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An elastic rod is clamped at one end and has a
dead load attached to the other (free) end. The rod
is then slowly rotated using the clamp. When the
load is smaller than the buckling value, the rod
describes a continuous set of quasi-static forms and
its end traces a (smooth, convex and simple) closed
curve, which would be a circle if the rod were
rigid. The closed curve is analytically determined
through the integration of the Euler’s elastica, so that
for sufficiently small loads the mechanical system
behaves as an ‘elastica compass’. For loads higher than
that of buckling, the elastica reaches a configuration
from which a snap-back instability occurs, realizing
a sort of ‘elastica catapult’. The whole quasi-static
evolution leading to the critical configuration for
snapping is calculated through the elastica and
the subsequent dynamic motion simulated using
two numerical procedures, one ad hoc developed
and another based on a finite-element scheme. The
theoretical results are then validated on a specially
designed and built apparatus. An obvious application
of the present model would be in the development of
soft robotic limbs, but the results are also of interest
for the optimization analysis in pole vaulting.

1. Introduction
The design of innovative devices for advanced appli-
cations is being driven by the need for compliant
mechanisms, which are usually inspired by nature [1,2]
and is part of a transition from traditional robotics to
soft robotics [3–5]. Compliant mechanisms require the
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Figure 1. An elastic rod of length l, with bending stiffness B and linear mass density γ , has attached a lumped mass m at
one end and is constrained at the other end by a slowly rotating clamp, inclined at an angle α (increasing function of time t)
with respect to the direction of the gravity, so that a force P = mg is applied to an end of the rod. The rotation of the rod’s
axis with respect to the undeformed (straight) configuration is measured through the angle θ (s, t), with s being the curvilinear
coordinate, s ∈ [0, l]. The x̂ − ŷ and x − y reference systemsare reported, both centredat the clamppoint, the former attached
to the rotating clamp, whereas the latter fixed as the loading direction. The polar coordinates r − ϕ defining the rod’s end
position are also reported. (Online version in colour.)

development and use of nonlinear mechanical models such as the Kirchhoff rod [6] and Euler’s
elastica, which allow the description of large deflections in elastic bars and the modelling of snake
locomotion [7,8], as well as object manipulation [9–11], useful in robotic assistance during surgery
[12,13] and for physical rehabilitation [14].

In this article, a basic mechanical model for a soft robot arm is addressed through new
theoretical, numerical and experimental developments. In particular, the deformable mechanical
system sketched in figure 1 is considered, in which an elastic rod is clamped at one end and subject
to a dead load at the other. The load is provided by the weight of a mass predominantly higher
than that of the rod. The clamp rotates slowly, so that starting from a configuration in which the
rod is subject to purely tensile axial load, the system quasi-statically evolves in a number of elastic
forms at varying clamp angle. When the load is inferior to that corresponding to buckling of the
straight and uniformly compressed configuration, a whole quasi-static 360◦ rotation of the clamp
is possible and the edge of the rod describes a (smooth, convex and simple) closed curve, which is
theoretically solved using Euler’s elastica. In the case of a rigid rod, this curve would be a circle,
so that the mechanical system behaves as an ‘elastica compass’, thus tracing the curve described
by the elastica. However, when the load is higher than that which would lead to buckling for the
straight rod, an unstable configuration is quasi-statically reached, at which the rod suffers a snap-
back instability and dynamically approaches another configuration, so that the system behaves as
an ‘elastica catapult’.1 The description of the quasi-static path of the system and the determination
of the unstable configuration is solved in an analytical form by means of elliptic functions through
an extension of results pioneered by Wang [15], who employed a numerical integration procedure
and provided asymptotic estimates valid in some particular cases (very stiff and very compliant
rods, and nearly vertical equilibrium configurations).

1The ancient catapults derived their launching power either from gravity (in the case of the so-called trebuchet) or from the
elastic energy stored in a coil of twisted sinew, concentrated at the pivot point of the arm (in the case of the so-called onager
catapult). Leonardo da Vinci has sketched a series of catapults (collected in the Codex Atlanticus) where the elastic energy for
propulsion was stored through flexure of the catapult arm, a mechanism similar to that treated in this article.
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In addition to the quasi-static solution, the dynamics of the snap instability is addressed
numerically. The set-up of a numerical technique is a complex problem, which was analysed from
several points of view, but not still completely solved [16–21]. To this purpose, two approaches
are presented, one is a standard use of a finite-element software (Abaqus), whereas the other is
developed as a perfection of a technique introduced for pneumatic soft robot arms [22]. The latter
approach, in which the elastic rod is reduced to a nonlinear spring governed by the elastica, is
elegant, but the kinematics is limited to the first deformation mode and an axial deformation and
viscous damping have to be added to prevent spurious numerical instabilities, issues which may
be circumvented through the finite-element approach.

Finally, the experimental validation of the elastic system was performed using a mechanical
set-up specifically designed and realized at the ‘Instabilities Lab’ of the University of Trento
(http://www.ing.unitn.it/dims/ssmg/). Experimental results (also available as a movie in the
electronic supplementing material) fully validate the theoretical modelling, thus confirming that
the elastica allows for solutions useful in the kinematics of a soft robot arm. The performance of
the robot arm is also assessed in terms of (i) the maximum and minimum distances that can be
reached without encountering loss of stability of the configuration and (ii) the maximum energy
release that can be achieved when the system behaves as a catapult. These results open the way to
a rational design of deformable robot arms and, as a side development, may find also application
in the analysis of the pole vault dynamics and the optimization of athletes’ performance [23,24].

