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Abstract
Intervertebral disc degeneration (IDD), a major cause of low back pain, occurs with 
ageing. The core of the intervertebral disc, the nucleus pulposus (NP), embedded in 
a proteoglycan-rich and gelatinous matrix, is derived from the embryonic notochord. 
With IDD, the NP becomes fibrous, containing fewer cells, which are fibroblastic and 
of unknown origin. Here, we used a lineage tracing strategy to investigate the origin 
of cells in the NP in injury-induced mouse IDD. We established a Foxa2 notochord-
specific enhancer-driven Cre transgenic mouse model (Foxa2mNE-Cre) that acts 
only in the embryonic to foetal period up to E14.5, to genetically label notochord 
cells with enhanced green fluorescent protein (EGFP). When this mouse is crossed 
to one carrying a Cre recombinase reporter, Z/EG, EGFP-labelled NP cells are pre-
sent even at 2  years of age, consistent with their notochordal origin. We induced 
tail IDD in Foxa2mNE-Cre; Z/EG mice by annulus puncture and observed the degen-
erative changes for 12 weeks. Soon after puncture, EGFP-labelled NP cells showed 
strong Col2a1+ expression unlike uninjured control NP. Later, accompanying fibrotic 
changes, EGFP-positive NP cells expressed fibroblastic and myofibroblastic markers 
such as Col1a1, ASMA, FAPA and FSP-1. The number of EGFP+ cells co-expressing the 
fibroblastic markers increased with time after puncture. Our findings suggest resi-
dent NP cells initially upregulate Col2a1+ and later transform into fibroblast-like cells 
during injury-mediated disc degeneration and remodelling. This important discovery 
concerning the cellular origin of fibrotic pathology in injury-induced IDD has implica-
tions for management in disease and ageing.
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1  |  INTRODUC TION

Intervertebral disc (IVD) degeneration (IDD), a major cause of low back 
pain, occurs with ageing, but the pathobiology of its initiation and pro-
gression remains elusive. Studies of structural, biomechanical and ma-
trix properties in human IDD as well as spontaneous or injury-induced 
mouse models of IDD implicate fibrotic remodelling (Yang et al., 2009b; 
Yee et al., 2016; Zhang et al., 2018), whereas stem cell-mediated disc 
repair is associated with reduced fibrotic events (Leung et al., 2014). 
Fibroblast activity is transiently induced after tissue injury as a normal 
reparative response. Chronic injury and prolonged repair may lead to 
unrestrained fibroblast activity and hence fibrosis without effective 
tissue remodelling. Fibroblasts and myofibroblasts, the activated form 
of fibroblasts, secrete fibrotic cytokines and chemokines that self-stim-
ulate and activate and recruit immune cells (Parsonage et al., 2005; 
Rodemann & Muller, 1991; Tomasek et al., 2002). Identifying the source 
of the fibroblasts and their activation is key to modifying fibrotic dis-
eases. One major source of myofibroblasts is resident fibroblasts or 
mesenchymal cells (Duffield et al., 2013; Hu & Phan, 2013; Mack & 
Yanagita, 2015; Wynn, 2008). We tested if resident nucleus pulposus 
(NP) cells have a capacity to transform into fibrotic cells in IDD.

In the mouse, the NP of the IVD is formed in the disc anlagen from 
E12.5 onwards, as the notochord undergoes segmentation. Cre-based 
tracing studies in mice show that NP cells are descendants of the no-
tochord and may acquire a chondrocyte-like phenotype upon ageing 
(Choi et al., 2008; McCann et al., 2012; Mohanty et al., 2019). Foxa2 
expression in the node/notochord is regulated by a 520 bp minimal 
enhancer element (mNE) (Sasaki & Hogan, 1996). We generated five 
independent transgenic founder lines (Foxa2mNE-Cre) carrying a con-
struct (Figure 1a) that expresses Cre under the control of the mNE and 
linked to an IRES-lacZ reporter. Lines from three of these founders 
showed notochord expression by ß-gal staining at E8.0 (Guo et al., in 
press). Therefore, we selected these three mouse lines for further char-
acterization. Β-galactosidase (β-gal) staining demonstrated that the 
Foxa2mNE-Cre transgene was specifically expressed, albeit in a mosaic 
pattern, in the developing notochord at E12.5 (Figure 1b), from rostral 
to caudal, recapitulating the expression pattern in the mNE-lacZ trans-
genic mice (Sasaki & Hogan, 1996). Cre protein was strongly expressed 
in the whole developing notochord at both E9.5 and E12.5 (Figure 1c), 
mirroring the β-gal activity, with expression decreasing caudoros-
trally at E12.5 (Figure 1b), and reducing further in the newly formed 
NP at E14.5 (Figure 1c, iii–v). At E14.5, LacZ expression was restricted 
to the notochord and was absent in the developing vertebral bodies 
(Figure S1a) No transgene activity was detected in skeletal elements 

