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A metal-free catalytic approach for the remote C6-functionalization of 2,3-

disubstituted indoles has been developed. In the presence of catalytic amounts

of Brønsted acid, the β,γ-unsaturated α-ketoesters react with 2,3-disubstituted

indoles at the C6 position selectively. Undermild reaction conditions, a range of

C6-functionalized indoles were prepared with good yields and excellent

regioselectivity. This methodology provides a concise and efficient route for

the synthesis of C6-functionalized indole derivatives.
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Introduction

Indole and its homologues and derivatives widely exist in nature, mainly in natural

flower oils, such as jasmine, bitter orange flower, daffodil, vanilla, etc. This structure also

ubiquitously exists as key structural framework in numerous natural products, functional

materials, and medicines (Ishikura et al., 2015; Sherer and Snape, 2015; Zhang et al., 2015;

Sravanthi and Manju, 2016; Gao et al., 2020) (Scheme 1A). For example, tryptophan is an

essential amino acid of animals. Trikentrins, which have a fused cyclopenta[g]indole

structures, were isolated from sponges and showed antimicrobial activity and cytotoxicity

against KB cells (Capon et al., 1986; Herb et al., 1990). ABT-299 is a prodrug that is highly

potent and specific platelet activating factor (PAF) antagonist (Vaden et al., 1996).

Nintedanib is an oral tyrosine kinase inhibitor approved for the treatment of idiopathic

pulmonary fibrosis (Wind et al., 2019).

Due to their important biological activities, the synthesis of functionalized indoles

has received continuous attention. Although traditional methods for the indole

synthesis can lead to indoles with different functionalizations (Fischer and

Jourdan, 1883; Sugasawa et al., 1979; Gassman et al., 1984; Street et al., 1993;

Fukukyama et al., 1994; Furstner and Ernst, 1995) these methods require multi-

step substrate synthesis and the introduction of functional groups in many cases are

less efficient. An alternative approach to access functionalized indoles is the direct

C-H functionalization of indoles, (Wang et al., 2016; Fan et al., 2017; Gandeepan et al.,

2019; Rej et al., 2020), which allows for the rapid and efficient introduction of specific
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groups into the indole backbone, thus providing a most

straightforward and atom-economical access to the target

indoles. Numerous efforts have been made in recent years

to achieve selective functionalization of indoles. One of the

major challenges of this area is the controlling of the site-

selectivity of indole (Cacchi and Fabrizi, 2005; Humphrey and

Kuethe, 2006; Sandtorv, 2015; Yang and Shi, 2018). Due to its

inherent nucleophilic characteristics, the reaction of indoles

usually take place at their very reactive N1, C3 and

C2 positions. (Scheme 1B) various methods have been

developed for the C3, C2, and N1-functionalization of

indoles via organo- and transition-metal-catalysis.

Comparatively, the functionalization at the

C4−C7 position of indoles has been less reported, most of

them were based on transition metal catalysis using directing

groups to achieve C-H bond activation (Poulsen et al., 2015;

SCHEME 1
Selected bioactive molecules and natural products containing indole skeleton and selective C-H functionalization of indoles.

GRAPHICAL ABSTRACT

Frontiers in Chemistry frontiersin.org02

Zhang et al. 10.3389/fchem.2022.992398

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.992398


Rostoll-Berenguer et al., 2018; Xiao et al., 2018; Huang et al.,

2019; Wen and Shi, 2021). Among them, the C6 position of

indole is far away from the possible directing group, which

makes the C6 functionalization of indole even more difficult

(Liu et al., 2014; Zhou et al., 2014; Wu et al., 2019; Ling et al.,

2019; Yan et al., 2020). In 2014, Yu and co-workers developed a

removable “U-shaped” template to enable the orientation of

indole C6-H to carry out alkenylation reactions (Yang et al.,

2014) (Scheme 2A). In 2016, Larrosa developed a new strategy

for indole C7 carboxyl group as a guiding group, causing indole

C6 to undergo arylation (Scheme 2B). Simonetti et al. (2017)