2. Formulation
An inextensible planar rod with bending stiffness B, length l, linear mass density γ , and straight in
its undeformed configuration, has a lumped mass m attached at one end, whereas the other end is
constrained by a clamp having inclination α with respect to gravity direction (figure 1). Denoting
with g the gravitational acceleration, the rod is then loaded by the weight P owing to the lumped
mass m, so that P = mg, and the rod distributed weight γ g (the latter neglected in the quasi-static
analysis). The clamp angle α smoothly and slowly increases in time t, so that a quasi-statically
rotating clamp is realized. For simplicity of presentation, the dependence on time t is omitted
in the notation in the following of this section. The rotation of the rod’s axis with respect to the
undeformed (straight) configuration is denoted by θ (s), function of the curvilinear coordinate
s ∈ [0, l], with s = 0 singling out the position of the clamp (where θ (0) = 0) and s = l of the loaded
rod’s end. With respect to the undeformed straight configuration, ‘frozen’ at the inclination angle
α, the coordinates x̂(s) and ŷ(s) measure the position of the rod’s axis in the rotating system, and,
owing to the inextensibility condition, are connected to the rotation field through the following
differential relations [25]

x̂′(s) = cos θ (s) and ŷ′(s) = − sin θ (s), (2.1)

where a prime denotes the derivative along the curvilinear coordinate s. The position can be
described through the coordinates x(s) and y(s) (the former orthogonal and the latter parallel,
but with opposite direction, to the gravity), which are connected with the positions x̂(s) and ŷ(s)
through the following relationships

x(s) = −x̂(s) sinα + ŷ(s) cosα, y(s) = −x̂(s) cosα − ŷ(s) sinα, (2.2)

so that the kinematical constraint, equation (2.1), implies

x′(s) = − sin[θ (s) + α] and y′(s) = − cos[θ (s) + α]. (2.3)

During the rotation, the position of the clamp (s = 0) is considered fixed and taken as the origin
of the reference systems,

x(0) = y(0) = x̂(0) = ŷ(0) = 0. (2.4)

http://www.ing.unitn.it/dims/ssmg/
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Neglecting the rotational inertia of the lumped mass and of the rod, the Lagrangian functional for
the system is given by

L= T − V −
∫ l

0
Nx(s){x′(s) + sin[θ (s) + α]} ds −

∫ l

0
Ny(s){y′(s) + cos[θ (s) + α]} ds, (2.5)

where Nx(s) and Ny(s) are the internal forces aligned in parallel with the x- and y-directions (which
play the role of Lagrangian multipliers), T is the kinetic energy of the system

T = 1
2

m[ẋ2(l) + ẏ2(l)] + 1
2

∫ l

0
γ [ẋ2(s) + ẏ2(s)] ds, (2.6)

(with a dot denoting the time derivative) and V is the sum of the elastic energy stored within
the rod and the negative of the work done by the dead load P and that by the rod distributed
weight γ g,

V = 1
2

∫ l

0
Bθ ′(s)2 ds + Py(l) +

∫ l

0
γ gy(s) ds. (2.7)

The governing equations can be derived through application of the least action principle on
the functional

A=
∫ t∗

t0

Ldt, (2.8)

with t0 and t∗ being arbitrary initial and final instants of the analysed time interval. Reference is
made to a perturbation in the fields {x(s), y(s), θ (s)} by means of the small parameter ε and of the
field variations {xvar(s), yvar(s), θvar(s)} satisfying the time and space conditions

xvar(s) = yvar(s) = θvar(s) = 0, for t = t0 and t = t∗

and xvar(0) = yvar(0) = θvar(0) = 0, t ∈ [t0, t∗].

}
(2.9)

Therefore, the minimum of the functional A, equation (2.8), is obtained by imposing the following
condition

∫ l

0
[γ ẍ(s) − N′

x(s)]xvar(s) ds +
∫ l

0
{γ [g + ÿ(s)] − N′

y(s)}yvar(s) ds

+
∫ l

0
{Bθ ′′(s) − Nx(s) cos[θ (s) + α] + Ny(s) sin[θ (s) + α]}θvar(s) ds

+ [mẍ(l) + Nx(l)]xvar(l) + [mÿ(l) + P + Ny(l)]yvar(l) − Bθ ′(l)θvar(l) = 0, (2.10)

providing finally the expressions

Bθ ′′(s) − Nx(s) cos[θ (s) + α] + Ny(s) sin[θ (s) + α] = 0,

N′
x(s) = γ ẍ(s)

and N′
y(s) = γ [g + ÿ(s)],

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

and the boundary conditions

θ ′(l) = 0,

Nx(l) = −mẍ(l)

and Ny(l) = −m[g + ÿ(l)].

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

3. Quasi-static response
The weight of the rod γ gl is considered here negligible when compared with that of the
lumped mass attached at the end of the rod P. Moreover, when quasi-static conditions prevail,
the acceleration of the rod’s axis can be neglected, ẍ(s) = ÿ(s) = 0, so that from the boundary
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conditions (2.12)2 and (2.12)3, and the differential equations (2.11)2 and (2.11)3, the rod’s internal
forces result to be constant along the rod

Nx(s) = 0 and Ny(s) = −P, (3.1)

so that the governing equation for the rotation field (2.11)1 reduces to the elastica [25,26]

Bθ ′′(s) − P sin[θ (s) + α] = 0, (3.2)

to be complemented with the boundary conditions, equation (2.12)1 and θ (0) = 0.
Introducing the symbol λ2 = P/B and the auxiliary rotation ψ(s) = θ (s) + α − π (measuring the

inclination of the rod tangent with respect to the y axis, see figure 1), the elastica (3.2) and the
boundary conditions can be rewritten as

ψ ′′(s) + λ2 sinψ(s) = 0, ψ(0) = α − π and ψ ′(l) = 0, (3.3)

so that, through the following change of variables

k2 = sin2
(
ψ(l)

2

)
, k2 sin2 σ (s) = sin2

(
ψ(s)

2

)
and σ0 = arcsin

[
1
k

sin
(
α − π

2

)]
, (3.4)

the integration of the differential problem (3.3) leads to the following expression providing the
relation between the applied load P and the rotation θ (l) = θl at the loaded end of the rod

P = B
l2

[(2n − 1)K(k) − K(σ0, k)]2. (3.5)

In equation (3.5), n = 1, 2, 3 . . . is an integer representing the nth mode solution, whereas K(k)
and K(σ0, k) are, respectively, the complete and the incomplete elliptic integral of the first kind of
modulus k

K(a, k) =
∫ a

0

dσ√
1 − k2 sin2 σ

and K(k) =K
(π

2
, k

)
. (3.6)

In the following, the analysis is mainly addressed to the deformation mode n = 1, because only
the equilibrium configurations related to this mode are stable [25,27]. However (when existing),
the unstable equilibrium configurations related to deformation mode with n �= 1 will also be
considered in the case P/Pcr > 4 to provide the whole equilibrium paths of the system.