of developing limbs at E12.5 (Figure 1b, v) and E15.5 (Figure S1b). 
We tested the notochord specificity of the Cre activity of the three 
lines by crossing Foxa2mNE-Cre mice with Z/EG reporter mice (Novak 
et al., 2000) (Figure 1d). At E9.5, Cre activity reflected by enhanced 
green fluorescent protein (EGFP) expression was seen either only in 
the notochord or in the notochord and tail bud in these lines. This dif-
ference could be due to the influence of integration site and genetic 
background. Thus, in this study, we focused on analysing mice showing 
notochord/NP-specific activity. Over 80% (mean ± SEM < 1%) of cells 
in the notochord expressed EGFP signal from E12.5 to post-segmenta-
tion at E14.5 and E16.5, and rostral and caudal notochord/NP showed 
similar percentage of positivity (Figure 1d, i and bar chart). Strong EGFP 
signal was detected in the NP from 2 weeks which was present even 
at 15 months to 2 years of age (Figure 1d, ii and Figure S1e). No Cre 
expression was detected in the NP at postnatal day 9 (Figure S1c).

In human IDD, notochordal-like cells disappear from the NP and are 
replaced by chondrocyte-like and fibroblastic cells (Hunter et al., 2004; 
Pazzaglia et al., 1989; Trout et al., 1982). A recent tracing study using 
Krt19-CreERT mice indicated NP cells could acquire a chondrocyte-like 
phenotype in ageing (Mohanty et al., 2019). We used a 3-month-old adult 
mouse tail disc puncture injury model in which a cartilaginous and later 
fibrocartilaginous NP phenotype develops, analogous to the histological 
features found in moderate and advanced human IDD stages (Yang et al., 
2009a). In Foxa2mNE-Cre;Z/EG mice, unlike the adjacent uninjured discs, 
we observed progressive morphological changes of the IVD after injury, 
including the appearance of cell clusters, loss of the distinct NP:annulus 
boundary and NP matrix remodelling (Figure S2). Disc height and histolog-
ical quality were reduced but were partially reversed in later phase (Figure 
S3a,b). This raises the possibility that the matrix remodelling might play 
roles in functional compensation, or otherwise attempt to elicit a repara-
tive process involving a granulation tissue state, which eventually contrib-
utes to a fibrocartilaginous NP due to a lack of proper tissue regeneration.

In the uninjured discs, EGFP expression was strongly specific to the 
NP. In the injured discs, up to 12 weeks post-puncture (wpp), EGFP+ 
cells could be detected in the NP (Figure S3c). While untreated discs dis-
played a low rate of proliferation and apoptosis (Figure S3d), an increase 
of apoptotic activity was observed in the injured NP by 2 wpp (Figure 
S3e). No sign of Cre protein expression was found in the disc after punc-
ture (Figure S4a,b). These data suggest the EGFP+ cells are descendants 
of notochordal/NP cells labelled in the foetal period rather than cells 
labelled by Cre reactivation in response to injury. Combined immunoflu-
orescence and in-situ hybridization indicated the appearance of EGFP+ 
cells strongly expressing Col2a1 transcripts in the NP of injured discs 
at 1 and 12 wpp but not in the control adjacent disc (Figure 2a). Later, 

