PL (1)

Assuming a dilute mixture, one can assume ideal behavior. The
Helmholtz free energy A can be related to the total partition
function, Q in eq 2. Q is in turn a function of the individual
partition functions qi, where i is PL, P, L. This assumes
independence of subsystems and that the particles are
indistinguishable.
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The chemical potential μ of species i is the partial derivative of
the Helmholtz Free Energy A with respect to Ni, denoted in eq
3.
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Equality of chemical potentials at equilibrium is denoted in eq
4.

μ μ μ+ =P L PL (4)

Next, substituting eq 3 into eq 4 and rearranging yields.
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qi is a product of the translational (qt), rotational (qr), and
vibrational (qv) partition functions. Since qt is only a function of
the coordinates x, y, and z, it integrates out to a volume V,
leaving qi = V * qi′(T). qi′(T) is the rotational and vibrational
partition functions, which is what is approximated by evaluation
of Eintra during the snapshots sampled over the course of a
molecular dynamics trajectory. This is shown in eq 6.
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Next, the volume term can be taken out of each partition
function and therefore the ratio of the partition functions
equals the ratio of concentrations (since Ni/Vi is a
concentration). K* = KA when the intrapartition functions (qr
and qv) are exactly calculated.

Figure 7. Thermodynamic cycle used to calculate the binding free energies. Ideally one can calculate the binding free energy for the association of
[A] + [B] ⇌ [AB] directly in solvent. This calculation is expensive and contains much noise due to the contribution of the solvent. Therefore, a
different approach was used exploiting a thermodynamic cycle that can calculate the same difference by utilizing the solvation free energies of the
protein (receptor), peptide (ligand), and complex, with the binding energy calculated in vacuo.87
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Currently, it is not possible to compute exact partition
functions for a complex molecular species due to the inability
to integrate an exact energy function over the molecule’s entire
conformational space.85 Therefore, we approximate the
partition functions as the sampled space of a molecular
dynamics trajectory scored with the AMBER potential energy
function.
This derivation is based on an initial derivation by Lilien et

al.85 using rotamerically based ensembles with modifications
resulting from a personal communication between Dr. Meghan
Bellows Peterson and Professor Pablo G. Debenedetti. Using
the ratios of the partition function of the complex, peptide, and
protein, the Approximate Binding Affinity, K* was calculated
and placed in a rank ordered list from highest to lowest, which
would correspond to the largest to smallest predicted
association affinity. The Jacobi logarithm was used to handle
numerical overflows that can be caused by summing
exponential terms.86

Binding Free Energy Calculations. Binding free energies
were calculated using the states produced over the time course
of each of the 63 molecular dynamics simulations of the
complex. These were calculated to test the forcefield
parameters and also to compare its predictive ability to the
K*. In the approximate binding affinity, independent
simulations of the peptide, protein, and complex are performed.
In the binding free energy calculation, only one simulation of
the complex is required. The binding free energy is calculated
as in eq 8, utilizing the thermodynamic cycle denoted in Figure
7.

Δ = Δ + Δ

− Δ + Δ

◦ ◦ ◦

◦ ◦

G G G

G G( )

Bind,Solv Bind,Vacuum Solv,Complex

Solv,Ligand Solv,Receptor (8)

Tamamis et al., using the CHARMM54 suite of tools, showed
MM-GBSA was able to show the difference in binding
Compstatin in complex with human versus rat C3c56 and
mouse C3c.57 Tamamis et al. further showed MM-GBSA was
helpful in discriminating potential analogs for experimental
testing.49 Based on these previous findings, it is clear that MM-
GBSA can be used to study the Compstatin/C3c system.
Therefore, in this study, binding free energies were calculated
using the MM-GBSA module87 in AMBER11 complemented
by the charge parameters for the noncanonical amino acids
introduced in this work.
For this system, we assume that the entropic contribution

due to the binding free energy is small since the ligand’s
structure is relatively rigid due to the disulfide bridges (the
maximum Cα RMSD between analogs W4(OMW)A9, W4A9,
and native Compstatin was 1.38 at the end of the simulation).
The entropic contribution, which can be calculated through a
normal-mode analysis, can have a large uncertainty.80 Given
that we expect the Compstatin analogs to have similar entropies
due to their cyclic nature and being bound to the same binding
pocket of C3c, and because of the expected large error, the
entropic contribution in the calculation was ignored. This “one-
trajectory” approximation where we assume similar structure in
the bound and unbound state is reasonable and has been
applied elsewhere49,53 and also has been compared to the

results of a “three-trajectory” approximation for this system.56

Using the “one-trajectory” approximation, all of the bonded
terms (bonds, angles, torsions) cancel out in the evaluation of
the binding free energies, leaving only nonbonded terms, of
which the electrostatic component is a significant contributor.