Once the rotation θl is computed from the nonlinear equation (3.5) for a given load P and a
clamp angle α, the rotation field θ (s) is obtained from integration of equation (3.3) as the solution
of the equation

cos2
(
θ (s) + α

2

)
= k2 Sn2[sλ+ K[σ0, k], k], (3.7)

where Sn(·, k) represents the sinus of the Jacobian amplitude am(·, k) of modulus k.
With reference to the buckling load of the purely compressed clamped rod (α= π ), namely

Pcr = π2B/(4 l2), the solution of the nonlinear equation (3.5) displays the two following different
behaviours:

— when P ≤ Pcr, a unique value of the rotation at the loaded end θl corresponds to a unique
value of the clamp inclination α;

— when P> Pcr, more than one solution for the rotation at the loaded end θl may exist when
the clamp inclination α falls within the interval (2π − αs,αs), with αs ∈ [π , 2π ].

These two behaviours are highlighted in figure 2, where the rotation (with respect to the
vertical direction) θl + α of the loaded rod’s end is reported as a function of the clamp inclination
α, solution of the nonlinear equation (3.5). Six values of the ratio P/Pcr have been considered,
namely {0.5, 1, 3} and {5, 8, 9.161} in the left and right parts of figure 2, respectively. Uniqueness of
the end rotation θl as a function of α is displayed only when the load P does not exceed the critical
load Pcr (case P = 0.5Pcr), whereas more than one equilibrium configuration may be found when
P> Pcr for some set of values for the clamp angle α. For instance, in the case P = 3Pcr (figure 2,
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Figure 2. Rotation of the loaded end of the rod θl + α versus clamp angle α as solution of equation (3.5), for different
ratios P/Pcr, {0.5, 1, 3} (a) and {5, 8, 9.161} (b), showing the possibility of multiple equilibrium configurations (whenever the
dead load exceeds the critical load, P> Pcr) for sets of value of the clamp inclination α. Stable configurations are reported as
continuous lines. Unstable equilibrium configurations associated with the first (n= 1) and second (n= 2) mode are reported
as dashed and dotted lines, respectively. Deformed equilibrium configurations for the loading condition P= 3Pcr are reported
enclosed in green circles at different clamp rotations, when only one equilibrium configuration is possible (α1 = π/4 and
α3 = 7π/4) and when two equilibrium configurations are possible (α2A = α2B = αs = 1.348π ). (Online version in colour.)

left), three equilibrium configurations (related to n = 1) are displayed for the clamp angle α within
the interval (2π − αs,αs). Note that when the equilibrium configuration is not unique, only two of
the equilibrium configurations are stable (represented as continuous lines in the figure), whereas
the others are unstable (represented as discontinuous lines). The limit case P = Pcr (figure 2, left)
is also reported, for which a vertical tangent is displayed at α = π , which defines the transition
between the two behaviours.

For completeness, it is observed that when P ≤ q2Pcr (q ∈ N), the nonlinear equation (3.5)
may admit solutions for nth mode, with n< q. For instance, when P ∈ [9, 16]Pcr, a total of five
equilibrium configurations may exist for the same value of α (figure 2, right, case P = 9.161Pcr).

The uniqueness/non-uniqueness of the quasi-static solution defines two qualitatively different
mechanical responses for the analysed elastic system. Indeed, considering a monotonic increase
of the clamp angle α from 0 to 2π :

— when P ≤ Pcr, the rotation θl changes continuously, so that the end of the rod describes
a (smooth, convex and simple) closed continuous curve. In this condition, the system
behaves as an elastica compass;

— when P> Pcr, the rotation θl reaches a critical value (corresponding to the snap clamp
inclination αs ∈ [π , 2π ]), for which a further increase in the clamp angle necessarily yields
a jump in the rotation θl. Such a jump involves a release of elastic energy and a dynamic
snap to another, non-adjacent configuration. In this condition, the system behaves as an
elastica catapult.

The clamp angle αs for which the snap-back instability occurs has been numerically evaluated
and is reported as a function of the load ratio P/Pcr in figure 3. It can be noted that αs is always
greater than π (limit value attained when P coincides with the buckling load, P = Pcr) and is
an increasing function of the applied load, so that as the applied load increases the snap-back
occurs ‘later’. Results from the dynamic analyses (provided in §7) and from the experimental tests
on the developed physical prototype (described in §8) are also reported in the figure. The snap
condition related to the load value Psi, defining the limit condition of self-intersection (see §4), is
highlighted. The agreement of the analytical predictions with the results obtained from both the



7

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160870

...................................................

self-intersection limit

1

p

3

5

7

9

11

13

15

as

5p/4 3p/2 7p/4 2p

P
Pcr

1

3

5

7

9

11

13

15

Abaqus

quasi-static
massless model

experiments

9.161

1.784p

Figure 3. Clamp inclinationαs, for which snap-back is attained, as a function of the load ratio P/Pcr. The theoretical prediction
(continuous green line) is compared to the numerical evaluation (squares and triangles) obtained from the dynamic analysis
(see §7) and the experimental data (circles) measured on the developed prototype (see §8). (Online version in colour.)

experimental tests and the numerical simulations substantiates the assumptions of quasi-static
motion before snap and rod’s inextensibility adopted in the analytical evaluations.

4. The elastica compass and the elastica catapult
A further insight into the mechanics of the elastica compass and catapult requires the
development of the rod’s kinematics.

From the rotation field (3.7), the integration of equation (2.3) provides the position of the rod’s
axis, that in the x − y reference system becomes (see [28,29])

x(s) = A1(s)l and y(s) = A2(s)l, (4.1)

where

A1(s) = −2k
λl

{Cn(sλ+ K(σ0, k), k) − Cn(K(σ0, k), k)}

and A2(s) = − s
l

+ 2
λl

{E(am(sλ+ K(σ0, k), k)) − E(σ0, k)},

⎫⎪⎪⎬
⎪⎪⎭ (4.2)

and Cn denotes the Jacobi cosine amplitude function Cn(·, k) = cos(am(·, k)), whereas E is the
incomplete elliptic integral of the second kind,

E(a, k) =
∫ a

0

√
1 − k2 sin2 σ dσ . (4.3)

Considering a fixed weight P, the quasi-static evolution of the deformed configuration can be
represented by varying the clamp angle α using the kinematical description (4.1) (figure 4). It
is found that, when P = Psi ≈ 9.161Pcr, the deformed configuration displays a self-contact point
with the clamp at the verge of the snap-back, αs ≈ 1.784π . Therefore, the load Psi defines the
lowest value of the load needed to achieve self-intersection of the elastic rod during rotation of
the clamp. Depending on the out-of-plane geometry of the rod, two behaviours can be attained in
the case P> Psi: (i) if the geometry permits self-intersection, the present solution holds and self-
intersecting elastica are displayed, whereas (ii) if the geometry does not permit self-intersection,
a contact point is formed within the configuration of the rod at increasing the clamp rotation.
The response of the system in the case P> Psi will be the subject of future investigation.