F I G U R E  1 Lineage tracing in Foxa2mNE-Cre;Z/EG mice. (a) Foxa2 minimal notochord element (Foxa2mNE) and a Sox9 minimal promoter-
driven Cre recombinase (Cre) and lacZ via an IRES sequence. (b) β-gal staining of Foxa2mNE-Cre transgenic foetus at E12.5 in whole-mount 
(i); mid-sagittal sections showing notochord specificity and absence of staining in surrounding tissue (ii-iv); mid-cross section showing 
developing limbs (v,*). (c) Cre immunofluorescence in the developing notochord at E9.5 (i) and E12.5 (ii), and in (iii) rostral, (iv) trunk 
developing nucleus pulposus and (v) caudal notochord at E14.5 (outlined). (d) Cre expression and activity (EGFP) in Foxa2mNE-Cre;Z/EG 
compound heterozygotes at (i) foetal stages and quantification of EGFP+ cells in the developing rostral (anterior to hindlimb) and caudal 
(posterior to hindlimb) nucleus pulposus (mean ± SEM < 1%); (ii) Tracking at neonatal (P0), adolescent (2 week, 1 month) and adult stage 
(3 months, 6 months, 1 year) by native EGFP signal detection in P0 and 1 year old tails, or EGFP immunostaining. nd, notochord; np, nucleus 
pulposus; vb: vertebrae; ivd: intervertebral disc; white dashed line encircled developing nucleus pulposus region
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at 12 wpp Col1a1 expressing EGFP+cells appeared in the NP of injured 
discs which were absent in the adjacent uninjured controls (Figure 2b). 
This finding is consistent with the hypothesis that some local NP cells 
survive and acquire a chondrocyte-like and later a fibroblast-like pheno-
type in injury-induced IDD.

We investigated whether the Col1a1-expressing cells have 
characteristics of fibroblasts and myofibroblasts, the effector cells 
in the proliferative stage of wound healing as well as in tissue fibro-
sis. Fibroblast-specific protein 1 (FSP-1) is a marker of quiescent 
fibroblasts (Quail & Joyce, 2013; Strutz et al., 1995). Activated fi-
broblasts express fibroblast activation protein (FAPA) (Strutz et al., 
1995), while α-smooth muscle actin (ASMA) is a marker of myofi-
broblasts (Kahounova et al., 2018). We found increased expression 
of FSP-1, FAPA and ASMA in the NP by 4 wpp, co-expressed by a 
subpopulation of the EGFP+ cells (Figure 2c–e). By 12 wpp, the ex-
pression of FSP-1, FAPA and αSMA became more homogeneous in 
the NP, with many cells co-expressing EGFP signal and fibroblas-
tic markers (Figure 2f–h). Quantification confirmed a progressive 
increase of EGFP+ cells co-expressing fibroblastic markers with 
time (Figure 2i,j). These findings suggest that resident NP cells can 
acquire a fibroblast- or myofibroblast-like identity in the course of 
injury-induced IDD. Notably, we also observed an increasing trend 
of fibroblast-like cells that are EGFP-negative during early degen-
eration (from 1 to 4 wpp) (Figure 2k). However, the EGFP+ cells 
(50% FAPA+; 51% FSP-1+; 59% ASMA+) showed a higher rate of 
fibroblastic marker expression than the EGFP-negative cells (40% 
FAPA+; 39% FSP-1+; 28% ASMA+) at late stage (12 wpp). It is not 
clear if the EGFP-negative fibroblast-like cells are related to mo-
saic Cre expression (McLellan et al., 2017) or implicate non-local 
sources of the fibroblastic cells. These possibilities can be inves-
tigated in the future by pulse-chase type tracing studies using a 
NP-specific inducible-Cre system.

Our findings show that in an injury-induced model of IDD, cells 
in the NP can transform into Col2a1 expressing cells and later fi-
broblast-like cells. Increasing sample size and examination of addi-
tional markers in future investigation may consolidate and capture 
the transformation process at better resolution. To our knowledge, 
this is the first in vivo report that notochord derived cells can trans-
form to become fibroblast-/myofibroblast-like cells in IDD induced 
by injury. This important discovery concerning the cellular origin of 
fibrotic pathology in IDD challenges the common belief that IDD 
mainly involves cell infiltration from the endplate or annulus that 
remodels the NP and has implications for management in disease 
and ageing. The implication of our results is that, in response to in-
jury, some NP cells can survive and perhaps transdifferentiate as a 

survival mechanism and/or as a consequence of inflammation and 
stress signals. Our recent discovery that the integrated stress re-
sponse directly reprograms chondrocytes to a more juvenile state 
(Wang et al., 2018) is consistent with such a possibility. The conse-
quence of the altered differentiation state is a change in expression 
of ECM genes leading to the fibrotic state featured at late-stage de-
generation. Notably, the NP cell composition of young adult mice in 
our study resembles to that of foetal/perinatal, instead of mature, 
human discs. Future cell tracing investigations in different degener-
ation models may provide additional insights onto the cellular origins 
of the remodelling process.
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