Frost’s group used C3 ester groups with auxiliary coordination

orientation and strong coordination orientation of pyrimidine

groups on N atoms as the reaction substrate, and achieved

selective C-H bond alkylation of indole C6 in Ru catalysis

(Scheme 2C). (Leitch et al. (2017) Recently, the groups of

Zhang (Zhou et al., 2019) (Scheme 2D) and Zhou (Huang et al.,

2021) (Scheme 2E) have independently developed C6-

enantioselective C−H functionalization of 2,3-disubstituted

indoles via chiral phosphoric acid catalysis. However, the

development of efficient methods for the facile access to

metal-free and highly selective C6 functionalization of

indole in a sustainable fashion under mild conditions is still

highly desirable. Herein, we developed a Brønsted acid

catalyzed remote C6 functionalization of 2,3-disubstituted

indoles with β,γ-unsaturated α-ketoester (Scheme 2F).

Initially, we examined this indole C6 functionalization

reaction using β,γ-unsaturated α-ketoester 1a and 2,3-dimethyl-

1H-indole 2a as model substrates. To our delight, when a mixture

of 1a and 2a in toluene were treated with benzenesulfonic acid

(BSA) at 30°C, the expected reaction proceeds smoothly and

produced the desired C6 functionalized product 3aa in 42%

yield (Table 1, entry 1). Inspired by this exciting result, we

studied different reaction parameters for this reaction. Firstly,

we screened the acid catalysts, including both Brønsted acids

and Lewis acids (Table 1, entries 2–7). When p-toluenesulfonic

TABLE 1 Optimization of the reaction conditionsa.

Entry Catalyst Sol Temp. (°C) 1a:2a Yield (%)b

1 BSA Toluene 30 1.2:1 42

2 PTS Toluene 30 1.2:1 54

3 diphenyl phosphite Toluene 30 1.2:1 13

4 PPTS Toluene 30 1.2:1 47

5 4-Cl-BSA Toluene 30 1.2:1 37

6 FeCl3 Toluene 30 1.2:1 40

7 Sc(OTf)3 Toluene 30 1.2:1 41

8 PTS DCM 30 1.2:1 30

9 PTS DCE 30 1.2:1 39

10 PTS THF 30 1.2:1 trace

11 PTS DMSO 30 1.2:1 10

12 PTS MeCN 30 1.2:1 85

13 PTS MeOH 30 1.2:1 16

14 PTS MeCN 0 1.2:1 69

15 PTS MeCN 40 1.2:1 65

16 PTS MeCN 50 1.2:1 33

17 PTS MeCN 30 1:1.2 74

18 PTS MeCN 30 1:1.5 92

19 PTS MeCN 30 1:1 34

20 PTS MeCN 30 1.5:1 83

aReaction conditions: 1a (0.2 mmol), 2a, Catalyst (20 mol%), solvent (2 ml), 24 h, bIsolated yields. BSA: benzenesulfonic acid. PTS: p-toluenesulfonic acid. PPTS: pyridinium

p-toluenesulfonate. 4-Cl-BSA: 4-chlorobenzenesulfonic acid.

The optimized reaction conditions.
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acid (PTS) was used as the catalyst, the product 3aa could be

obtained in a yield of 54% (Table 1, entry 2). Subsequently,

different solvents were examined. DCM and DCE provided the

desired product 3aa in moderate yields (Table 1, entries ht and 9).

Other solvents such as THF and DMSO were ineffective for this

reaction and only trace amounts of product were detected (Table 1,

entries 10 and 11). MeCN was found to be the optimal solvent and

the product 3aa was obtained in 85% yield (Table 1, entry 12).

Then, the influence of the reaction temperature to this

transformation was investigated. When the reaction was

performed at 0°C, the yield of 3aa was decreased to 69%

(Table1, entry 14). However, higher temperature also led to

decreased yields (Table 1, entries 15 and 16). Finally, the ratio

of the starting materials was screened (Table 1, entries 16–20).