The trajectory travelled by the loaded end (playing the role of the pencil lead of the ‘elastica
compass’) can be traced by evaluating the coordinates (4.1) at the loaded end, s = l, at varying
clamp inclination α ∈ [0, 2π ]. The quasi-static trajectories are reported in figure 5 for different
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Figure 4. A sequence of quasi-static configurations of the elastica catapult (P/Pcr > 1) at increasing the clamp angle α for
different values of P/Pcr endingwith snap in the equilibrium configuration. The self-intersection of the rod occurring for P≥ Psi
is displayed. In particular, the limit case of self-intersection is shown in the central sequence (P = Psi ≈ 9.161Pcr), whereas
self-intersection is shown in the lower sequence (P = 12Pcr). (Online version in colour.)

3
A

B

snap-back

1

5.0
3.0

1.5
1.0

0.1

1.0

0.5
a1 = 0.45p

a2 = 1.15p

a3 = as = 1.35p

0

–0.5

–1.0

9.161

0 0.5–1.0 –0.5 1.0

0 0.5–1.0 –0.5 1.0

1.0

0.5

0

–0.5

–1.0x/l

y/l

2

2

3B

3A

8.0

1

snap-back

Figure 5. ‘Pencil lead’ trajectories drawnby the elastica compass/catapultwithin the dimensionless plane x/l–y/l for different
values of P/Pcr. Stable configurations are reported as continuous lines. Unstable positions are marked as discontinuous lines,
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part). Unstable configurations are reported as discontinuous lines, dashed and dotted for first and secondmode configurations,
respectively. (Online version in colour.)

values of the ratio P/Pcr. It can be observed that the trajectories have the shape of (smooth, convex
and simple) closed curves in the case P< Pcr. Furthermore, unstable positions for the rod’s end
are reported as a discontinuous line in the case P> Pcr (as dashed and dotted line for the first
and second mode configurations, respectively), so that the snap-back instability is initiated at the
point where the continuous line ends.

The position of the loaded end can also be described in a polar reference system through the

radius r =
√

x(l)2 + y(l)2 and the angle ϕ = 3π/2 − arctan[y(l)/x(l)], which result

r = l
√

A2
1(l) + A2

2(l)

and ϕ = 3π
2

− arctan
(

A2(l)
A1(l)

)
.

⎫⎪⎪⎬
⎪⎪⎭ (4.4)

The polar coordinates r (made dimensionless through division of the rod’s length l) and ϕ

which describe the rod’s end trajectory are reported in figure 6 at varying the clamp angle α for
different values of the ratio P/Pcr.
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part of the trajectory (dashed lines) travelled by the loaded endof three soft robot arms reportedwithin the dimensionless plane
x
√
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P/B. The three systems have the same bending stiffness B, are subject to the same weight P, but differ in the

soft arm length, l = {3.405, 4.005, 4.605}√B/P (b). The deformed configurations of the three systems are drawn (continuous
line) for clamp inclinationsα = {0.826, 0.997, 1.239}π , respectively, for which the hanged load lies along the polar coordinate
ϕ = π/4. The maximum radial distance rmax is attained with the system having the length l = 4.005

√
B/P. (Online version

in colour.)

From figures 5 and 6, it can be observed that

— the behaviour of the usual, namely undeformable, compass is recovered in the limit of
vanishing P/Pcr, for which the elastic rod behaves as a rigid bar, r(α) = l and ϕ(α) = α;

— owing to the inextensibility assumption, the loops drawn by the elastica compass always
lie inside the circle of radius l, therefore, r(α) ≤ l;

— for dead loads smaller than the buckling load, P< Pcr, the loops drawn by the elastica
compass are nearly circular despite the large difference between ϕ and α. This is due to
the fact that the maximum percentage decrease in the radius length is about 6%;

— for dead loads larger than the buckling load, P> Pcr, the polar coordinate ϕ is limited by
the upper bound ϕmax(P/Pcr) = maxα ϕ (α, P/Pcr), described by the dashed curve reported
in figure 7a. Defining ϕs as the polar angle at the verge of the snap-back instability,
namely ϕs(P/Pcr) = ϕ(αs(P/Pcr), P/Pcr) (reported as continuous curve), it is observed that
ϕs(P/Pcr) ≤ ϕmax(P/Pcr), where the equality holds for P/Pcr ≤ 8.3.

In figure 7b, three soft robot arms with the same bending stiffness B, subject to the same weight
P, but differing in the soft arm length, l = {3.405, 4.005, 4.605}√B/P are considered. Deformed
configurations (continuous line) are reported within the dimensionless plane x

√
P/B − y

√
P/B

at clamp inclinations α = {0.826, 0.997, 1.239}π , for which the loaded ends of all the three systems
have the same polar coordinate ϕ = π/4. The comparison of the radial coordinate of the loaded
ends for the three cases highlights that the maximum radial distance rmax corresponds to that of
the system with arm length l = 4.005

√
B/P. This observation implies that lengthening of the arm

does not always provide an increase in the attained distance. This concept is further analysed in
the next section.

Finally, the quasi-static analysis is completed by the evaluation of the reaction moment at the
rotating clamp M(0) = −P x(l), which can be computed through the displacement field (4.1) as

M(0) = −A1(l)Pl. (4.5)



11

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160870

...................................................

0.1

3.0

0.5
1.0

a a

1.5

0 p/2

0

Pl
1.0 M (0)

Pl
M (0)

0.5

–0.5

–1.0

0

1.0

0.5

–1.0

–0.5
5.0

9.161
8.0

0

0.2

0.4

0.6

–0.2

–0.4

–0.6

0

0.2

0.4

0.6

–0.2

–0.4

–0.6
p 3p/2 2p 0 p/2 p 3p/2 2p

(b)(a)
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The reaction moment M(0) is reported in figure 8, showing a change in sign at the snap-back,
as a change in sign for the rod’s curvature occurs. This feature has been exploited to detect the
snap inclination αs from the results obtained with the numerical and experimental investigations
explained below.