Construction of Receiver Operating Characteristic Curves.
After the approximate binding affinity and binding free energies
were calculated for each variant of Compstatin following the
procedure described above, the values were rank ordered from
most favorable to least favorable. For K*, this was largest to
smallest, and for ΔGBind,Solv° , this was smallest to largest.
Receiver operating characteristic (ROC) curves were con-
structed based on the rank-ordered lists of the analogs. Two
cutoff values of IC50 values defining active and inactive were
chosen. The first cutoff was 20 M, which corresponded to an
even split between active and inactive in the data set. That is,
analogs with IC50 values < 20 μM were considered active.
Similarly, a cutoff of 200 μM was chosen to perform the
analysis with a less stringent cutoff of active/inactive. These
values as cutoffs were determined based on the fact that the
most active Compstatin analog in Table 3 is Ac-ICV(OMW)-
QDWGAHRCT-NH2,88 which has an IC50 of 0.21 μM. The
axes on the ROC curve correspoμnd to the True Positive Rate
(Sensitivity) vs the False Positive Rate (1-Specificity). The
ROC curve constructed aimed to find how many of the most
favorable analogs by calculated approximate binding affinity or
binding free energy were experimentally active when rank-
ordered. In a virtual screen, this is often one of the first steps in
design: to assess whether a particular ligand will bind to its
target favorably, and ranking the affinity of a ligand to the
targeted receptor. Sensitivity and specificity are defined as.

=
+

=
+

sensitivity
TP

TP FN
specificity

TN
TN FP (9)

where TP, FP, TN, and FN stand for true/false positives/
negatives, respectively.

Additional Simulations for Analysis of Interaction
Free Energies of Compstatin Derivatives and C3
Residue Pairs. Three biologically relevant complexes contain-
ing derivatives of Compstatin (Sequence 11: Ac-ICV(OMW)-
QDWGAHRCT-NH2, Sequence 23: Ac-ICVWQDW-
GAHRCT-NH2, and Sequence 53: ICVVQDWGHHRCT in
Table 3) were assessed for their interactions through multiple
longer-time molecular dynamics simulations. Four independent
trajectories were performed for each complex. Each of the four
trajectories for each complex were appended together for
subsequent analysis. The starting complex structures were
constructed and minimized as described previously deriving
from PDB: 2QKI. The complexes were heated stepwise from 0
to 300K over 30 ps using restraints on all backbone atoms with
a force constant of 10 kcal/(mol·Å2). The complexes were
carefully equilibrated in 3 stages; each stage was run for 200 ps.
In the first stage, all atoms were restrained with a force constant
of 5.0 kcal/(mol·Å2) for 200 ps. In the second stage, all
backbone atoms outside of the binding pocket were constrained
(residues 335−343, 350−387, 394−453, 463−487, 493−535),
and all atoms in the binding pocket were constrained with a
force constant of 5.0 kcal/(mol·Å2). In the final stage, all
backbone atoms outside of the binding pocket were constrained
and all atoms in the binding pocket were constrained with a
force constant of 1.5 kcal/(mol·Å2). After equilibration, four
independent 10 ns production simulations were performed for
each complex. These simulations were used to produce maps of
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residue−residue polar and nonpolar interaction free energies to
identify key energetic interactions important for binding
through the simulation trajectories.
The interaction free energies between two residues (R and

R′) were computed by the relation:

for each of the 3 Compstatin variants evaluated. The first and
second group of terms on the right-hand side of eq 10 describe
polar and nonpolar interactions between R and R′. In the
calculations, R corresponds to a residue on Compstatin and R′
corresponds to a residue on C3c. The details of the calculation
have been presented previously.49,53,56,57 For each complex,
4000 frames over the 40 ns total simulation time were evaluated
for their average interaction free energies using a spacing of 10
ps per frame.
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freedom; Eintra, the intramolecular energy of a system
interacting with itself; Q, the total partition function; qi′, the
partition function over the internal degrees of freedom; B, the
set of bound configurations; F, the set of free protein
configurations; L, the set of free ligand peptide configurations;
K*, the approximate binding affinity; KA, the binding
equilibrium constant for the association reaction P + L ⇌ PL
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