When 1.5 equivalent of 2,3-dimethyl indole was used, the desired

product was obtained in an excellent yield of 92% (Table 1,

entry 18).

With the optimal reaction conditions in hand, we turned

our attention to examining the generality of that reaction.

Firstly, as shown in Scheme 3, under optimal reaction

conditions, various substituted β,γ-unsaturated α-ketoesters

reacted with 2,3-dimethyl indole 2a and produced the

corresponding products in good to excellent yields. Both

electron-donating and electron-withdrawing group

SCHEME 2
Transition-Metal Catalyzed C6 selective C−H Functionalization of Indoles.

Frontiers in Chemistry frontiersin.org04

Zhang et al. 10.3389/fchem.2022.992398

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.992398


substituted β,γ-unsaturated α-ketoesters were tolerated in this

reaction. The electronic properties of the substituents affect the

efficiency of this reaction. Generally, β,γ-unsaturated α-

ketoesters with electron-donating groups (3ba-3ea) gave

higher yields than that with electron-withdrawing groups

(3fa-3ka). The steric effect of the substituents has little

influence to the yield of this reaction (3ba vs. 3da, 3ha vs.

3ja). Notably, halides including fluoro-, chloro- and bromo-

groups were compatible in this reaction. Furthermore,

heteroarenes such as 2-naphthyl (3la) and thienyl (3ma)

substituted enoneates were also compatible in this reaction

and produced the corresponding products in 83% and 98%

yields, respectively. In addition, the reaction also gave good

yields when ethyl and isopropyl esters were used (3na, 3oa).

Then, we examined the scope of indoles for this reaction.

As shown in Scheme 4, a range of 2,3-disubstituted indoles

were successfully applied in this reaction, providing the

corresponding C6 functionalized products in moderate to

SCHEME 3
Substrate scope of β,γ-unsaturated α-ketoesters. aReaction conditions: β,γ-unsaturated α-ketoester 1 (0.2 mmol), Indoles 2a (0.3 mmol), PTS
(20 mol%), 30°C, 24 h, isolated yields. b1a (3 mmol), Indoles 2a (4.5 mmol).
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good yields. When tetrahydro-1H-carbazole was subjected to

the optimized conditions, the desired product 3 ab was

obtained in 71% yield. Other analogues with six-, seven-

and five-membered fused rings were also tolerated in this

reaction (3ac-3ae). Besides, several functional groups

including halides (3ae-3ag), ester (3ah) and ketone (3ai)

were compatible in this reaction. It should be noted that

the substitution at both C2 and C3 positions of indole were

essential for this reaction. When 2-methyl-1H-indole was

used in this reaction, a mixture of isomers were obtained,

while 3-methyl-1H-indole led to the formation of 9H-pyrrolo

[1,2-a]indole (Sun et al., 2016). Other heterocycles such as

benzofuran, benzothiophene, carbazole and quinoline were

failed in this reaction.

On the basis of these results and the previous literatures,

we proposed a plausible reaction model to illustrate the

regioselectivity of this reaction. The Brønsted acid served as

a bifunctional catalyst to activate both the indole and the β,γ-

unsaturated α-ketoesters (Scheme 5).

In summary, we have developed a metal-free catalytic

approach for the remote C6-functionalization of 2,3-

disubstituted indoles. In the presence of catalytic amounts

of Brønsted acid, the β,γ-unsaturated α-ketoesters react with

2,3-disubstituted indoles at the C6 position selectively. Under

mild reaction conditions, a range of C6-functionalized indoles

were prepared with good yields and excellent regioselectivity.

This methodology provides a concise and

efficient route for the synthesis of C6-functionalized indole

derivatives.

SCHEME 4
Substrate Scope of Indoles. aReaction conditions: β,γ-unsaturated α-ketoester 1a (0.2 mmol), Indoles 2 (0.3 mmol), PTS (20 mol%), 30°C, 24 h,
isolated yields. b60°C.

SCHEME 5
Proposed Reaction Modela.
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