5. Robot’s arm performance and design
The performances of the soft robot arm are investigated in terms of extremum distances that the
loaded end can attain, which represent fundamental quantities in the design of soft robot arm,
to achieve targeted positions for the hanged weight.

The maximum horizontal distance dx, the maximum height dy, and the minimum radial
distance rmin reached by the hanged weight during the clamp rotation and before the possible
snap-back instability, are introduced as

dx = max
α

{−x(l)}, dy = max
α

{y(l)} and rmin = min
α

{r}, (5.1)

where α ∈ [0,π ] for the elastica compass (P< Pcr) and α ∈ [0,αs] for the elastica catapult (P>
Pcr). Considering fixed both the length l and the stiffness B and exploiting the kinematical
description (4.1), the distances dx, dy, rmin have been evaluated at varying load P and are reported
in figure 9a, together with the respective clamp rotations αx, αy and αr for which these distances
are attained, figure 9 (right). The distance dh (also called ‘longest horizontal reach’ by [30]) is
defined as the horizontal distance attained by the weight when its vertical coordinate vanishes
(namely the weight and the clamp are at the same height):

dh = −x(l), subject to the condition y(l) = 0, (5.2)

and has been evaluated and reported in figure 9, together with the respective angle αh.
From figure 9, the following conclusions can be drawn at varying the load P and considering

constant both the length l and the stiffness B.

— The maximum horizontal distance dx attains its maximum value in the rigid limit
(P/Pcr = 0), for which dx = l, and is a decreasing function of the load P. The distance dx is
always attained for a clamp angle αx ∈ [π/2,π ].

— In the case of the elastica compass, the maximum height corresponds to the robot arm
length, dy = l, independently of the load P ≤ Pcr and is attained for α= π . In the case of the
elastica catapult, the maximum height dy decreases at increasing load P and is attained at
the verge of the snap-back instability, αy = αs. Moreover, when P/Pcr > 7.464, the weight



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160870

...................................................

rmin/l

dx/l

dy/l

dh/l

–0.5

0

0.5

1.0

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

2p

3p/2

p/2

p

7.464 7.464

P
Pcr

P
Pcr2.585 2.585

as

ay

ar

ah

ax

(b)(a)

Figure 9. Maximum horizontal distance dx , maximum height dy , and minimum radial distance rmin (a) and corresponding
anglesαx ,αy andαr (b) plotted as functions of the load ratio P/Pcr. The distance dh, equation (5.2), called ‘longest horizontal
reach’ [30], the related angleαh, and the snap angle curveαs are also reported. (Online version in colour.)

always remains below the clamp before the occurrence of the snap-instability, dy < 0. For
such a load range, the longest reach dh corresponds only to unstable configurations (and
therefore cannot be attained).

— The minimum radial distance attains its minimum value rmin = 0.104 l for the load
P/Pcr = 7.985. Moreover, when P/Pcr > 5.665, the minimum distance is achieved for a
clamp rotation at the verge of instability (αr = αs).

— The distance dh is always smaller than or equal to the horizontal distance dx, namely
dh ≤ dx, where the equality holds only in the case of vanishing load, P = 0. Moreover, the
distance dh is defined only when P/Pcr < 7.464, because, otherwise, the configurations are
unstable at null vertical coordinate, y(l) = 0.

It is worth remarking that the curves reported in figure 9 are plotted in a dimensionless plane,
in which both axes are affected by a change in the rod length l. Therefore, playing with this length
would permit maximizing of the physical distances effectively reached by the loaded end when
the hanged weight P is kept constant (as well as the bending stiffness B). Such maximum distances
can be evaluated by seeking the load ratios P/Pcr for which the following function attains a
maximum √

P
Pcr

dj(P/Pcr)

l
, j = x, y, h. (5.3)

The numerical implementation of this procedure leads to the following load ratios for which the
soft arm displays the maximum possible distances(

P
Pcr

)
dmax

x

→ ∞,
(

P
Pcr

)
dmax

y

= 1 and
(

P
Pcr

)
dmax

h

= 2.585. (5.4)

The evaluated load ratios correspond to specific arm lengths l to be considered

l = π

2

√
P

Pcr

√
B
P

(5.5)

for achieving the maximum distances, namely

dy

l
= 1 and

dh

l
= 0.726, (5.6)

while the maximum distance dx is represented by the trivial limit case of infinitely long arm,
l → ∞. The maximum distances dy and dh can be evaluated in terms of the hanged load P and the
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bending stiffness B as

dy = 1.571

√
B
P

, for l = 1.571

√
B
P

and dh = 1.833

√
B
P

, for l = 2.525

√
B
P

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.7)

attained for the following clamp inclinations

αy = π and αh = 1.072π . (5.8)

The maximum distances dy and dh and related clamp inclination αy and αh are reported as spots
in figure 9.

The optimization of the soft robot arm in terms of kinematics is completed by considering
the maximum radial distance rmax(ϕ), defined as the maximization of the radial distance r for a
given polar angle ϕ (keeping fixed the applied load P and the bending stiffness B). Following
equation (5.3), the load ratio P/Pcr for which the maximum radial distance rmax is achieved can
be found by seeking the maximum of the function√

P
Pcr

r(P/Pcr,ϕ)
l

. (5.9)

Restricting the attention to the polar coordinate ϕ ranging between π/4 and π , the optimal load
ratio P/Pcr has been reported in figure 10a as the result of the maximization of equation (5.3).
Under this loading condition, the maximum radial distance rmax (normalized through division
by the length l) and the clamp inclination α (for which such a distance is attained) are evaluated
at varying the angle ϕ in figure 10 (respectively, b and c). Furthermore, the arm length l and the
maximum radial distance rmax (made dimensionless through division by the constant parameters
P and B) are provided in figure 10d.
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It can be observed that

— all the curves display a jump in their first derivative for the value ϕ = 0.794π . For polar
coordinates ϕ higher than this value, the load ratio P/Pcr maximizing the radial distance
corresponds to an angle equal to the maximum possible for that loading condition,
ϕ = ϕmax (figure 10a);

— the maximum radial distance is never observed for loads P smaller than the critical one
Pcr;

— the results reported in figure 10d represent an extension of the recent result by Wang [30]
and Batista [28], referred to the case of an hanged load located along the horizontal axis
x (at ϕ = π/2) and expressed by the distance dh, see equation (5.7)2. On the other hand, in
the limit of ϕ = π , the value of the radial distance rmax approaches the value of the length
l, see equation (5.7)1.

— The curve reported in figure 10d defines the values of the optimal lengths l for which the
maximum radial distance is attained. In other words, lengthening does not always realize
an increase in the achieved distances so that, using words similar to Wang [30], shortening
of rods may provide longer distances, a key concept in the design of soft robot arms.

An applicative example of kinematic performance design towards the achievement of the
maximum radial distance rmax, for given load P and stiffness B, is reported in figure 7b for
three soft robot arms differing only in their length. The deformed configurations, subject to the
condition of loaded end lying along the polar coordinate ϕ = π/4, are shown for the three systems.
It is observed that the maximum distance is attained when the soft arm has the optimal length
l = 4.005

√
B/P, which value is provided by the curve reported in figure 10d for ϕ = π/4.

Finally, with reference to the strength, the design of the arm cross section is ruled by the
maximum bending moment Mmax experienced along the elastic arm, s ∈ [0, l], at varying the
clamp inclination

Mmax = max
α,s∈[0,l]

M(s).

For the considered load range, P/Pcr ∈ [0, 16], it is numerically found that the maximum bending
moment always occurs at the clamp (s = 0) for the clamp inclination α= αx, so that

Mmax = Pdx. (5.10)

6. Energy release
In the case of the elastic catapult, when the clamp inclination approaches the value αs, the snap-
back instability induces a dynamic motion in the elastic system. Such a motion is due to the energy
release of the system, provided in terms of the release of both elastic energy stored in the rod and
the potential energy of the hanged load.

With reference to the two stable equilibrium configurations associated to the clamp rotation
α ∈ [2π − αs,αs], the energy difference �E can be computed as

�E(P,α) = B
2

∫ l

0
[[θ ′2(s)]] ds + P[[y(l)]], (6.1)

where the symbol [[·]] denotes the jump of the relevant argument evaluated for the configuration
related to θl + α ∈ [0,π ] and for that related to θl + α ∈ [π , 2π ]. Considering the kinematics at
equilibrium, equations (2.1), (3.4)1 and (4.1), the energy difference �E (made dimensionless
through division by B/l) can be re-written as

�E(P,α)l
B

= [[2A1(l) + cos(θl + α)]]
π2

4
P

Pcr
. (6.2)
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Because of the symmetry of the paths in figure 2, the following relation for the energy
difference holds

�E(P, 2π − α) = −�E(P,α), α ∈ [π ,αs], (6.3)

so that
�E(P,α = π ) = 0, (6.4)

and therefore the clamp angle α= π represents the Maxwell line for the system [25,31,32].
The energy difference �E(P,α) is reported in figure 11a at varying the load ratio P/Pcr and

the clamp angle α ∈ [π ,αs]. It is observed that the maximum energy difference, maxα�E(P,α)
is attained at the verge of the snap instability, namely, at the clamp angle α = αs. Therefore,
the energy release ER occurring at the snap-back, evaluated from the quasi-static solution,
corresponds to the maximum energy difference possible for the elastic system,

ER(P) =�E(P,αs) (6.5)

which is reported as a function of the applied load P in figure 11b.

7. Snap-back dynamics
The dynamics of the rotating cantilever rod, occurring as a consequence of the instability when the
clamp is quasi-statically rotating, is here investigated through two models: (i) a simplified model
(called ‘massless rod model’) where the rod’s inertia is neglected (because considered small when
compared to the inertia of the point mass m) and regularizations are introduced through viscous
damping owing to air drag acting on the mass and axial compliance of the clamp constraint, and
(ii) a finite-element model (performed in Abaqus v. 14.3), in which the inertia of the rod is fully
accounted for and Rayleigh internal damping is present. A slightly different version of model (i),
which will be presented below, was proposed in the modelling of a tube-type manipulator arm
by Snyder & Wilson [22].

It is shown that both models provide useful insights into the dynamics of the mechanical
system after snap-back instability. However, while model (ii) is capable of describing the complete
dynamic evolution of the system up to a wide range of loading parameters, the model (i) can
predict the full dynamics only until deformation modes higher than the first do not enter the
solution (in other words, the massless rod model works correctly for P/Pcr smaller than ≈2).

(a) Massless rod model
In the model where the rod’s mass γ (as well as any rotational inertia) is neglected, the dynamics
of the whole system is characterized only by the translational inertia of the lumped mass m at the
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Regularization of the solution obtainedwith this simplifiedmodel is achieved through the introduction of the viscous coefficient
c owing to air drag and the finite stiffness kc of the clamp. (Online version in colour.)

rod’s free end. Therefore, the rotation field of the rod’s axis is governed by

Bθ ′′(s, t) − R(t) sin[θ (s, t) + β(t)] = 0, (7.1)

where the load R(t) is the force resultant acting at the free end and β(t) is the inclination angle of
the force resultant with respect to the (straight) undeformed configuration (figure 12),

R(t) =
√

Rx(t)2 + Ry(t)2 and β(t) = α(t) + arctan
Rx(t)
Ry(t)

. (7.2)

In equation (7.2), Rx(t) and Ry(t) are the resultant components of R(t) along the x and y axes

Rx(t) = −R(t) sin[α(t) − β(t)] and Ry(t) = −R(t) cos[α(t) − β(t)], (7.3)

which are given as the sum of the respective translational inertia, the (linear) viscous damping
force, and the dead load

Rx(t) = −mẍ(l, t) − cẋ(l, t) and Ry(t) = −m[g + ÿ(l, t)] − cẏ(l, t), (7.4)

where c is the damping coefficient owing to air drag. To model the axial compliance of the system
(neglected in the quasi-static calculations), an axial spring of stiffness kc is introduced in the
clamp, so that the kinematical constraint (2.3) is now replaced by

x(s, t) = −R(t) cosβ(t) cosα(t)
kc

−
∫

s
sin[θ (s, t) + α(t)] ds

and y(s, t) = −R(t) cosβ(t) sinα(t)
kc

−
∫

s
cos[θ (s, t) + α(t)] ds.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.5)

Introducing the reference time T =
√

ml3/B and the following dimensionless quantities

τ = t
T

, ξ (τ ) = x(l, t)
l

, η(τ ) = y(l, t)
l

and μ(τ ) = R(t)l2

B
, κc = kcl3

B
, υ = c

√
l3

mB
, ζ = gml2

B
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.6)
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a comparison of equations (7.3) with the differential equations (7.4) leads to the following non-
dimensionalized differential system, governing the snap-back dynamics

d2ξ (τ )
dτ 2 + υ

dξ (τ )
dτ

=μ(τ ) sin[α(τ ) − β(τ )]

and
d2η(τ )

dτ 2 + υ
dη(τ )

dτ
+ ζ =μ(τ ) cos[α(τ ) − β(τ )].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.7)

Note that the elastica, equation (7.1), is the same as for the quasi-static problem (3.2), but
with the two functions of time R(t) and β(t) replacing now P and α, respectively. Therefore,
the integration in space for the dynamic problem, equation (7.1), can be computed similarly
to the quasi-static case (§3) restricted to the first deformation mode, n = 1. This integration
yields the following relation between the normalized resultant μ(τ ), the rotation of the rod at
the free end θ (l, τ ), and the resultant inclination β(τ )

μ(τ ) = [K(h(τ )) − K(χ0(τ ), h(τ ))]2, (7.8)

where

h2(τ ) = cos2
(
θ (l, τ ) + β(τ )

2

)
, χ0(τ ) = − arcsin

[
1

h(τ )
cos

(
β(τ )

2

)]
. (7.9)

On the other hand, the normalized displacements at the free end, ξ (τ ) and η(τ ), follow from
the displacement field for the quasi-static problem, equation (4.1), and from the axial compliance
of the clamp, equation (7.5), as

ξ (τ ) = −μ(τ ) cosβ(τ ) cosα(τ )
κc

− 2 h(τ )√
μ(τ )

{
Cn

[√
μ(τ ) + K(χ0(τ ), h(τ )), h(τ )

]
− Cn[K(χ0(τ ), h(τ )), h(τ )]

}

and η(τ ) = −1 − μ(τ ) cosβ(τ ) sinα(τ )
κc

+ 2√
μ(τ )

{
E

[
am

(√
μ(τ ) + K(χ0(τ ), h(τ )), h(τ )

)]
− E(χ0(τ ), h(τ ))

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.10)

The substitution of the expressions (7.8) and (7.10) for μ(τ ), ξ (τ ), η(τ ) in the differential
equations (7.7) leads to a nonlinear second-order differential implicit system for the evolution
of the free end rotation θ (l, τ ) and for the resultant inclination β(τ ). For given initial conditions
and rotation law α(τ ), the integration of the differential system (7.7) can finally be numerically
performed.

In the present analysis, initial rest condition for the system and a linear time evolution law
for the clamp rotation are considered, so that

α(t) = α0 + ωt, (7.11)

where α0 is the initial clamp rotation and ω is the clamp angular velocity, and which can be
rewritten in terms of dimensionless time as

α(τ ) = α0 +Ωτ , (7.12)

with Ω being the clamp angular velocity referred to the dimensionless time, Ω =ωT. To avoid
a trivial solution, the evolution of the system was analysed starting at τ = 0 from an ‘almost’
undeformed state for the rod, namely the initial clamp inclination was set to be α0 = 10−5. The
rest condition for the system at τ = 0 implies that initially the inclination β(0) coincides with the
clamp inclination α(0), so that the force resultant R(0) momentarily coincides with the dead load
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P, and that the lumped mass has null velocity,

β(0) = α(0), μ(0) = ζ and ξ̇ (0) = η̇(0) = 0. (7.13)

The four conditions (7.13) imply four initial conditions for the resultant inclination β(τ ) and
the free end rotation θ (l, τ )

β(0) = α0, θ (l, 0) = θl0, β̇(0) = β̇0 and θ̇ (l, 0) = θ̇l0, (7.14)

where the values of θl0, β̇0 and θ̇l0 can be computed using equations (7.8) and (7.10).
The evolution of the resultant inclination β(τ ) and the free end rotation θ (l, τ ) are obtained

from the numerical integration of the nonlinear differential implicit equations (7.7) through
the function NDSolve in Mathematica c© (v. 10). Considering the clamp angular velocity
ω= 0.014 rad s−1 and assuming a small normalized damping coefficient υ = 0.069 and high
normalized axial stiffness κc = 310.647, the numerical integration has been performed at varying
the normalized mass parameter, namely for ζ = {1.157, 1.987, 2.818, 3.648, 4.478} corresponding to
P/Pcr = {0.469, 0.805, 1.142, 1.479, 1.815} and which are representative of some of the experimental
set-ups considered in §8.

The massless model is able to capture reasonably well the dynamics of the system for values of
the normalized mass parameter ζ lower than 5, corresponding to P/Pcr < 2. For higher values
of ζ , the numerical integration fails to converge soon after the snap-back instability occurs,
namely, the free end experiences a very fast and large oscillation in its acceleration, and the
Mathematica solver reveals that the differential system becomes stiff. The encountered difficulty
in the numerical treatment is related to the fact that rod configuration is imposed to assume the
first quasi-static mode during the dynamics, a condition which becomes not representative at
values P/Pcr > 2. Indeed, it is experimentally shown in §8 that for this loading condition the
dynamics of the rod is characterized by both transverse and longitudinal oscillation, whereas
the present simplified model is reliable only when transverse oscillations prevail in the dynamic
response.

(b) Finite-element analysis
A finite-element analysis of the system was performed in Abaqus with the purpose to provide
a full description of the dynamics of the rod for every loading condition, thus overcoming the
limitations found with the simplified model. The rod is modelled through 100 linear elastic planar
beam elements, where the first element has the external edge constrained by the rotating clamp
while the lumped mass m is attached on the external edge of the final element. Introducing energy
dissipation through Rayleigh damping, large displacement analyses were performed through the
following two steps:

Step 1. Static—the gravitational force is applied in order to establish the deformed initial
configuration. Here a quasi-static deformation is produced by the weight of both the
elastic rod and the lumped mass (although the effect of the former is much smaller than
the effect induced by the latter);

Step 2. Dynamic implicit—a slow rotation to the clamped end is imposed as a boundary
condition. The analysis takes into account the inertial forces generated during the clamp
rotation.

Simulations were run considering geometry, material, inertia and clamp angular velocity
representative of the experimental set-up described in the next section. Rayleigh damping was set
through the mass-proportional damping coefficient A = 10−2 s−1 and the stiffness-proportional
damping coefficient B = 5 × 10−3 s. Several low rotation velocities for the clamp have been
investigated (ω= {0.014, 0.06, 0.14} rad s−1), basically showing no influence of small ω on the
dynamics of the system.
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(a)

(c)

(b)

Figure 13. Experimental set-up for the elastica compass and the elastica catapult. (a) Global view of the experimental set-up,
(b) detail of the elastic rod and (c) rear view detail of the rack and pinion mechanism to impose clamp rotation and fromwhich
the rotary position sensor is visible. (Online version in colour.)

8. Experiments versus modelling for the elastica compass and elastica catapult
An experimental set-up was designed and manufactured at the Instabilities Lab of the University
of Trento (http://ssmg.unitn.it) for the analysis of the rotating clamped elastic rod (figure 13).
A rack and pinion actuator (figure 13c) was used to transform the linear motion of an
electromechanical testing machine (ELE Tritest 50 from ELE International Ltd) into the rotation
of the clamp at required angular speeds (different low clamp velocities were tested in the
experiments, without noting substantial differences, so that only results for ω= 0.014 rad s−1 are
reported). The angular position of the rotating clamp was measured through a contactless rotary
position sensor (NRH280DP/180/360). The moment transmitted to the clamp was measured with
a lever system connected to a load cell (Leane DBBSN, RC 10 kg), as evident from figure 13c.

During the tests, the modulus of the acceleration of the lumped mass, attached at the end of
the beam

a(l, t) =
√

ẍ(l, t)2 + ÿ(l, t)2

was obtained mounting two miniaturized mono-axial accelerometers (352A24, PCB piezotronics,
0.8g) perpendicular to each other. All the data were acquired with a NI compactRIO system
interfaced with Labview 2013 (from National Instruments).

Two rods were used, both made up of a solid polycarbonate strip (white 2099 Makrolon UV
from Bayer, E = 2350 MPa, Poisson’s ratio ν = 0.37 and volumetric mass density ρ = 1180 kg m−3).
One rod, 345 mm long, has a 25 × 3 mm cross section and the other, 695 mm long, has a 25 ×
2.85 mm cross section. The masses attached at the end of the two rods were chosen to produce the
following values of P/Pcr = {0.469, 0.805, 1.142, 1.479, 1.815, 3.813, 5.405, 6.998, 7.795}.

http://ssmg.unitn.it
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Figure 14. Comparison between the theoretically predicted and experimentally measured values of the moment at the clamp
M(0) at varying the clamp angleα for the elastica compass, in the case P = 0.805Pcr.(Online version in colour.)
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Figure 15. Comparison between the theoretically predicted and experimentally measured values of the moment at the clamp
M(0) (a,b) and of the total acceleration of the lumpedmass a(l, t)=

√
ẍ(l, t)2 + ÿ(l, t)2 (c,d) at varying the clamp angleα for

the elastica catapult, in the cases P = 1.142Pcr (left column) and P = 7.795Pcr (right column). The curves highlight the presence
of snap-back dynamics during the clamp rotation when the angle αs is approached. In particular, a change in sign for the
moment at the clamp M(0) is observed as well as high acceleration of the rod’s end after the snap-back phenomena. (Online
version in colour.)

Results of experiments are shown in figures 3, 14, 15 and 16. In particular, in figure 3 the
experimental points corresponding to the snap angles have been recorded from a change in sign
of the moment measured at the clamp. The same moment M(0) is reported in figures 14 and 15 as a
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Figure 16. Superimposed photos at different clamp anglesα for (a) the elastica compass, P/Pcr = 0.805, and (b) the elastica
catapult, P/Pcr = 7.795. The blurred images in the photo on the right were taken during the post-snap dynamics at 1/20 s
shutter speed. The theoretical trajectory of the ‘pencil lead’, obtained from the quasi-static analysis, is reported as continuous
yellow line. (Online version in colour.)

function of the clamp rotation α for the case of the elastica compass (P/Pcr = 0.805, where a quasi-
static path is followed, figure 14) and in the case of the elastica catapult (P/Pcr = 1.142 and P/Pcr =
7.795, where the dynamics prevails after snap-back, figure 15a,b, respectively). In the case of the
elastica compass the acceleration a(l, t) was found to be negligible (the maximum value was about
10−2 g), whereas in the case of the elastica catapult the acceleration a(l, t) (reported in figure 15c,d)
was found to have a peak of about 0.6g and 55g for P/Pcr = 1.142 and P/Pcr = 7.795, respectively.
These peaks in the acceleration were found to occur just after the snap-back instability.

Photos taken at different rotation angles are superimposed in figure 16 for two cases in which
the system behaves as an elastica compass (figure 16a, P/Pcr = 0.805) and an elastica catapult
(figure 16b, P/Pcr = 7.795). In the latter case, the photo labelled 12 corresponds to the last photo
taken before snap-back instability (α= 1.744π ), whereas photos 13 and 14 are blurred because
they were taken (using a NEX-5N Sony camera) during post-snap dynamics. Note that the shutter
speed was set on 1/20 s, which provides a measure of the velocity of the rod during snap-back. In
figure 16, the position of the attached lumped mass is compared with the theoretically predicted
rod’s end trajectory (obtained from the quasi-static analysis and reported as yellow line), showing
a very nice agreement.

Movies of the experiments, taken by both high-speed camera Sony PXW-FS5K (240 fps) and
a Sony Handycam HDR-XR550, are available as electronic supplementary material.

9. Conclusion
In the simplest set-up for a flexible robot arm, an elastic rod is subject to a prescribed slow rotation
at one end and to a concentrated mass in a gravity field at the other. Solving this system through
the elastica has evidenced a discriminating role for the applied load. When the load is smaller than
the buckling load (for the straight configuration), the loaded end describes a closed continuous
curve (not far from an ellipse), whereas when it is higher the continuous displacement of the
loaded end terminates in an unstable geometrical form, from which a snap-back instability leads
to a non-adjacent configuration. In the former case, the system behaves as an ‘elastica compass’
(so that the loaded end of the arm would describe a circle if the rod would be rigid), whereas in the
latter case, the system behaves as an ‘elastica catapult’ (so that the mass would be thrown away
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if detachment were allowed). The dynamic motion after the snap instability has been analysed
with a standard finite-element program and an ad hoc developed software. The quasi-static and
dynamical behaviours have been validated with a specifically designed experimental set-up.
Results show that the basic problem of soft robot arm addressed in this article, and systematically
explored in terms of mechanical performances, can be analytically and numerically described
with a great accuracy and therefore is ready for exploitation in real devices.
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shown in figures 3, 13–16 and in the electronic supplementary material.
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